Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.185
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(9): 2336-2341.e5, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38582080

RESUMO

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.uci.edu/TRgnomAD), a biobank-scale reference of 0.86 million TRs derived from 338,963 whole-genome sequencing (WGS) samples of diverse ancestries (39.5% non-European samples). TR-gnomAD offers critical insights into ancestry-specific disease prevalence using disparities in TR unit number frequencies among ancestries. Moreover, TR-gnomAD is able to differentiate between common, presumably benign TR expansions, which are prevalent in TR-gnomAD, from those potentially pathogenic TR expansions, which are found more frequently in disease groups than within TR-gnomAD. Together, TR-gnomAD is an invaluable resource for researchers and physicians to interpret TR expansions in individuals with genetic diseases.


Assuntos
Genoma Humano , Sequências de Repetição em Tandem , Humanos , Sequências de Repetição em Tandem/genética , Sequenciamento Completo do Genoma , Bases de Dados Genéticas , Expansão das Repetições de DNA/genética , Estudo de Associação Genômica Ampla
2.
Cell ; 187(9): 2158-2174.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604175

RESUMO

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.


Assuntos
Centríolos , Microtúbulos , Centríolos/metabolismo , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562403

RESUMO

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Assuntos
Briófitas , Mudança Climática , Ecossistema , Aclimatação , Adaptação Fisiológica , Tibet , Briófitas/fisiologia
4.
Cell ; 186(24): 5308-5327.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922900

RESUMO

Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.


Assuntos
Oócitos , Proteínas , Gravidez , Animais , Feminino , Oócitos/metabolismo , Proteínas/metabolismo , Embrião de Mamíferos/metabolismo , Citoesqueleto , Ribossomos , Desenvolvimento Embrionário , Mamíferos
5.
Cell ; 186(5): 1066-1085.e36, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868209

RESUMO

A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and ß-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.


Assuntos
Cromatina , Proteoma , Acilação , Mapeamento Cromossômico , Histonas , Sobrevivência Celular
6.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134876

RESUMO

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Expansão das Repetições de Trinucleotídeos , Metilação de DNA , Mutação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
7.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
8.
Cell ; 185(1): 204-217.e14, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34965378

RESUMO

Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.


Assuntos
Epigenoma , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pinus/genética , Aclimatação/genética , Cromossomos de Plantas/genética , Cycadopsida/genética , Elementos de DNA Transponíveis/genética , Florestas , Redes Reguladoras de Genes , Tamanho do Genoma , Genômica/métodos , Íntrons , Magnoliopsida/genética
9.
Cell ; 184(26): 6361-6377.e24, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34875226

RESUMO

Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Hibridização in Situ Fluorescente , Animais , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Região Hipotalâmica Lateral/citologia , Imageamento Tridimensional , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA/metabolismo , RNA-Seq , Análise de Célula Única , Transcrição Gênica
10.
Cell ; 184(19): 4886-4903.e21, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433013

RESUMO

Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use these film-like organelles to equip eukaryotic cells with dual orthogonal expanded genetic codes that enable the specific reprogramming of distinct translational machineries with single-residue precision. The ability to spatially tune the output of translation within tens of nanometers is not only important for synthetic biology but has implications for understanding the function of membrane-associated protein condensation in cells.


Assuntos
Células Eucarióticas/metabolismo , Organelas/metabolismo , Biossíntese de Proteínas , Aminoácidos/metabolismo , Código Genético , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
11.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765444

RESUMO

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Assuntos
Evolução Biológica , Encéfalo/citologia , Forma Celular/fisiologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Gorilla gorilla , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Organoides/citologia , Organoides/metabolismo , Pan troglodytes , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
12.
Cell ; 184(22): 5608-5621.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34637701

RESUMO

Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.


Assuntos
Tronco Encefálico/metabolismo , Mecanorreceptores/metabolismo , Sinapses/metabolismo , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Imagem Óptica , Optogenética , Pele/inervação
13.
Cell ; 182(3): 594-608.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32679030

RESUMO

Human cerebral cortex size and complexity has increased greatly during evolution. While increased progenitor diversity and enhanced proliferative potential play important roles in human neurogenesis and gray matter expansion, the mechanisms of human oligodendrogenesis and white matter expansion remain largely unknown. Here, we identify EGFR-expressing "Pre-OPCs" that originate from outer radial glial cells (oRGs) and undergo mitotic somal translocation (MST) during division. oRG-derived Pre-OPCs provide an additional source of human cortical oligodendrocyte precursor cells (OPCs) and define a lineage trajectory. We further show that human OPCs undergo consecutive symmetric divisions to exponentially increase the progenitor pool size. Additionally, we find that the OPC-enriched gene, PCDH15, mediates daughter cell repulsion and facilitates proliferation. These findings indicate properties of OPC derivation, proliferation, and dispersion important for human white matter expansion and myelination.


Assuntos
Caderinas/metabolismo , Córtex Cerebral/citologia , Células Ependimogliais/metabolismo , Neurogênese/genética , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proliferação de Células/genética , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Ependimogliais/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Células Precursoras de Oligodendrócitos/citologia , RNA Interferente Pequeno , RNA-Seq , Análise de Célula Única , Substância Branca/citologia , Substância Branca/embriologia , Substância Branca/metabolismo
14.
Cell ; 181(5): 1062-1079.e30, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32386547

RESUMO

Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.


Assuntos
Expansão das Repetições de DNA/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Alanina/genética , Animais , Sequência de Bases/genética , Expansão das Repetições de DNA/fisiologia , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Mutação/genética , Linhagem , Sindactilia/genética , Fatores de Transcrição/metabolismo
15.
Cell ; 180(1): 135-149.e14, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883797

RESUMO

Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.


Assuntos
Autofagia/fisiologia , Ácidos Graxos/metabolismo , Fagossomos/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Fagossomos/fisiologia , Fosfolipídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Cell ; 182(1): 85-97.e16, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579975

RESUMO

Small molecule covalent drugs provide desirable therapeutic properties over noncovalent ones for treating challenging diseases. The potential of covalent protein drugs, however, remains unexplored due to protein's inability to bind targets covalently. We report a proximity-enabled reactive therapeutics (PERx) approach to generate covalent protein drugs. Through genetic code expansion, a latent bioreactive amino acid fluorosulfate-L-tyrosine (FSY) was incorporated into human programmed cell death protein-1 (PD-1). Only when PD-1 interacts with PD-L1 did the FSY react with a proximal histidine of PD-L1 selectively, enabling irreversible binding of PD-1 to only PD-L1 in vitro and in vivo. When administrated in immune-humanized mice, the covalent PD-1(FSY) exhibited strikingly more potent antitumor effect over the noncovalent wild-type PD-1, attaining therapeutic efficacy equivalent or superior to anti-PD-L1 antibody. PERx should provide a general platform technology for converting various interacting proteins into covalent binders, achieving specific covalent protein targeting for biological studies and therapeutic capability unattainable with conventional noncovalent protein drugs.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Proliferação de Células , Células Dendríticas/metabolismo , Humanos , Cinética , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Monócitos/metabolismo , Fenótipo , Proteínas/química , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell ; 177(3): 669-682.e24, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929904

RESUMO

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet, it is unknown how neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of responses, and exhibited high correlations comparable to local correlations among L5 cells. Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of cortico-cerebellar communication is the propagation of shared dynamics that emerge during learning.


Assuntos
Cerebelo/metabolismo , Neocórtex/metabolismo , Animais , Comportamento Animal , Cálcio/metabolismo , Membro Anterior/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Neocórtex/patologia , Opsinas/genética , Opsinas/metabolismo , Células Piramidais/metabolismo
18.
Cell ; 178(4): 887-900.e14, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398342

RESUMO

Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin's polyglutamine segment, dictates the rate at which Huntington's disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the "polyglutamine disorders."


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Sequência de Bases/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
19.
Immunity ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39276771

RESUMO

Adoptive cell therapy (ACT) using in vitro expanded tumor-infiltrating lymphocytes (TILs) has inconsistent clinical responses. To better understand determinants of therapeutic success, we tracked TIL clonotypes from baseline tumors to ACT products and post-ACT blood and tumor samples in melanoma patients using single-cell RNA and T cell receptor (TCR) sequencing. Patients with clinical responses had baseline tumors enriched in tumor-reactive TILs, and these were more effectively mobilized upon in vitro expansion, yielding products enriched in tumor-specific CD8+ cells that preferentially infiltrated tumors post-ACT. Conversely, lack of clinical responses was associated with tumors devoid of tumor-reactive resident clonotypes and with cell products mostly composed of blood-borne clonotypes that persisted in blood but not in tumors post-ACT. Upon expansion, tumor-specific TILs lost tumor-associated transcriptional signatures, including exhaustion, and responders exhibited an intermediate exhausted effector state after TIL engraftment in the tumor, suggesting functional reinvigoration. Our findings provide insight into the nature and dynamics of tumor-specific clonotypes associated with clinical response to TIL-ACT, with implications for treatment optimization.

20.
Cell ; 173(4): 934-945.e12, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29606354

RESUMO

Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Fusão de Membrana/fisiologia , Actinas/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Membrana Celular/química , Células Cromafins/citologia , Células Cromafins/metabolismo , Dinaminas/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Masculino , Microscopia Confocal , Modelos Biológicos , Técnicas de Patch-Clamp , Vesículas Secretórias/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA