Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1270980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125876

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.

2.
Front Mol Biosci ; 9: 946344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710876

RESUMO

Transcription factor Ap2b (TFAP2B), an AP-2 family transcription factor, binds to the palindromic consensus DNA sequence, 5'-GCCN3-5GGC-3'. Mice lacking functional Tfap2b gene die in the perinatal or neonatal period with cystic dilatation of the kidney distal tubules and collecting ducts, a phenotype resembling autosomal recessive polycystic kidney disease (ARPKD). Human ARPKD is caused by mutations in PKHD1, DZIP1L, and CYS1, which are conserved in mammals. In this study, we examined the potential role of TFAP2B as a common regulator of Pkhd1 and Cys1. We determined the transcription start site (TSS) of Cys1 using 5' Rapid Amplification of cDNA Ends (5'RACE); the TSS of Pkhd1 has been previously established. Bioinformatic approaches identified cis-regulatory elements, including two TFAP2B consensus binding sites, in the upstream regulatory regions of both Pkhd1 and Cys1. Based on reporter gene assays performed in mouse renal collecting duct cells (mIMCD-3), TFAP2B activated the Pkhd1 and Cys1 promoters and electromobility shift assay (EMSA) confirmed TFAP2B binding to the in silico identified sites. These results suggest that Tfap2b participates in a renal epithelial cell gene regulatory network that includes Pkhd1 and Cys1. Disruption of this network impairs renal tubular differentiation, causing ductal dilatation that is the hallmark of recessive PKD.

3.
Artigo em Zh | WPRIM | ID: wpr-531133

RESUMO

Objective To confirm the expression of Aquaporin2,3,4(AQP2,3,4,water channel protein) in rats'endolymphatic sacs(ES)and kidneys and to investigate and to compare the effects of anti-diuretic hormone(AVP) and DDAVP([deamino-Cys1,D-Arg8]-Vasopressin,V2-receptor agonist)on the expression of AQP2 in rats' ESs and kidneys.Methods 30 healthy Swards white rats were divided into the negative control,AVP group and dDAVP group respectively.The animals were cardiacally perfused.The temporal bones and kidneys were taken out and sectioned by means of the paraffin-embedded technique.The sections of ESs were labeled with fluorescent antibody by immunohistochemical method,and the kidneys' with avidin-biotin-peroxidase complex method(ABC).The expressions of AQP-2 were confirmed in the ESs of the rats while the different effects of the AVP and DDAVP on the ESs and the kidneys were observed.The slides used were analyzed by the image-analyzer and the subsequent data were statistically studied.Results In the cytomembrane and cytoplasm of ESs' epithelia,the constant and clear fluorescent reaction could be observed in the normal control group with the first antibody of AQP2.Significant feeble fluorescent reaction of the first antibody of AQP-2 was revealed in AVP group and DDAVP group.In comparison with the control group,significant stain was found in AVP group and DDAVP group.Noted were also lower gray(P

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA