Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Trends Biochem Sci ; 49(3): 195-198, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38195289

RESUMO

Targeting translational factor proteins (TFPs) presents significant promise for the development of innovative antitubercular drugs. Previous insights from antibiotic binding mechanisms and recently solved 3D crystal structures of Mycobacterium tuberculosis (Mtb) elongation factor thermo unstable-GDP (EF-Tu-GDP), elongation factor thermo stable-EF-Tu (EF-Ts-EF-Tu), and elongation factor G-GDP (EF-G-GDP) have opened up new avenues for the design and development of potent antituberculosis (anti-TB) therapies.


Assuntos
Antituberculosos , Fator Tu de Elongação de Peptídeos , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas/metabolismo
2.
Plant J ; 117(4): 1250-1263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991990

RESUMO

High-temperature stress results in protein misfolding/unfolding and subsequently promotes the accumulation of cytotoxic protein aggregates that can compromise cell survival. Heat shock proteins (HSPs) function as molecular chaperones that coordinate the refolding and degradation of aggregated proteins to mitigate the detrimental effects of high temperatures. However, the relationship between HSPs and protein aggregates in apples under high temperatures remains unclear. Here, we show that an apple (Malus domestica) chloroplast-localized, heat-sensitive elongation factor Tu (MdEF-Tu), positively regulates apple thermotolerance when it is overexpressed. Transgenic apple plants exhibited higher photosynthetic capacity and better integrity of chloroplasts during heat stress. Under high temperatures, MdEF-Tu formed insoluble aggregates accompanied by ubiquitination modifications. Furthermore, we identified a chaperone heat shock protein (MdHsp70), as an interacting protein of MdEF-Tu. Moreover, we observed obviously elevated MdHsp70 levels in 35S: MdEF-Tu apple plants that prevented the accumulation of ubiquitinated MdEF-Tu aggregates, which positively contributes to the thermotolerance of the transgenic plants. Overall, our results provide new insights into the molecular chaperone function of MdHsp70, which mediates the homeostasis of thermosensitive proteins under high temperatures.


Assuntos
Malus , Termotolerância , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Malus/genética , Malus/metabolismo , Agregados Proteicos , Chaperonas Moleculares/metabolismo , Plantas Geneticamente Modificadas/metabolismo
3.
J Bacteriol ; 206(2): e0032923, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38289064

RESUMO

Synonymous mutations are changes to DNA sequence, which occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation elongation factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels as well as global polysome abundance on RNA transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.IMPORTANCEThis study explores the degree to which synonymous mutations in essential genes can influence adaptation in bacteria. An experimental system whereby an Escherichia coli strain harboring an engineered translation protein elongation factor-Tu (EF-Tu) was subjected to laboratory evolution. We find that a synonymous mutation acquired on the gene encoding for EF-Tu is conditionally beneficial for bacterial fitness. Our findings provide insight into the importance of the genetic background when a synonymous substitution is favored by natural selection and how such changes have the potential to impact evolution when critical cellular processes are involved.


Assuntos
Escherichia coli , Fator Tu de Elongação de Peptídeos , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Mutação , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , Patrimônio Genético
4.
Mol Divers ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457020

RESUMO

The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.

5.
Biochem J ; 480(5): 307-318, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-36825659

RESUMO

Translational elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803. However, the sensitivity to ROS of chloroplast-localized EF-Tu (cpEF-Tu) of plants remains to be elucidated. In the present study, we generated a recombinant cpEF-Tu protein of Arabidopsis thaliana and examined its sensitivity to ROS in vitro. In cpEF-Tu that lacked a bound nucleotide, one of the two cysteine residues, Cys149 and Cys451, in the mature protein was sensitive to oxidation by H2O2, with the resultant formation of sulfenic acid. The translational activity of cpEF-Tu, as determined with an in vitro translation system, derived from Escherichia coli, that had been reconstituted without EF-Tu, decreased with the oxidation of a cysteine residue. Replacement of Cys149 with an alanine residue rendered cpEF-Tu insensitive to inactivation by H2O2, indicating that Cys149 might be the target of oxidation. In contrast, cpEF-Tu that had bound either GDP or GTP was less sensitive to oxidation by H2O2 than nucleotide-free cpEF-Tu. The addition of thioredoxin f1, a major thioredoxin in the Arabidopsis chloroplast, to oxidized cpEF-Tu allowed the reduction of Cys149 and the reactivation of cpEF-Tu, suggesting that the oxidation of cpEF-Tu might be a reversible regulatory mechanism that suppresses the chloroplast translation system in a redox-dependent manner.


Assuntos
Arabidopsis , Cisteína , Cisteína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Cloroplastos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Guanosina Trifosfato/metabolismo
6.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731549

RESUMO

Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Biossíntese de Proteínas , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Antituberculosos/farmacologia , Antituberculosos/química , Ribossomos/metabolismo , Modelos Moleculares , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/metabolismo , Conformação Proteica
7.
J Biol Chem ; 298(5): 101914, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398352

RESUMO

N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.


Assuntos
Acetiltransferases , Bactérias/metabolismo , Fator Tu de Elongação de Peptídeos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas , Ribossomos/metabolismo
8.
New Phytol ; 237(6): 2493-2504, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564969

RESUMO

Agrobacterium tumefaciens microbe-associated molecular pattern elongation factor Tu (EF-Tu) is perceived by orthologs of the Arabidopsis immune receptor EFR activating pattern-triggered immunity (PTI) that causes reduced T-DNA-mediated transient expression. We altered EF-Tu in A. tumefaciens to reduce PTI and improved transformation efficiency. A robust computational pipeline was established to detect EF-Tu protein variation in a large set of plant bacterial species and identified EF-Tu variants from bacterial pathogen Pseudomonas syringae pv. tomato DC3000 that allow the pathogen to escape EFR perception. Agrobacterium tumefaciens strains were engineered to substitute EF-Tu with DC3000 variants and examined their transformation efficiency in plants. Elongation factor Tu variants with rarely occurred amino acid residues were identified within DC3000 EF-Tu that mitigates recognition by EFR. Agrobacterium tumefaciens strains were engineered by expressing DC3000 EF-Tu instead of native agrobacterial EF-Tu and resulted in decreased plant immunity detection. These engineered A. tumefaciens strains displayed an increased efficiency in transient expression in both Arabidopsis thaliana and Camelina sativa. The results support the potential application of these strains as improved vehicles to introduce transgenic alleles into members of the Brassicaceae family.


Assuntos
Agrobacterium tumefaciens , Proteínas de Arabidopsis , Arabidopsis , Técnicas de Transferência de Genes , Fator Tu de Elongação de Peptídeos , Imunidade Vegetal , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Imunidade Vegetal/genética , Pseudomonas syringae/genética
9.
Plant J ; 105(5): 1225-1239, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33258210

RESUMO

Previous studies have suggested that the plastid translation elongation factor, elongation factor thermo unstable (EF-Tu), encoded by RAB GTPASE HOMOLOG 8D (RAB8D) is essential for plant growth. Here, through analyzing the root phenotypes of two knock-down alleles of RAB8D (rab8d-1 and rab8d-2), we further revealed a vital role for RAB8D in primary root development through the maintenance of both the stem cell niche (SCN) and the meristem. Our results showed that RAB8D deficiency affects the root auxin response and SCN maintenance signaling. RAB8D interacts with GENOMES UNCOUPLED 1 (GUN1) in vivo. Further analysis revealed that GUN1 is over-accumulated and is required for both stem cell death and maintenance of root architecture in rab8d Arabidopsis mutants. The ATAXIA-TELANGIECTASIA-MUTATED (ATM)-SUPPRESSOR OF GAMMA RESPONSE 1 pathway is involved in the regulation of root meristem size through upregulating SIAMESE-RELATED 5 expression in the rab8d-2 allele. Moreover, ETHYLENE RESPONSE FACTOR 115 is highly expressed in rab8d-2, which plays a role in further quiescent center division. Our observations not only characterized the role of RAB8D in root development, but also uncovered functions of GUN1 and ATM in response to plastid EF-Tu deficiency.


Assuntos
Meristema/citologia , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/metabolismo , Nicho de Células-Tronco/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Mol Biol Evol ; 38(8): 3436-3444, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33871630

RESUMO

It has been hypothesized that early enzymes are more promiscuous than their extant orthologs. Whether or not this hypothesis applies to the translation machinery, the oldest molecular machine of life, is not known. Efficient protein synthesis relies on a cascade of specific interactions between the ribosome and the translation factors. Here, using elongation factor-Tu (EF-Tu) as a model system, we have explored the evolution of ribosome specificity in translation factors. Employing presteady state fast kinetics using quench flow, we have quantitatively characterized the specificity of two sequence-reconstructed 1.3- to 3.3-Gy-old ancestral EF-Tus toward two unrelated bacterial ribosomes, mesophilic Escherichia coli and thermophilic Thermus thermophilus. Although the modern EF-Tus show clear preference for their respective ribosomes, the ancestral EF-Tus show similar specificity for diverse ribosomes. In addition, despite increase in the catalytic activity with temperature, the ribosome specificity of the thermophilic EF-Tus remains virtually unchanged. Our kinetic analysis thus suggests that EF-Tu proteins likely evolved from the catalytically promiscuous, "generalist" ancestors. Furthermore, compatibility of diverse ribosomes with the modern and ancestral EF-Tus suggests that the ribosomal core probably evolved before the diversification of the EF-Tus. This study thus provides important insights regarding the evolution of modern translation machinery.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Fator Tu de Elongação de Peptídeos/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli , Cinética , Fator Tu de Elongação de Peptídeos/metabolismo , Especificidade por Substrato , Thermus thermophilus
11.
Proc Natl Acad Sci U S A ; 116(42): 21268-21273, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570574

RESUMO

In photosynthetic organisms, the repair of photosystem II (PSII) is enhanced after acclimation to strong light, with the resultant mitigation of photoinhibition of PSII. We previously reported that oxidation of translation elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, depresses the repair of PSII in the cyanobacterium Synechocystis sp. PCC 6803. In the present study, we investigated the role of EF-Tu in the repair of PSII after acclimation of Synechocystis to strong light. In cells that had been grown under strong light, both the repair of PSII and the synthesis of proteins de novo were enhanced under strong light, with the resultant mitigation of photoinhibition of PSII. Moreover, levels of EF-Tu were elevated, whereas levels of other components of the translation machinery, such as translation factor EF-G and ribosomal proteins L2 and S12, did not change significantly. The expression of the gene for EF-Tu was induced by light, as monitored at the transcriptional level. Elevation of the level of EF-Tu was strongly correlated with the subsequent enhancement of PSII repair in cells that had been grown under light at various intensities. Furthermore, overexpression of EF-Tu in Synechocystis enhanced protein synthesis and PSII repair under strong light, even after cell culture under nonacclimating conditions. These observations suggest that elevation of the level of EF-Tu might be a critical factor in enhancing the capacity for repair of PSII that develops during acclimation to strong light.


Assuntos
Aclimatação/genética , Fator Tu de Elongação de Peptídeos/genética , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/genética , Biossíntese de Proteínas/genética , Proteínas de Bactérias/genética , Luz , Synechocystis/genética
12.
J Biol Chem ; 295(38): 13314-13325, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32727850

