Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Dev Biol ; 510: 8-16, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403101

RESUMO

Physiological root resorption is a common occurrence during the development of deciduous teeth in children. Previous research has shown that the regulation of the inflammatory microenvironment through autophagy in DDPSCs is a significant factor in this process. However, it remains unclear why there are variations in the autophagic status of DDPSCs at different stages of physiological root resorption. To address this gap in knowledge, this study examines the relationship between the circadian clock of DDPSCs, the autophagic status, and the periodicity of masticatory behavior. Samples were collected from deciduous teeth at various stages of physiological root resorption, and DDPSCs were isolated and cultured for analysis. The results indicate that the circadian rhythm of important autophagy genes, such as Beclin-1 and LC3, and the clock gene REV-ERBα in DDPSCs, disappears under mechanical stress. Additionally, the study found that REV-ERBα can regulate Beclin-1 and LC3. Evidence suggests that mechanical stress is a trigger for the regulation of autophagy via REV-ERBα. Overall, this study highlights the importance of mechanical stress in regulating autophagy of DDPSCs via REV-ERBα, which affects the formation of the inflammatory microenvironment and plays a critical role in physiological root resorption in deciduous teeth.


Assuntos
Relógios Circadianos , Reabsorção da Raiz , Criança , Humanos , Reabsorção da Raiz/genética , Proteína Beclina-1/genética , Ritmo Circadiano/genética , Células-Tronco , Dente Decíduo
2.
Stem Cells ; 42(2): 116-127, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37952104

RESUMO

Human dental pulp stem cells (hDPSCs) play a vital role in the regeneration of the pulp-dentin complex after pulp disease. While the regeneration efficiency relies on the odontoblastic differentiation capacity of hDPSCs, this is difficult to regulate within the pulp cavity. Although nicotinamide riboside (NR) has been found to promote tissue regeneration, its specific role in pulp-dentin complex regeneration is not fully understood. Here, we aimed to explore the role of NR in the odontoblastic differentiation of hDPSCs and its underlying molecular mechanism. It was found that NR enhanced the viability and retarded senescence in hDPSCs with higher NAD+/NADH levels. In contrast to the sustained action of NR, the multi-directional differentiation of hDPSCs was enhanced after NR pre-treatment. Moreover, in an ectopic pulp regeneration assay in nude mice, transplantation of hDPSCs pretreated with NR promoted the formation of a dentin-like structure surrounded by cells positively expressing DMP-1 and DSPP. RNA-Seq demonstrated inhibition of the HIF-1 signaling pathway in hDPSCs pretreated with NR. The number of HIF-1α-positive cells was significantly decreased in hDPSCs pretreated by NR in vivo. Similarly, NR significantly downregulated the expression of HIF-1α in vitro. The findings suggested that NR could potentially regulate hDPSC odontoblastic differentiation and promote the development of innovative strategies for dental pulp repair.


Assuntos
Polpa Dentária , Niacinamida , Odontoblastos , Compostos de Piridínio , Animais , Humanos , Camundongos , Diferenciação Celular , Células Cultivadas , Camundongos Nus , Niacinamida/análogos & derivados , Regeneração , Transdução de Sinais , Células-Tronco/metabolismo
3.
Stem Cells ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167061

RESUMO

BACKGROUND: This study aims to address challenges in dental pulp regeneration therapy. The heterogeneity of DPSCs poses challenges, especially in stem cell transplantation for clinical use, particularly when sourced from donors of different ages and conditions. METHODS: Pseudotime analysis was employed to analyze single-cell sequencing data, and immunohistochemical studies were conducted to investigate the expression of fibronectin 1 (FN1). We performed in vitro sorting of PDGFRß+ DPSCs using flow cytometry. A series of functional assays, including cell proliferation, scratch, and tube formation assays, were performed to experimentally validate the vasculogenic capabilities of the identified PDGFRß+ DPSC subset. Furthermore, gene-edited mouse models were utilized to demonstrate the importance of PDGFRß+ DPSCs. Transcriptomic sequencing was conducted to compare the differences between PDGFRß+ DPSCs and P1-DPSCs. RESULTS: Single-cell sequencing analysis unveiled a distinct subset, PDGFRß+ DPSCs, characterized by significantly elevated FN1 expression during dental pulp development. Subsequent cell experiments demonstrated that this subset possesses remarkable abilities to promote HUVEC proliferation, migration, and tube formation. Gene-edited mouse models confirmed the vital role of PDGFRß+ DPSCs in dental pulp development. Transcriptomic sequencing and in vitro experiments demonstrated that the PDGFR/PI3K/AKT signaling pathway is a crucial factor mediating the proliferation rate and pro-angiogenic properties of PDGFRß+ DPSCs. CONCLUSION: We defined a new subset, PDGFRß+ DPSCs, characterized by strong proliferative activity and pro-angiogenic capabilities, demonstrating significant clinical translational potential.

4.
J Cell Mol Med ; 28(4): e18143, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38333908

RESUMO

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Assuntos
Fator de Crescimento Neural , Osteogênese , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Polpa Dentária , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , RNA Interferente Pequeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proliferação de Células
5.
J Transl Med ; 22(1): 54, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218880

RESUMO

BACKGROUND: Epigenetic factors influence the odontogenic differentiation of dental pulp stem cells and play indispensable roles during tooth development. Some microRNAs can epigenetically regulate other epigenetic factors like DNA methyltransferases and histone modification enzymes, functioning as epigenetic-microRNAs. In our previous study, microarray analysis suggested microRNA-93-5p (miR-93-5p) was differentially expressed during the bell stage in human tooth germ. Prediction tools indicated that miR-93-5p may target lysine-specific demethylase 6B (KDM6B). Therefore, we explored the role of miR-93-5p as an epi-miRNA in tooth development and further investigated the underlying mechanisms of miR-93-5p in regulating odontogenic differentiation and dentin formation. METHODS: The expression pattern of miR-93-5p and KDM6B of dental pulp stem cells (DPSCs) was examined during tooth development and odontogenic differentiation. Dual luciferase reporter and ChIP-qPCR assay were used to validate the target and downstream regulatory genes of miR-93-5p in human DPSCs (hDPSCs). Histological analyses and qPCR assays were conducted for investigating the effects of miR-93-5p mimic and inhibitor on odontogenic differentiation of hDPSCs. A pulpotomy rat model was further established, microCT and histological analyses were performed to explore the effects of KDM6B-overexpression and miR-93-5p inhibition on the formation of tertiary dentin. RESULTS: The expression level of miR-93-5p decreased as odontoblast differentiated, in parallel with elevated expression of histone demethylase KDM6B. In hDPSCs, miR-93-5p overexpression inhibited the odontogenic differentiation and vice versa. MiR-93-5p targeted 3' untranslated region (UTR) of KDM6B, thereby inhibiting its protein translation. Furthermore, KDM6B bound the promoter region of BMP2 to demethylate H3K27me3 marks and thus upregulated BMP2 transcription. In the rat pulpotomy model, KDM6B-overexpression or miR-93-5p inhibition suppressed H3K27me3 level in DPSCs and consequently promoted the formation of tertiary dentin. CONCLUSIONS: MiR-93-5p targets epigenetic regulator KDM6B and regulates H3K27me3 marks on BMP2 promoters, thus modulating the odontogenic differentiation of DPSCs and dentin formation.


Assuntos
Histonas , MicroRNAs , Humanos , Ratos , Animais , Histonas/metabolismo , Células-Tronco , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dentina , Células Cultivadas , Histona Desmetilases com o Domínio Jumonji/genética
6.
Cell Biol Int ; 48(3): 369-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225667

RESUMO

Dental pulp cells play a crucial role in maintaining the balance of the pulp tissue. They actively respond to bacterial inflammation by producing proinflammatory cytokines, particularly interleukin-6 (IL-6). While many cell types release adenosine triphosphate (ATP) in response to various stimuli, the mechanisms and significance of ATP release in dental pulp cells under inflammatory conditions are not well understood. This study aimed to investigate ATP release and its relationship with IL-6 during the inflammatory response in immortalized human dental pulp stem cells (hDPSC-K4DT) following lipopolysaccharide (LPS) stimulation. We found that hDPSC-K4DT cells released ATP extracellularly when exposed to LPS concentrations above 10 µg/mL. ATP release was exclusively attenuated by N-ethylmaleimide, whereas other inhibitors, including clodronic acid (a vesicular nucleotide transporter inhibitor), probenecid (a selective pannexin-1 channel inhibitor), meclofenamic acid (a selective connexin 43 inhibitor), suramin (a nonspecific P2 receptor inhibitor), and KN-62 (a specific P2X7 antagonist), did not exhibit any effect. Additionally, LPS increased IL-6 mRNA expression, which was mitigated by the ATPase apyrase enzyme, N-ethylmaleimide, and suramin, but not by KN-62. Moreover, exogenous ATP induced IL-6 mRNA expression, whereas ATPase apyrase, N-ethylmaleimide, and suramin, but not KN-62, diminished ATP-induced IL-6 mRNA expression. Overall, our findings suggest that LPS-induced ATP release stimulates the IL-6 pathway through P2-purinoceptor, indicating that ATP may function as an anti-inflammatory signal, contributing to the maintenance of dental pulp homeostasis.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Trifosfato de Adenosina , Interleucina-6 , Humanos , Trifosfato de Adenosina/metabolismo , Lipopolissacarídeos/farmacologia , Etilmaleimida , Suramina/farmacologia , Apirase , Polpa Dentária/metabolismo , RNA Mensageiro/genética , Adenosina Trifosfatases , Receptores Purinérgicos
7.
Exp Cell Res ; 425(2): 113543, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894050

RESUMO

Hypoxia was proved to enhance the angiogenesis of stem cells. However, the mechanism of the angiogenic potential in hypoxia-pretreated dental pulp stem cells (DPSCs) is poorly understood. We previously confirmed that hypoxia enhances the angiogenic potential of DPSC-derived exosomes with upregulation of lysyl oxidase-like 2 (LOXL2). Therefore, our study aimed to illuminate whether these exosomes promote angiogenesis via transfer of LOXL2. Exosomes were generated from hypoxia-pretreated DPSCs (Hypo-Exos) stably silencing LOXL2 after lentiviral transfection and characterized with transmission electron microscopy, nanosight and Western blot. The efficiency of silencing was verified using quantitative real-time PCR (qRT-PCR) and Western blot. CCK-8, scratch and transwell assays were conducted to explore the effects of LOXL2 silencing on DPSCs proliferation and migration. Human umbilical vein endothelial cells (HUVECs) were co-incubated with exosomes to assess the migration and angiogenic capacity through transwell and matrigel tube formation assays. The relative expression of angiogenesis-associated genes was characterized by qRT-PCR and Western blot. LOXL2 was successfully silenced in DPSCs and inhibited DPSC proliferation and migration. LOXL2 silencing in Hypo-Exos partially reduced promotion of HUVEC migration and tube formation and inhibited the expression of angiogenesis-associated genes. Thus, LOXL2 is one of various factors mediating the angiogenic effects of Hypo-Exos.


Assuntos
Exossomos , Humanos , Exossomos/metabolismo , Proliferação de Células/genética , Neovascularização Fisiológica/genética , Células Endoteliais da Veia Umbilical Humana , Células-Tronco , Aminoácido Oxirredutases/genética
8.
Int J Med Sci ; 21(6): 1155-1164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774749

RESUMO

Introduction: Clinical studies have shown that endodontically-treated nonvital teeth exhibit less root resorption during orthodontic tooth movement. The purpose of this study was to explore whether hypoxic dental pulp stem cells (DPSCs) can promote osteoclastogenesis in orthodontically induced inflammatory root resorption (OIIRR). Methods: Succinate in the supernatant of DPSCs under normal and hypoxic conditions was measured by a succinic acid assay kit. The culture supernatant of hypoxia-treated DPSCs was used as conditioned medium (Hypo-CM). Bone marrow-derived macrophages (BMDMs) from succinate receptor 1 (SUCNR1)-knockout or wild-type mice were cultured with conditioned medium (CM), exogenous succinate or a specific inhibitor of SUCNR1 (4c). Tartrate-resistant acid phosphatase (TRAP) staining, Transwell assays, qPCR, Western blotting, and resorption assays were used to evaluate osteoclastogenesis-related changes. Results: The concentration of succinate reached a maximal concentration at 6 h in the supernatant of hypoxia-treated DPSCs. Hypo-CM-treated macrophages were polarized to M1 proinflammatory macrophages. Hypo-CM treatment significantly increased the formation and differentiation of osteoclasts and increased the expression of osteoclastogenesis-related genes, and this effect was inhibited by the specific succinate inhibitor 4c. Succinate promoted chemotaxis and polarization of M1-type macrophages with increased expression of osteoclast generation-related genes. SUCNR1 knockout decreased macrophage migration, M1 macrophage polarization, differentiation and maturation of osteoclasts, as shown by TRAP and NFATc1 expression and cementum resorption. Conclusions: Hypoxic DPSC-derived succinate may promote osteoclast differentiation and root resorption. The regulation of the succinate-SUCNR1 axis may contribute to the reduction in the OIIRR.


Assuntos
Polpa Dentária , Camundongos Knockout , Osteoclastos , Osteogênese , Reabsorção da Raiz , Células-Tronco , Ácido Succínico , Animais , Camundongos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Reabsorção da Raiz/patologia , Reabsorção da Raiz/metabolismo , Humanos , Ácido Succínico/metabolismo , Osteogênese/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Meios de Cultivo Condicionados/farmacologia , Células Cultivadas
9.
Cell Biochem Funct ; 42(4): e4064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38807466

RESUMO

Human dental pulp stem cells are a potentially useful resource for cell-based therapies and tissue repair in dental and medical applications. However, the primary culture of isolated dental pulp stem cells has notably been limited. A major requirement of an ideal human dental pulp stem cell culture system is the preservation of efficient proliferation and innate stemness over prolonged passaging, while also ensuring ease of handling through standard, user-friendly culture methods. In this study, we have engineered a novel human dental pulp stem cell line, distinguished by the constitutive expression of telomerase reverse transcriptase (TERT), and the conditional expression of the R24C mutant cyclin-dependent kinase 4 (CDK4R24C) and Cyclin D1. We have named this cell line Tet-off K4DT hDPSCs. Furthermore, we have conducted a comprehensive comparative analysis of their biological attributes in relation to a previously immortalized human dental pulp stem cells, hDPSC-K4DT, which were immortalized by the constitutive expression of CDK4R24C, Cyclin D1 and TERT. In Tet-off K4DT cells, the expression of the K4D genes can be precisely suppressed by the inclusion of doxycycline. Remarkably, Tet-off K4DT cells demonstrated an extended cellular lifespan, increased proliferative capacity, and enhanced osteogenic differentiation potential when compared to K4DT cells. Moreover, Tet-off K4DT cells had no observable genomic aberrations and also displayed a sustained expression of stem cell markers even at relatively advanced passages. Taken together, the establishment of this new cell line holds immense promise as powerful experimental tool for both fundamental and applied research involving dental pulp stem cells.


Assuntos
Proliferação de Células , Quinase 4 Dependente de Ciclina , Polpa Dentária , Doxiciclina , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proliferação de Células/efeitos dos fármacos , Doxiciclina/farmacologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Telomerase/metabolismo , Telomerase/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
10.
J Nanobiotechnology ; 22(1): 150, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575923

RESUMO

Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais , Polpa Dentária , Células-Tronco , Diferenciação Celular , Regeneração , DNA/metabolismo , Proliferação de Células/fisiologia
11.
Int Endod J ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031653

RESUMO

AIM: This study investigated the effects of the inflammatory microenvironment of moderate pulpitis on biological properties of human dental pulp stem cells (DPSCs) and further explored the mechanism involved in osteo-/odontogenic induction of the inflammatory microenvironment. METHODOLOGY: Healthy DPSCs (hDPSCs) and inflammatory DPSCs (iDPSCs) were isolated from human-impacted third molars free of caries and clinically diagnosed with moderate pulpitis, respectively. Healthy DPSCs were treated with lipopolysaccharides (LPS) to mimic iDPSCs in vitro. The surface markers expressed on hDPSCs and iDPSCs were detected by flow cytometry. A CCK-8 assay was performed to determine cell proliferation. Flow cytometric analysis was used to evaluate cell apoptosis. The osteo-/odontogenic differentiation of DPSCs was evaluated by western blot, alkaline phosphatase staining, and Alizarin Red S staining. The functions of the genes of differentially expressed mRNAs of hDPSCs and iDPSCs were analysed using gene set enrichment analysis. Transmission electron microscopy and western blot were used to evaluate the autophagy changes of LPS-treated DPSCs. RESULTS: Compared with hDPSCs, iDPSCs showed no significant difference in proliferative capacity but had stronger osteo-/odontogenic potential. In addition, the mRNAs differentially expressed between iDPSCs and hDPSCs were considerably enriched in autophagosome formation and assembly-related molecules. In vitro mechanism studies further found that low concentrations of LPS could upregulate DPSC autophagy-related protein expression and autophagosome formation and promote its odontogenic/osteogenic differentiation, whereas the inhibition of DPSC autophagy led to the weakening of the odontogenic/osteogenic differentiation induced by LPS. CONCLUSIONS: This explorative study showed that DPSCs isolated from teeth with moderate pulpitis possessed higher osteo-/odontogenic differentiation capacity, and the mechanism involved was related to the inflammatory microenvironment-mediated autophagy of DPSCs. This helps to better understand the repair potential of inflamed dental pulp and provides the biological basis for pulp preservation and hard tissue formation in minimally invasive endodontics.

12.
Int Endod J ; 57(1): 50-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837219

RESUMO

AIM: This study aimed to investigate the upstream regulators and specific mechanisms of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). METHODOLOGY: Human dental pulp stem cells were isolated and cultured, followed by conducting loss- or gain-of-function experiments on ATF4 and loss experiments on MALAT1 to elucidate their respective biological functions in odontoblastic differentiation. Chromatin immunoprecipitation assays and RNA immunoprecipitation were performed to uncover the interaction between ATF4-MALAT1 and MALAT1-JMJD3, respectively. The odontoblastic differentiation was estimated by the mRNA and protein of DSPP and DMP1, as well as alkaline phosphatase staining. RESULTS: Expression of MALAT1 was upregulated in the hDPSCs cultured in an odontoblastic medium, and MALAT1 downregulation suppressed the odontoblastic differentiation of the hDPSCs. Subsequent experiments confirmed that ATF4 promoted odontoblastic differentiation and induced MALAT1 expression by binding to the MALAT1 promoter region. Further experiments revealed that nuclear MALAT1 interacted with JMJD3. MALAT1 knockdown decreased the JMJD3 protein level and demethylase activity, and it enhanced H3K27me3 occupancy of the promoter region of DSPP and DMP1, resulting in the inhibition of DSPP and DMP1 transcription. Importantly, JMJD3 overexpression significantly attenuated the inhibition of odontoblastic differentiation induced by MALAT1 knockdown. CONCLUSIONS: ATF4-regulated MALAT1 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through JMJD3-mediated H3K27me3 modifications of the DSPP and DMP1 promoters.


Assuntos
Diferenciação Celular , Histona Desmetilases com o Domínio Jumonji , Odontoblastos , RNA Longo não Codificante , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Células Cultivadas , Polpa Dentária , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
13.
Int Endod J ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046812

RESUMO

AIM: Lack of adequate mechanical strength and progressive shrinkage over time remain challenges in scaffold-free microtissue-based dental pulp regeneration. Surface collagen cross-linking holds the promise to enhance the mechanical stability of microtissue constructs and trigger biological regulations. In this study, we proposed a novel strategy for surface preconditioning microtissues using a natural collagen cross-linker, proanthocyanidin (PA). We evaluated its effects on cell viability, tissue integrity, and biomineralization of dental pulp stem cell (DPSCs)-derived 3D cell spheroids. METHODOLOGY: Microtissue and macrotissue spheroids were fabricated from DPSCs and incubated with PA solution for surface collagen cross-linking. Microtissue viability was examined by live/dead staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with transverse dimension change monitored. Microtissue surface stiffness was measured by an atomic force microscope (AFM). PA-preconditioned microtissues and macrotissues were cultured under basal or osteogenic conditions. Immunofluorescence staining of PA-preconditioned microtissues was performed to detect dentin sialophosphoprotein (DSPP) and F-actin expressions. PA-preconditioned macrotissues were subjected to histological analysis, including haematoxylin-eosin (HE), alizarin red, and Masson trichrome staining. Immunohistochemistry staining was used to detect alkaline phosphatase (ALP) and dentin matrix acidic phosphoprotein 1 (DMP-1) expressions. RESULTS: PA preconditioning had no adverse effects on microtissue spheroid viability and increased surface stiffness. It reduced dimensional shrinkage for over 7 days in microtissues and induced a larger transverse-section area in the macrotissue. PA preconditioning enhanced collagen formation, mineralized nodule formation, and elevated ALP and DMP-1 expressions in macrotissues. Additionally, PA preconditioning induced higher F-actin and DSPP expression in microtissues, while inhibition of F-actin activity by cytochalasin B attenuated PA-induced dimensional change and DSPP upregulation. CONCLUSION: PA surface preconditioning of DPSCs spheroids demonstrates excellent biocompatibility while effectively enhancing tissue structure stability and promoting biomineralization. This strategy strengthens tissue integrity in DPSC-derived spheroids and amplifies osteogenic differentiation potential, advancing scaffold-free tissue engineering applications in regenerative dentistry.

14.
Int Endod J ; 57(5): 549-565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332717

RESUMO

AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.


Assuntos
Polpa Dentária , Fator de Crescimento Derivado de Plaquetas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Conexina 43/metabolismo , Fosfatidilinositol 3-Quinases , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Regeneração , Células-Tronco/metabolismo
15.
Lasers Med Sci ; 39(1): 87, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443654

RESUMO

The aim of this study was to determine the effect of low-level laser therapy (LLLT) on cell proliferation, mitochondrial membrane potential changes (∆Ψm), reactive oxygen species (ROS), and osteoblast differentiation of human dental pulp stem cells (hDPSCs). These cells were irradiated with 660- and 940-nm lasers for 5 s, 50 s, and 180 s. Cell proliferation was assessed using the resazurin assay, cell differentiation by RUNX2 and BMP2 expression, and the presence of calcification nodules using alizarin-red S staining. ROS was determined by the dichlorofluorescein-diacetate technique and changes in ∆Ψm by the tetramethylrhodamine-ester assay. Data were analyzed by a Student's t-test and Mann-Whitney U test. The 940-nm wavelength for 5 and 50 s increased proliferation at 4 days postirradiation. After 8 days, a significant decrease in proliferation was observed in all groups. Calcification nodules were evident in all groups, with a greater staining intensity in cells treated with a 940-nm laser for 50 s, an effect that correlated with increased RUNX2 and BMP2 expression. ROS production and Δψm increased independently of irradiation time. In conclusion, photobiomodulation (PBM) with LLLT induced morphological changes and reduced cell proliferation rate, which was associated with osteoblastic differentiation and increased ROS and Δψm, independent of wavelength and time.


Assuntos
Calcinose , Subunidade alfa 1 de Fator de Ligação ao Core , Humanos , Espécies Reativas de Oxigênio , Células-Tronco , Diferenciação Celular , Oxirredução
16.
Odontology ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969870

RESUMO

Angiogenesis serves as the determinate element of pulp regeneration. Dental pulp stem cell (DPSC) implantation can promote the regeneration of dental pulp tissue. Herein, the role of m6A methyltransferase methyltransferase-like 3 (METTL3) in regulating DPSCs-induced angiogenesis during pulp regeneration therapy was investigated. Cell DPSC viability, HUVEC migration, and angiogenesis ability were analyzed by CCK-8 assay, wound healing, Transwell assay, and tube formation assay. The global and EST1 mRNA m6A levels were detected by m6A dot blot and Me-RIP. The interactions between E26 transformation-specific proto-oncogene 1(ETS1), human antigen R(HuR), and METTL3 were analyzed by RIP assay. The relationship between METTL3 and the m6A site of ETS1 was performed by dual-luciferase reporter assay. ETS1 mRNA stability was examined with actinomycin D. Herein, our results revealed that human immature DPSCs (hIDPSCs) showed stronger ability to induce angiogenesis than human mature DPSCs (hMDPSCs), which might be related to ETS1 upregulation. ETS1 knockdown inhibited DPSCs-induced angiogenesis. Our mechanistic experiments demonstrated that METTL3 increased ETS1 mRNA stability and expression level on DPSCs in an m6A-HuR-dependent manner. ETS1 upregulation abolished sh-METTL3's inhibition on DPSCs-induced angiogenesis. METTL3 upregulation promoted DPSCs-induced angiogenesis by enhancing ETS1 mRNA stability in an m6A-HuR-dependent manner. This study reveals a new mechanism by which m6A methylation regulates angiogenesis in DPSCs, providing new insights for stem cell-based tissue engineering.

17.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063181

RESUMO

This study aimed to compare the biological properties of newly synthesized cements based on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium (Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells (hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model. CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.


Assuntos
Aspirina , Fosfatos de Cálcio , Cobre , Estrôncio , Zinco , Estrôncio/química , Estrôncio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Humanos , Animais , Aspirina/farmacologia , Aspirina/química , Cobre/química , Zinco/química , Zinco/farmacologia , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Biofilmes/efeitos dos fármacos , Teste de Materiais , Peixe-Zebra , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Difração de Raios X , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos
18.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125748

RESUMO

Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, we isolated EVs from the conditioned medium of human immature dental pulp stem cells (hIDPSC-EVs) and investigated their effects on two papillary thyroid cancer (PTC) cell lines (BCPAP and TPC1). We observed efficient uptake of hIDPSC-EVs by both PTC cell lines, with a notable impact on gene regulation, particularly in the Wnt signaling pathway in BCPAP cells. However, no significant effects on cell proliferation were observed. Conversely, hIDPSC-EVs significantly reduced the invasive capacity of both PTC cell lines after 120 h of treatment. These in vitro findings suggest the therapeutic potential of hIDPSC-EVs in cancer management and emphasize the need for further research to develop novel and effective treatment strategies. Furthermore, the successful internalization of hIDPSC-EVs by PTC cell lines underscores their potential use as nanocarriers for anti-cancer agents.


Assuntos
Proliferação de Células , Polpa Dentária , Vesículas Extracelulares , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Polpa Dentária/citologia , Vesículas Extracelulares/metabolismo , Câncer Papilífero da Tireoide/terapia , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Via de Sinalização Wnt , Meios de Cultivo Condicionados/farmacologia
19.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201803

RESUMO

The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFß pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.


Assuntos
Diferenciação Celular , Polpa Dentária , Neurônios , Gânglio Espiral da Cóclea , Polpa Dentária/citologia , Humanos , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo , Animais , Ratos , Neurônios/metabolismo , Neurônios/citologia , Células Cultivadas , Nervo Coclear/citologia , Nervo Coclear/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Neurogênese
20.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542525

RESUMO

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose II , Humanos , Células-Tronco , Linhagem Celular , Dente Decíduo , Lisossomos , Polpa Dentária , Diferenciação Celular/fisiologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA