RESUMO
Acne is one of the most common skin conditions worldwide, with multifactorial origins it affects areas of the skin with hair follicles and sebaceous glands that become clogged. Bacterial incidence aggravates treatment due to resistance to antimicrobial agents and production of virulence factors such as biofilm formation. Based on these information, this study aims to conduct in vitro evaluations of the antibacterial activity of essential oils (EOs), alone and in combination, against Propionibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis in planktonic and biofilm forms. This study also assessed the anti-inflammatory potential (TNF-α) and the effects of EOs on the viability of human keratinocytes (HaCaT), murine fibroblasts (3T3-L1), and bone marrow-derived macrophages (BMDMs). Of all EOs tested, 13 had active action against P. acnes, 9 against S. aureus, and 9 against S. epidermidis at concentrations of 0.125-2.0 mg/mL. Among the most active plant species, a blend of essential oil (BEOs) was selected, with Cymbopogon martini (Roxb.) Will. Watson, Eugenia uniflora L., and Varronia curassavica Jacq., the latter due to its anti-inflammatory action. This BEOs showed higher inhibition rates when compared to chloramphenicol against S. aureus and S. epidermidis, and higher eradication rates when compared to chloramphenicol for the three target species. The BEOs did not affect the cell viability of cell lines evaluated, and the levels of TNF-α decreased. According to these results, the BEOs evaluated showed potential for the development of an alternative natural formulation for the treatment of acne.
Assuntos
Acne Vulgar , Antibacterianos , Anti-Inflamatórios , Biofilmes , Queratinócitos , Macrófagos , Testes de Sensibilidade Microbiana , Óleos Voláteis , Propionibacterium acnes , Staphylococcus aureus , Staphylococcus epidermidis , Fator de Necrose Tumoral alfa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Humanos , Acne Vulgar/microbiologia , Acne Vulgar/tratamento farmacológico , Camundongos , Anti-Inflamatórios/farmacologia , Antibacterianos/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Staphylococcus aureus/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Células HaCaT , Linhagem Celular , Óleos de Plantas/farmacologiaRESUMO
PREMISE: Increasingly complete phylogenies underpin studies in systematics, ecology, and evolution. Myrteae (Myrtaceae), with ~2700 species, is a key component of the exceptionally diverse Neotropical flora, but given its complicated taxonomy, automated assembling of molecular supermatrices from public databases often lead to unreliable topologies due to poor species identification. METHODS: Here, we build a taxonomically verified molecular supermatrix of Neotropical Myrteae by assembling 3909 published and 1004 unpublished sequences from two nuclear and seven plastid molecular markers. We infer a time-calibrated phylogenetic tree that covers 712 species of Myrteae (~28% of the total diversity in the clade) and evaluate geographic and taxonomic gaps in sampling. RESULTS: The tree inferred from the fully concatenated matrix mostly reflects the topology of the plastid data set and there is a moderate to strong incongruence between trees inferred from nuclear and plastid partitions. Large, species-rich genera are still the poorest sampled within the group. Eastern South America is the best-represented area in proportion to its species diversity, while Western Amazon, Mesoamerica, and the Caribbean are the least represented. CONCLUSIONS: We provide a time-calibrated tree that can be more reliably used to address finer-scale eco-evolutionary questions that involve this group in the Neotropics. Gaps to be filled by future studies include improving representation of taxa and areas that remain poorly sampled, investigating causes of conflict between nuclear and plastid partitions, and the role of hybridization and incomplete lineage sorting in relationships that are poorly supported.
Assuntos
Myrtaceae , Filogenia , Myrtaceae/genética , Myrtaceae/classificação , América do Sul , Plastídeos/genéticaRESUMO
The Myrtaceae family is renowned for its rich diversity of bioactive metabolites with broad applications across various industries. This review comprehensively explores the chemical composition and biological activities of Neotropical species within the Myrtaceae family from 2011 to 2023. A total of 170 papers were analyzed, covering 148 species from 28 genera, with notable emphasis on Eugenia, Eucalyptus, Myrcia, and Psidium. Compounds with relative abundance exceeding 10% were tabulated to highlight the most significant volatiles for each genus. Our findings were cross-referenced with previous reviews whenever feasible. Antioxidant, antibacterial, and antimicrobial activities emerged as the primary focus, collectively representing 41% of the studies, predominantly conducted in vitro. Additionally, we discuss less conventional approaches to essential oil studies in Myrtaceae species, underscoring avenues for future exploration. The investigation of essential oils from Myrtaceae holds promise for significant advancements in biotechnology, with potential benefits for the economy, environment, and human health. This review serves as a valuable resource for guiding future research strategies in this field.
RESUMO
The aim of this study is to demonstrate the stability-indicating capacity of an analytical method for Eugenia uniflora, enhance understanding of the stability of myricitrin, and assess the effect of degradation of spray-dried extract (SDE) on antioxidant and antifungal activities. Validation of the stability-indicating method was carried out through a forced degradation study of SDE and standard myricitrin. The antioxidant and antifungal activities of SDE were evaluated both before and after degradation. The quantification method described was found to be both accurate and precise in measuring myricitrin levels in SDE from E. uniflora, with excellent selectivity that confirmed its stability-indicating capability. The forced degradation study revealed that the marker myricitrin is sensitive to hydrolysis, but generally stable under other stress conditions. By contrast, the standard myricitrin displayed greater susceptibility to degradation under forced degradation conditions. Analysis of the antioxidant activity of SDE before and after degradation showed a negative impact in this activity due to degradation, while no significant effect was observed on antifungal activity. The method described can be a valuable tool in the quality control of E. uniflora, and the findings can assist in determining the optimal conditions and storage of products derived from this species.
RESUMO
Clove bud is a medicinal plant used traditionally in Asia for the treatment of various disease. Previously, Clove oil is a potential source of an antimicrobial compounds especially vis-a-vis bacterial pathogens. However, the compound responsible for this activity remains to be investigated. Essential oil (EO) clove, acetylated essential oil clove, eugenol, and acetyleugenol were evaluate as an antibacterial potential agent against Staphyloccocus aureus (SE), Escherichia coli (EC) and Pseudomonas aeruginosa (PA). Essential oil containing eugenol was extracted from buds of Eugenia caryophyllata commonly named clove (Syzygium aromaticum (L.) (Family Myrtaceae) by a simple hydrodistillation. The analysis of the essential oils (EOs) using gas chromatography-mass spectrometry (GC-MS) shows eugenol as the major constituent with 70.14 % of the total. The Eugenol was isolated from the EO using chemical treatment. Afterwards, the EO and eugenol were converted to acetylated EO and acetyleugenol, respectively using acetic anhydride. The antibacterial result revealed that all compounds showed a strong activity against the three strains. The Staphyloccocus aureus and Pseudomonas aeruginosa were extremely sensitive against eugenol with an inhibition diameters of 25â mm. The MIC values of eugenol versus S. aureus and P. aeruginosa were 0.58 and 2.32â mg/mL, respectively, while the MIB values were 2.32â mg/mL and 9.28â mg/mL.
Assuntos
Óleos Voláteis , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eugenol/química , Syzygium/química , Staphylococcus aureus , Antibacterianos/farmacologiaRESUMO
Guava, pitanga and acerola are known for their vitamin content and high levels of bioactive compounds. Thus, the preparation of combinations of these fruits comprises a blend with high nutraceutical potential, yielding a strong and attractive pigmentation material. In this study, the influence of different proportions of maltodextrin on the lyophilization of a blend of guava, acerola and pitanga was evaluated considering not only the physicochemical, physical and colorimetric parameters but also the bioactive compounds in the obtained powders. The blend was formulated from the mixture and homogenization of the three pulps in a ratio of 1:1:1 (m/m), then maltodextrin was added to the blend, resulting in four formulations: blend without adjuvant (BL0), and the others containing 10% (BL10), 20% (BL20) and 30% (BL30) maltodextrin. The formulations were lyophilized and disintegrated to obtain powders. The powders were characterized in terms of water content, water activity, pH, total titratable acidity, ash, total and reducing sugars, ascorbic acid, total phenolic content, flavonoids, anthocyanins, carotenoids, lycopene, color parameters, Hausner factor, Carr index, angle of repose, solubility, wettability and porosity. All evaluated powders showed high levels of bioactive compounds and the increase in maltodextrin concentration promoted positive effects, such as reductions in water content, water activity and porosity and improved flow, cohesiveness and solubility characteristics.
RESUMO
The combination of fruit pulps from different species, in addition to multiplying the offer of flavors, aromas and textures, favors the nutritional spectrum and the diversity of bioactive principles. The objective was to evaluate and compare the physicochemical characteristics, bioactive compounds, profile of phenolic compounds and in vitro antioxidant activity of pulps of three species of tropical red fruits (acerola, guava and pitanga) and of the blend produced from the combination. The pulps showed significant values of bioactive compounds, with emphasis on acerola, which had the highest levels in all parameters, except for lycopene, with the highest content in pitanga pulp. Nineteen phenolic compounds were identified, being phenolic acids, flavanols, anthocyanin and stilbene; of these, eighteen were quantified in acerola, nine in guava, twelve in pitanga and fourteen in the blend. The blend combined positive characteristics conferred by the individual pulps, with low pH favorable for conservation, high levels of total soluble solids and sugars, greater diversity of phenolic compounds and antioxidant activity close to that of acerola pulp. Pearson's correlation between antioxidant activity and ascorbic acid content, total phenolic compounds, flavonoids, anthocyanins and carotenoids for the samples were positive, indicating their use as a source of bioactive compounds.
Assuntos
Eugenia , Psidium , Antioxidantes/química , Frutas/química , Antocianinas/análise , Ácido Ascórbico/análise , Fenóis/química , Psidium/químicaRESUMO
Alzheimer's disease is a global health problem due to the scarcity of acetylcholinesterase inhibitors, the basis for symptomatic treatment of this disease; this requires new approaches to drug discovery. In this study, we investigated the chemical composition and anticholinesterase activity of Eugenia valvata McVaugt (Myrtaceae) collected in southern Ecuador, which was obtained as an essential oil (EO) with a yield of 0.124 ± 0.03% (w/w); as a result of the chemical composition analysis, a total of 58 organic compounds were identified-representing 95.91% of the total volatile compounds-using a stationary phase based on 5% phenyl-methylpolysiloxane, as analyzed via gas chromatography coupled to mass spectrometry (GC-MS) and flame ionization detection (GC-FID). The main groups were hydrocarbon sesquiterpenes (37.43%), oxygenated sesquiterpenes (31.08%), hydrocarbon monoterpenes (24.14%), oxygenated monoterpenes (0.20%), and other compounds (3.058%). Samples were characterized by the following compounds: α-pinene (22.70%), α-humulene (17.20%), (E)-caryophyllene (6.02%), citronellyl pentanoate (5.76%), 7-epi-α-eudesmol (4.34%) and 5-iso-cedranol (3.64%); this research was complemented with an enantioselective analysis carried out using 2,3-diethyl-6-tert-butyldimethylsilyl-ß-cyclodextrin as a stationary phase chiral selector. As a result, α-pinene, limonene, and α-cadinene enantiomers were identified; finally, in the search for new active principles, the EO reported strong anticholinesterase activity with an IC50 of 53.08 ± 1.13 µg/mL, making it a promising candidate for future studies of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Eugenia , Óleos Voláteis , Sesquiterpenos , Óleos Voláteis/química , Equador , Acetilcolinesterase , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/análise , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos Bicíclicos/análise , Sesquiterpenos/química , Monoterpenos/químicaRESUMO
One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.
Assuntos
Óleos Voláteis , Syzygium , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureusRESUMO
This study investigated the principal leaf protein (rubisco) solubilization and in vitro ruminal enzyme activity in relation to the molecular structure of proanthocyanidins extracted from leaves of Anogeissus pendula and Eugenia jambolana. Six proanthocyanidin fractions were extracted by 50% (v/v) methanol−water followed by 70% (v/v) acetone−water and then distilled water from leaves of A. pendula (AP) and E. jambolana (EJ) to yield EJ−70, EJ−50, EJ−DW, AP−70, AP−50 and AP−DW. Fractions were examined for their molecular structure and their effects on sheep ruminal enzymes and solubilization of rubisco in vitro. All fractions significantly (p < 0.05) inhibited the activity of ruminal glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. The fractions AP−50 and EJ−50 significantly inhibited the activity of the R-cellulase enzyme. Most of the fractions inhibited R-glutamate dehydrogenase activity (p < 0.05) by increasing its concentration, while protease activity decreased by up to 58% with increasing incubation time and concentration. The solubilization of rubisco was observed to be comparatively higher in A. pendula (16.60 ± 1.97%) and E. jambolana (15.03 ± 1.06%) than that of wheat straw (8.95 ± 0.95%) and berseem hay (3.04 ± 0.08%). A significant (p < 0.05) increase in protein solubilization was observed when wheat straw and berseem hay were supplemented with A. pendula and E. jambolana leaves at different proportions. The efficiency of microbial protein was significantly (p < 0.05) greater with the supplementation of leaves of A. pendula in comparison to E. jambolana. The overall conclusion is that the proanthocyanidins obtained from E. jambolana exhibited greater inhibitory activities on rumen enzymes, whereas A. pendula recorded higher protein solubilization. Thus, PAs from A. pendula and E. jambolana appear to have the potential to manipulate rumen enzyme activities for efficient utilization of protein and fiber in ruminants.
Assuntos
Celulase , Proantocianidinas , Acetona/metabolismo , Alanina Transaminase/metabolismo , Ração Animal , Animais , Aspartato Aminotransferases/metabolismo , Celulase/metabolismo , Glutamato Desidrogenase , Metanol/metabolismo , Peptídeo Hidrolases/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Ribulose-Bifosfato Carboxilase , Rúmen/metabolismo , Ovinos , Triticum/metabolismo , Água/metabolismoRESUMO
Ischaemia and reperfusion (I/R)-induced gastrointestinal disorders are caused by free radicals, resulting in organ damage and functional disarrangement. This study aimed to investigate the healing effects of hydroalcoholic extracts from the leaves of Eugenia punicifolia (Kunth) DC. (HEEP) in male and female Wistar rats with I/R-induced peptic injuries, and the role of antioxidants in improving this response. After I/R-induced gastric and duodenal injuries, male and female [intact (INT) and ovariectomized (OVZ)] rats were orally treated with HEEP for 6 days. Biochemical analysis was used to determine the catalase (CAT), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities, as well as malondialdehyde and reduced glutathione levels, to measure the gastric and duodenal healing process. Six days of HEEP treatment significantly decreased the I/R-induced gastric [male (73.68%), INT (52.83%), and OVZ (43.13%)] and duodenal damage [male (57.03%), INT (56.04%), and OVZ (54.83%)] in all groups. In OVZ rats, the healing effect of HEEP occurred because of the increased activity of SOD (2x) and CAT (1.16x) in the gastric mucosa. In the duodenal mucosa of INT rats, the extract reduced MPO (20.83%) activity. The 6-day HEEP treatment improved the healing of I/R-induced peptic ulcer injury, with the system acting differently in males and females. The antioxidant system is an important component of the HEEP activity during post-I/R mucosal recovery. This result revealed the importance of antioxidant compounds in minimizing the severity of I/R-related events.
Assuntos
Eugenia , Úlcera Péptica , Traumatismo por Reperfusão , Úlcera Gástrica , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Eugenia/química , Eugenia/metabolismo , Feminino , Mucosa Gástrica , Isquemia/metabolismo , Masculino , Úlcera Péptica/tratamento farmacológico , Úlcera Péptica/metabolismo , Extratos Vegetais , Ratos , Ratos Wistar , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Úlcera Gástrica/induzido quimicamente , Superóxido Dismutase/metabolismoRESUMO
The present study investigated the novel antifungal, and anti-aflatoxin B1 mechanism of Eugenia caryophyllata L. essential oil (ECEO) loaded chitosan nanomatrix against the toxigenic strain of A. flavus (AFLV-DK-02). Phytochemical profiling of ECEO was done by GC-MS which revealed eugenol (73.6%) as the primary bioactive compound. ECEO was encapsulated inside the chitosan nanomatrix (ECEO-Np) and characterized using SEM, AFM, FTIR and XRD analysis. The ECEO-Np exhibited enhance antifungal (0.25 µL/mL) and anti-aflatoxin B1 inhibitory activity (0.15 µL/mL) than ECEO. Antifungal and antiaflatoxin B1 inhibitory activity was found to be related with impairment in the biological functioning of the plasma membrane (ergosterol synthesis, leakage of membrane ions, UV light (260, 280 nm) absorbing material, dead cell by propidium iodide assay, mitochondrial membrane potential (MMP), methylglyoxal and inhibition in essential carbon substrate utilization). ECEO-Np exhibited remarkable free radical scavenging activity with IC50 value of 0.002 µL/mL. ECEO-Np effectively preserves the sensory characteristics of exposed maize crop seed up to six months of storage and shows considerable safety profile (non-toxic, non-mutagenic, non-hepatotoxic, non-carcinogenic, non-tumorigenic and biodegradable) using computational ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis.
Assuntos
Quitosana , Óleos Voláteis , Syzygium , Aflatoxina B1 , Antifúngicos/farmacologia , Aspergillus flavus , Óleos Voláteis/farmacologiaRESUMO
Eugenia copacabanensis and Myrciaria tenella are present in restingas of the Atlantic Forest, but little information is available about their chemical and biological potential. In this context, the hexane, dichloromethane, ethyl acetate and butanol fractions from the leaves of methanolic extract were analyzed by GC/MS and HPLC-DAD and the antioxidant potential was determined by DPPH and ABTS assays and using a Saccharomyces cerevisiae model. Dereplication allowed the identification of 68â compounds, 42 and 41 of which, respectively, are first reported here for E. copacabanensis and M. tenella. In vivo results revealed that the ethyl acetate and butanol fractions showed expressive antioxidant protection in the BY4741 and Δgsh1 strains, with greater impact on glutathione-deficient cells. With a high diversity of phenolic compounds, these polar fractions of E. copacabanensis and M. tenella leaves are potential protectors against intracellular oxidative stress.
Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Eugenia/química , Myrtaceae/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Antifúngicos/análise , Antioxidantes/análise , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Modelos Biológicos , Compostos Fitoquímicos/análise , Picratos/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ácidos Sulfônicos/antagonistas & inibidoresRESUMO
The sesquiterpenes selina-1,3,7(11)-trien-8-one and oxidoselina-1,3,7(11)-trien-8-one were isolated from the essential oil of Eugenia uniflora L. leaves. The structures were elucidated using spectrometric methods (UV, GC-MS, NMR, and specific optical rotation). The relationship between antioxidant activity, as determined by DPPH assay, and the cytotoxic effect was evaluated using tumor cells, namely lung adenocarcinoma epithelial cells (A549) and human hepatoma carcinoma cells (HepG2), as well as a model of normal human lung fibroblast cells (IMR90). Both compounds did not show prominent free-radical scavenging activity according to DPPH assay, and did not inhibit lipid peroxidation in Wistar rat brain homogenate. The isolated compounds showed pro-oxidative effects and cytotoxicity in relation to the IMR90 cell line.
Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Eugenia/química , Naftalenos/farmacologia , Óleos Voláteis/química , Folhas de Planta/química , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , HumanosRESUMO
BACKGROUND: Antibiotics are commonly added to livestock feeds in sub-therapeutic doses as growth promoters and for prophylaxis against pathogenic microbes, especially those implicated in diarrhoea. While this practice has improved livestock production, it is a major cause of antimicrobial resistance in microbes affecting livestock and humans. This has led to the banning of prophylactic antibiotic use in animals in many countries. To compensate for this, alternatives have been sought from natural sources such as plants. While many studies have reported the antimicrobial activity of medicinal plants with potential for use as phytogenic/botanical feed additives, little information exists on their mode of action. This study is based on our earlier work and describes ultrastructural damage induced by acetone crude leaf extracts of Syzygium legatii and Eugenia zeyheri (Myrtaceae) active against diarrhoeagenic E. coli of swine origin using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescent microscopy (FM). Gas chromatography/mass spectrometry (GC-MS) was used to investigate the chemical composition of plant extracts. RESULTS: The extracts damaged the internal and external anatomy of the cytoplasmic membrane and inner structure at a concentration of 0.04 mg/mL. Extracts also led to an increased influx of propidium iodide into treated bacterial cells suggesting compromised cellular integrity and cellular damage. Non-polar compounds such as α-amyrin, friedelan-3-one, lupeol, and ß-sitosterol were abundant in the extracts. CONCLUSIONS: The extracts of S. legatii and E. zeyheri caused ultrastructural damage to E. coli cells characterized by altered external and internal morphology. These observations may assist in elucidating the mode of action of the extracts.
Assuntos
Escherichia coli/efeitos dos fármacos , Eugenia/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Syzygium/química , Escherichia coli/ultraestrutura , Microscopia Eletrônica de Varredura , Extratos Vegetais/químicaRESUMO
The 'Eugenia psyllid' or 'Lilly pilly psyllid', widely recognized in Australia and in the USA as Trioza eugeniae Froggatt (Hemiptera: Triozidae), is not T. eugeniae, but rather T. adventicia Tuthill. In this study we assessed morphological comparisons of materials from throughout the native and introduced ranges and re-examined original descriptions of both taxa, together with Froggatt's type specimens of T. eugeniae. Furthermore, through DNA barcoding analyses, we confirmed the validity of both T. adventicia and T. eugeniae as separate species. We re-described both species to include additional characters not previously included and designated a lectotype for T. eugeniae. T. eugeniae has smaller fore wings that are slightly more elongate. These lack infuscation around veins R and R1, vein Rs is relatively longer, meeting the costa closer to the wing apex; with certain veins bearing long, fine divergent setae, a character not previously described. It has consistently three inner and one outer metatibial spurs. The male parameres appear narrowly pyriform with a weak dorsolateral lobe and weakly sclerotized apices. T. adventicia has larger fore wings that are slightly more ovate with dark infuscation around veins R and R1; vein Rs is relatively shorter, meeting the costa further from the wing apex, with veins lacking long, fine divergent setae. The usual configuration of two inner and one outer metatibial spurs, previously used to separate the two species, appears inconsistent. The male parameres appear a little more broadly pyriform with slightly more sclerotized apices. T. eugeniae refers to a distinct species which has a restricted distribution only in its native range in southern subcoastal New South Wales, Australia. T. adventicia refers to a separate species, with a natural distribution in eastern subcoastal Australia, but has been introduced widely in southern Australia, to New Zealand and the USA. This study elucidates a long history of misidentification of T. eugeniae in the nursery industry and in almost 30 years of literature on its biological control in the USA. Regardless, the biological control program, unknowingly, targeted the correct species of psyllid, T. adventicia, in its foreign exploration and importation of the appropriate parasitoid as a biocontrol agent in the USA. Despite being firmly entrenched in both the nursery trade and scientific literature, the name T. eugeniae is misapplied. While the acceptance of the valid name, T. adventicia, might be regarded as both problematic and protracted, this is the correct taxonomical attribution.
Assuntos
Hemípteros/anatomia & histologia , Hemípteros/classificação , Animais , Código de Barras de DNA Taxonômico , Feminino , Hemípteros/genética , Masculino , Especificidade da EspécieRESUMO
Fermentation is a preservation process responsible for increasing food product shelf life. In this context, alcoholic fermentation can add value to unconventional Amazon fruits, e.g., araçá-boi (Eugenia stipitata). This fruit has various antioxidant phenolic compounds with well-known nutraceutical properties. However, araçá-boi is still underexplored by food industry. This rationale led to investigate the influence of five commercial yeasts (Saccharomyces cerevisiae) and filtration process on chemical composition and antioxidant capacity of araçá-boi beverages. DPPH and Folin Ciocalteu assays were used to determine antioxidant capacity and total phenolic content. Organic compounds' contents were assessed by NMR-ERETIC2. In all beverages, ten compounds [tyrosol, sucrose, fructose, (α/ß)-glucose, ethanol, malic, citric, gallic, and succinic acids] were identified and quantified. The highest phenolic concentrations [gallic acid (390.0 µM) and tyrosol (380.0 µM)] were found in Biolievito Bayanus (BBA) beverage. The new BBA beverage was used for investigating filtration process influence on chemical composition and antioxidant responses. Alcoholic content (unfiltered: 13.9°GL and filtered: 12.7°GL), antioxidant responses, and total phenolic contents were influenced by filtration process. The yeast type and unfiltered process were determinant for chemical content and antioxidant capacity of beverages. These results might be useful to private sector and future production and commercialization of araçá-boi beverages.
RESUMO
BACKGROUND: Diarrhoea, a global economically important disease burden affecting swine and, especially piglets, is commonly caused by infection with entero-toxigenic E. coli (ETEC). Adherence of ETEC to porcine intestinal epithelial cells following infection, is necessary for its pathogenesis. While antimicrobials are commonly given as therapy or as feed additives for prophylaxis against microbial infections, the concern over increased levels of antimicrobial resistance necessitate the search for safe and effective alternatives in livestock feed. Attention is shifting to natural products including plants as suitable alternatives to antimicrobials. The activity of acetone crude leaf extracts of nine under-explored South African endemic plants from the Myrtaceae family with good antimicrobial activity were tested against pathogenic E. coli of porcine origin using a microplate serial dilution method. Bioautography, also with p-iodonitrotetrazolium violet as growth indicator was used to view the number of bioactive compounds in each extract. In vitro toxicity of extracts was determined against Caco-2 cells using the 3-(4,5-dimethythiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay. The antimicrobial susceptibility of E. coli isolates was tested on a panel of antimicrobials using the Kirby-Bauer agar diffusion method while the anti-adherence mechanism was evaluated using a Caco-2 cell enterocyte anti-adhesion model. RESULTS: The MIC of the extracts ranged from 0.07-0.14 mg/mL with S. legatii having the best mean MIC (0.05 mg/mL). Bioautography revealed at least two active bands in each plant extract. The 50% lethal concentration (LC50) values ranged between 0.03-0.66 mg/mL. Eugenia zeyheri least cytotoxic (LC50 = 0.66 mg/ml) while E. natalitia had the highest cytotoxicity (LC50 = 0.03 mg/mL). All the bacteria were completely resistant to doxycycline and colistin sulphate and many of the plant extracts significantly reduced adhesion of E. coli to Caco-2 cells. CONCLUSIONS: The extracts of the plants had good antibacterial activity as well as a protective role on intestinal epithelial cells against enterotoxigenic E. coli bacterial adhesion. This supports the potential use of these species in limiting infection causes by E. coli. Some of these plants or extracts may be useful as phytogenic feed additives but it has to be investigated by animal feed trials.
Assuntos
Antibacterianos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Eugenia/química , Extratos Vegetais/farmacologia , Syzygium/química , Acetona/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Dose Letal Mediana , Testes de Sensibilidade Microbiana , Extratos Vegetais/toxicidade , Folhas de Planta/químicaRESUMO
The present study evaluated biogenic amine (BA) content during the fermentation period in functional sheep milk yogurts. Four treatments were prepared and assessed: natural (NSY), prebiotic (PreSY), probiotic (ProSY), and synbiotic (SynSY). Biogenic amines (putrescine, cadaverine, spermidine, spermine, and tyramine), proteolysis activity, and pH were measured during each hour of fermentation. Grumixama pulp was added to all formulations as a technological strategy and potential substrate for bacteria during fermentation. The yogurt and probiotic bacteria were viable (≥7 log cfu·mL-1) on d 0. The pH levels of the functional sheep milk yogurts had a more pronounced decrease than did the control of NSY. However, all yogurt samples underwent gradual decreases in pH until final fermentation. Proteolytic activity remained constant in all treatments during fermentation. The NSY, PreSY, ProSY, and SynSY presented the same behavior for all BA, with differences in concentration. Putrescine, cadaverine, and spermidine contents decreased, whereas spermine remained constant and tyramine increased. We conclude that fermentation of functional sheep milk yogurts can produce tyramine.
Assuntos
Aminas Biogênicas/análise , Ovinos , Iogurte/microbiologia , Animais , Fermentação , Leite/química , Prebióticos/análise , Probióticos/análise , Putrescina/análise , Simbióticos/análise , Tiramina/análise , Iogurte/análiseRESUMO
The objective of this work was to evaluate the antioxidant, metal chelating and cytoprotective activity of the Eugenia jambolana Lam. extract, as well as of its flavonoid and tannic fractions, against the action of Mercury Chloride (HgCl2). Flavonoids were quantified and an LC-MS chromatographic analysis was performed to identify secondary metabolites. Fe2+ and Fe3+ chelation tests and antioxidant activity were carried out using the FRAP method. Microbiological tests were performed by microdilution to determine the Minimum Inhibitory Concentration (MIC). From these results the Minimum Bactericidal (MBC) and Minimum Fungicide Concentration (MFC) were evaluated. The allelopathy and cytoprotection assays were performed using eukaryotic and prokaryotic models. The results revealed the presence of phenolic acids and flavonoids in the E. jambolana extract and fractions. The sub-allelopathic concentration (64⯵g/mL) was used and the results demonstrated the E. jambolana potential cytoprotective effect against mercury chloride.