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) are cationic antimicrobial peptides unusual for their ability to penetrate bacterial membranes and kill cells without causing membrane permeabilization. Structural studies show that many such PrAMPs bind deep in the peptide exit channel of the ribosome, near the peptidyl transfer center. Biochemical studies of the particular synthetic PrAMP oncocin112 (Onc112) suggest that on reaching the cytoplasm, the peptide occupies its binding site prior to the transition from initiation to the elongation phase of translation, thus blocking further initiation events. We present a superresolution fluorescence microscopy study of the long-term effects of Onc112 on ribosome, elongation factor-Tu (EF-Tu), and DNA spatial distributions and diffusive properties in intact Escherichia coli cells. The new data corroborate earlier mechanistic inferences from studies in vitro Comparisons with the diffusive behavior induced by the ribosome-binding antibiotics chloramphenicol and kasugamycin show how the specific location of each agent's ribosomal binding site affects the long-term distribution of ribosomal species between 30S and 50S subunits versus 70S polysomes. Analysis of the single-step displacements from ribosome and EF-Tu diffusive trajectories before and after Onc112 treatment suggests that the act of codon testing of noncognate ternary complexes (TCs) at the ribosomal A-site enhances the dissociation rate of such TCs from their L7/L12 tethers. Testing and rejection of noncognate TCs on a sub-ms timescale is essential to enable incorporation of the rare cognate amino acids into the growing peptide chain at a rate of ∼20 aa/s.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Citoplasma/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(13): 3386-3391, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531062

RESUMO

Many cellular processes are controlled by GTPases, and gaining quantitative understanding of the activation of such processes has been a major challenge. In particular, it is crucial to obtain reliable free-energy surfaces for the relevant reaction paths both in solution and in GTPases active sites. Here, we revisit the energetics of the activation of EF-G and EF-Tu by the ribosome and explore the nature of the catalysis of the GTPase reaction. The comparison of EF-Tu to EF-G allows us to explore the impact of possible problems with the available structure of EF-Tu. Additionally, mutational effects are used for a careful validation of the emerging conclusions. It is found that the reaction may proceed by both a two-water mechanism and a one-water (GTP as a base) mechanism. However, in both cases, the activation involves a structural allosteric effect, which is likely to be a general-activation mechanism for all GTPases.


Assuntos
Guanosina Trifosfato/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Regulação Alostérica , Sítios de Ligação , Catálise , Domínio Catalítico , Modelos Moleculares , Mutação , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética
14.
J Biol Chem ; 294(52): 20109-20121, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31753919

RESUMO

The opportunistic bacterial pathogen Pseudomonas aeruginosa is a leading cause of serious infections in individuals with cystic fibrosis, compromised immune systems, or severe burns. P. aeruginosa adhesion to host epithelial cells is enhanced by surface-exposed translation elongation factor EF-Tu carrying a Lys-5 trimethylation, incorporated by the methyltransferase EftM. Thus, the EF-Tu modification by EftM may represent a target to prevent P. aeruginosa infections in vulnerable individuals. Here, we extend our understanding of EftM activity by defining the molecular mechanism by which it recognizes EF-Tu. Acting on the observation that EftM can bind to EF-Tu lacking its N-terminal peptide (encompassing the Lys-5 target site), we generated an EftM homology model and used it in protein/protein docking studies to predict EftM/EF-Tu interactions. Using site-directed mutagenesis of residues in both proteins, coupled with binding and methyltransferase activity assays, we experimentally validated the predicted protein/protein interface. We also show that EftM cannot methylate the isolated N-terminal EF-Tu peptide and that binding-induced conformational changes in EftM are likely needed to enable placement of the first 5-6 amino acids of EF-Tu into a conserved peptide-binding channel in EftM. In this channel, a group of residues that are highly conserved in EftM proteins position the N-terminal sequence to facilitate Lys-5 modification. Our findings reveal that EftM employs molecular strategies for substrate recognition common among both class I (Rossmann fold) and class II (SET domain) methyltransferases and pave the way for studies seeking a deeper understanding of EftM's mechanism of action on EF-Tu.


Assuntos
Proteínas de Bactérias/metabolismo , Metiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Evolução Molecular , Metiltransferases/química , Metiltransferases/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
15.
Biochem Biophys Res Commun ; 515(1): 9-15, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31118131

RESUMO

The unique dependence of cancer cells on mitochondrial metabolism has been exploited therapeutically in various cancers but not osteosarcoma. In this work, we demonstrate that inhibition of mitochondrial translation is effective and selective in targeting osteosarcoma. We firstly showed that tigecycline at pharmacological achievable concentrations inhibited growth and induced apoptosis of multiple osteosarcoma cell lines while sparing normal osteoblast cells. Similarly, tigecycline at effective doses that delayed osteosarcoma growth did not cause significant toxicity to mice. We next showed that tigecycline specifically inhibits mitochondrial translation, resulting in defective mitochondrial respiration in both osteosarcoma and normal osteoblast cells. We further confirm mitochondrial respiration as the target of tigecycline using three independent approaches. In addition, we demonstrate that compared to normal osteoblasts, osteosarcoma cells have higher mitochondrial biogenesis. We finally show that specific inhibition of mitochondrial translation via EF-Tu depletion produces the similar anti-osteosarcoma effects of tigecycline. Our work highlights the therapeutic value of targeting mitochondrial metabolism in osteosarcoma and tigecycline as a useful addition to the treatment of osteosarcoma.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Osteossarcoma/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Tigeciclina/farmacologia , Animais , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Fator Tu de Elongação de Peptídeos/deficiência , Fator Tu de Elongação de Peptídeos/metabolismo , Tigeciclina/uso terapêutico
16.
Proc Natl Acad Sci U S A ; 113(48): 13744-13749, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27837019

RESUMO

Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aa-tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP are selected in a step where the accuracy increases linearly with increasing aa-tRNA affinity to EF-Tu. Then, following dissociation of EF-Tu·GDP from the ribosome, the accuracy is further increased in a second and apparently EF-Tu-independent step. Our findings identify the molecular basis of proofreading in bacteria, highlight the pivotal role of EF-Tu for fast and accurate protein synthesis, and illustrate the importance of multistep substrate selection in intracellular processing of genetic information.


Assuntos
Fator Tu de Elongação de Peptídeos/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Ribossomos/genética , Aminoacil-tRNA Sintetases/genética , Código Genético/genética , Guanosina Difosfato/metabolismo , Mutação , Conformação de Ácido Nucleico , RNA Mensageiro/genética , Fatores de Complexo Ternário/genética
17.
Int J Mol Sci ; 20(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691159

RESUMO

Methods of genetic code manipulation, such as nonsense codon suppression and genetic code reprogramming, have enabled the incorporation of various nonproteinogenic amino acids into the peptide nascent chain. However, the incorporation efficiency of such amino acids largely varies depending on their structural characteristics. For instance, l-α-amino acids with artificial, bulky side chains are poorer substrates for ribosomal incorporation into the nascent peptide chain, mainly owing to the lower affinity of their aminoacyl-tRNA toward elongation factor-thermo unstable (EF-Tu). Phosphorylated Ser and Tyr are also poorer substrates for the same reason; engineering EF-Tu has turned out to be effective in improving their incorporation efficiencies. On the other hand, exotic amino acids such as d-amino acids and ß-amino acids are even poorer substrates owing to their low affinity to EF-Tu and poor compatibility to the ribosome active site. Moreover, their consecutive incorporation is extremely difficult. To solve these problems, the engineering of ribosomes and tRNAs has been executed, leading to successful but limited improvement of their incorporation efficiency. In this review, we comprehensively summarize recent attempts to engineer the translation systems, resulting in a significant improvement of the incorporation of exotic amino acids.


Assuntos
Aminoácidos/metabolismo , Engenharia Genética/métodos , Biossíntese de Proteínas , Aminoácidos/química , Código Genético , Fator Tu de Elongação de Peptídeos/metabolismo
18.
World J Microbiol Biotechnol ; 35(2): 31, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30701329

RESUMO

In order to establish a rapid detection method for Mycoplasma ovipneumoniae, this study used the loop-mediated isothermal amplification (LAMP) technique to carry out nucleic acid amplification and chromatographic visualization via a lateral flow dipstick (LFD) assay. The M. ovipneumoniae elongation factor TU gene (EF-TU) was detected using a set of specific primers designed for the EF-TU gene, and the EF-TU FIP was detected by biotin labeling, which was used in the LAMP amplification reaction. The digoxin-labeled probe specifically hybridized with LAMP products, which were visually detected by LFD. Here, we established the M. ovipneumoniae LAMP-LFD rapid detection method and tested the specificity, sensitivity, and clinical application of this method. Results showed that the optimized LAMP performed at 60 °C for 60 min, and LFD can specifically and visually detect M. ovipneumoniae with a minimum detectable concentration at 1.0 × 102 CFU/mL. The sensitivity of LAMP-LFD was 1000 times that of the conventional PCR detection methods, and the clinical lung tissue detection rate was 86% of 50 suspected sheep infected with M. ovipneumoniae. In conclusion, LAMP-LFD was established in this study to detect M. ovipneumoniae, a method that was highly specific, sensitive, and easy to operate, and provides a new method for the prevention and diagnosis of M. ovipneumoniae infection.


Assuntos
Mycoplasma ovipneumoniae/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia por Mycoplasma/veterinária , Doenças dos Ovinos/microbiologia , Animais , Proteínas de Bactérias/genética , Primers do DNA/genética , Humanos , Mycoplasma ovipneumoniae/classificação , Mycoplasma ovipneumoniae/genética , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/microbiologia , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/diagnóstico
19.
RNA ; 22(4): 499-505, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873598

RESUMO

The ribosome actively participates in decoding, with a tRNA-dependent rearrangement of the 30S A site playing a key role. Ribosomal ambiguity (ram) mutations have mapped not only to the A site but also to the h12/S4/S5 region and intersubunit bridge B8, implicating other conformational changes such as 30S shoulder rotation and B8 disruption in the mechanism of decoding. Recent crystallographic data have revealed that mutation G299A in helix h12 allosterically promotes B8 disruption, raising the question of whether G299A and/or other ram mutations act mainly via B8. Here, we compared the effects of each of several ram mutations in the absence and presence of mutation h8Δ2, which effectively takes out bridge B8. The data obtained suggest that a subset of mutations including G299A act in part via B8 but predominantly through another mechanism. We also found that G299A in h12 and G347U in h14 each stabilize tRNA in the A site. Collectively, these data support a model in which rearrangement of the 30S A site, inward shoulder rotation, and bridge B8 disruption are loosely coupled events, all of which promote progression along the productive pathway toward peptide bond formation.


Assuntos
RNA Ribossômico 16S/química , RNA de Transferência/química , Subunidades Ribossômicas Menores de Bactérias/química , Sequência de Bases , Sítios de Ligação , Epistasia Genética , Escherichia coli , Conformação Molecular , Mutação , Ribossomos , Termodinâmica
20.
Cell Immunol ; 325: 14-22, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29366563

RESUMO

Streptococcus pneumoniae is a leading cause of bacterial pneumonia. Our previous study suggested that S. pneumoniae autolysis-dependently releases intracellular pneumolysin, which subsequently leads to lung injury. In this study, we hypothesized that pneumococcal autolysis induces the leakage of additional intracellular molecules that could increase the pathogenicity of S. pneumoniae. Liquid chromatography tandem-mass spectrometry analysis identified that chaperone protein DnaK, elongation factor Tu (EF-Tu), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were released with pneumococcal DNA by autolysis. We demonstrated that recombinant (r) DnaK, rEF-Tu, and rGAPDH induced significantly higher levels of interleukin-6 and tumor necrosis factor production in peritoneal macrophages and THP-1-derived macrophage-like cells via toll-like receptor 4. Furthermore, the DNA-binding activity of these proteins was confirmed by surface plasmon resonance assay. We demonstrated that pneumococcal DnaK, EF-Tu, and GAPDH induced the production of proinflammatory cytokines in macrophages, and might cause host tissue damage and affect the development of pneumococcal diseases.


Assuntos
Autólise/metabolismo , Proteínas de Ligação a DNA/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias , Cromatografia Líquida/métodos , Citocinas/metabolismo , Proteínas de Ligação a DNA/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Chaperonas Moleculares/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Células THP-1 , Espectrometria de Massas em Tandem/métodos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA