Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Malar J ; 23(1): 148, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750468

RESUMO

BACKGROUND: Vector control using insecticides is a key prevention strategy against malaria. Unfortunately, insecticide resistance in mosquitoes threatens all progress in malaria control. In the perspective of managing this resistance, new insecticide formulations are being tested to improve the effectiveness of vector control tools. METHODS: The efficacy and residual activity of Pirikool® 300 CS was evaluated in comparison with Actellic® 300 CS in experimental huts at the Tiassalé experimental station on three substrates including cement, wood and mud. The mortality, blood-feeding inhibition, exiting behaviour and deterrency of free-flying wild mosquitoes was evaluated. Cone bioassay tests with susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. RESULTS: A total of 20,505 mosquitoes of which 10,979 (53%) wild female Anopheles gambiae were collected for 112 nights. Residual efficacy obtained from monthly cone bioassay was higher than 80% with the susceptible, laboratory-maintained An. gambiae Kisumu strain, from the first to the tenth study period on all three types of treated substrate for both Actellic® 300CS and Pirikool® 300CS. This residual efficacy on the wild Tiassalé strain was over 80% until the 4th month of study on Pirikool® 300CS S treated substrates. Overall 24-h mortalities of wild free-flying An. gambiae sensu lato which entered in the experimental huts over the 8-months trial on Pirikool® 300CS treatment was 50.5%, 75.9% and 52.7%, respectively, on cement wall, wood wall and mud wall. The positive reference product Actellic® 300CS treatment induced mortalities of 42.0%, 51.8% and 41.8% on cement wall, wood wall and mud wall. CONCLUSION: Pirikool® 300CS has performed really well against resistant strains of An. gambiae using indoor residual spraying method in experimental huts. It could be an alternative product for indoor residual spraying in response to the vectors' resistance to insecticides.


Assuntos
Anopheles , Inseticidas , Controle de Mosquitos , Anopheles/efeitos dos fármacos , Animais , Controle de Mosquitos/métodos , Inseticidas/farmacologia , Feminino , Mosquitos Vetores/efeitos dos fármacos , Habitação , Resistência a Inseticidas , Malária/prevenção & controle
2.
Malar J ; 22(1): 214, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480030

RESUMO

BACKGROUND: Pyrethroid-chlorfenapyr (CFP) and pyrethroid-piperonyl butoxide (PBO) nets are being scaled across endemic countries to improve control of malaria transmitted by pyrethroid-resistant mosquitoes. CFP is a pro-insecticide requiring activation by mosquito cytochrome P450 monooxygenase enzymes (P450s) while PBO improves pyrethroid potency by inhibiting the action of these enzymes in pyrethroid-resistant mosquitoes. The inhibitory action of PBO against P450s may thus reduce the efficacy of pyrethroid-CFP nets when applied inside the same household as pyrethroid-PBO nets. METHODS: Two experimental hut trials were performed to evaluate the entomological impact of two different types of pyrethroid-CFP ITN (Interceptor® G2, PermaNet® Dual) when applied alone and in combination with pyrethroid-PBO ITNs (DuraNet® Plus, PermaNet® 3.0) against a pyrethroid-resistant vector population in southern Benin. In both trials, all net types were tested as single and double net treatments. Bioassays were also performed to assess the resistance profile of the vector population at the hut site and investigate interactions between CFP and PBO. RESULTS: The vector population was susceptible to CFP but exhibited a high intensity of pyrethroid resistance that was overcame by PBO pre-exposure. Vector mortality was significantly lower in huts with combinations of pyrethroid-CFP nets plus pyrethroid-PBO nets compared to huts with two pyrethroid-CFP nets (74% vs. 85% for Interceptor® G2 and 57% vs. 83% for PermaNet® Dual, p < 0.001). PBO pre-exposure reduced the toxicity of CFP in bottle bioassays suggesting this effect may be partly attributable to antagonism between CFP and PBO. Higher levels of vector mortality were observed in huts with net combinations that included pyrethroid-CFP nets compared to those that did not and highest mortality was achieved when pyrethroid-CFP nets were applied alone as two nets together (83-85%). CONCLUSIONS: This study shows evidence of a reduced performance of pyrethroid-CFP nets when combined with pyrethroid-PBO ITNs compared to when applied alone and higher efficacy with net combinations that included pyrethroid-CFP nets. These findings suggest that in similar contexts, prioritizing distribution of pyrethroid-CFP nets over other net types would maximize vector control impact.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Piretrinas , Animais , Butóxido de Piperonila/farmacologia , Controle de Mosquitos , Mosquitos Vetores , Piretrinas/farmacologia , Inseticidas/farmacologia , Resistência a Inseticidas
3.
Parasitol Res ; 122(5): 1245-1253, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36949289

RESUMO

Despite high levels of pyrethroid resistance reported in malaria vectors, long-lasting insecticidal nets (LNs) still play a key role in controlling malaria transmission. This study tested the efficacy of MiraNet®, a pyrethroid-based LN against a wild population of Anopheles arabiensis in northern Tanzania. DuraNet® was used as a positive control in this evaluation. Standard WHO laboratory bioefficacy evaluations of MiraNet and DuraNet that were unwashed or had been washed 20 times indicated optimal knockdown and mortality for both net types against a susceptible strain of Anopheles gambiae s.s. Standard experimental hut evaluations were conducted to evaluate the efficacy of both nets against a wild population of An. arabiensis. The killing effect of MiraNet was 54.5% for unwashed and 50% for 20 times washed while DuraNet achieved 44.4% mortality for unwashed and 47.4% for 20 times washed against wild An. arabiensis. Both DuraNet and MiraNet exhibited significantly higher killing effects (> 44.4%). There was no significant difference in deterrence or induced exophily detected between the treatment arms for either net. Additionally, there were no adverse effects reported among hut sleepers. The results of this study indicate that the pyrethroid net MiraNet can be used effectively against wild populations of An. gambiae s.l. of low to moderate resistant levels from Northern Tanzania.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Tanzânia , Resistência a Inseticidas , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/farmacologia , Malária/prevenção & controle
4.
Malar J ; 21(1): 20, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016676

RESUMO

BACKGROUND: Pyrethroid-PBO nets were conditionally recommended for control of malaria transmitted by mosquitoes with oxidase-based pyrethroid-resistance based on epidemiological evidence of additional protective effect with Olyset Plus compared to a pyrethroid-only net (Olyset Net). Entomological studies can be used to assess the comparative performance of other brands of pyrethroid-PBO ITNs to Olyset Plus. METHODS: An experimental hut trial was performed in Cové, Benin to compare PermaNet 3.0 (deltamethrin plus PBO on roof panel only) to Olyset Plus (permethrin plus PBO on all panels) against wild pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) following World Health Organization (WHO) guidelines. Both nets were tested unwashed and after 20 standardized washes compared to Olyset Net. Laboratory bioassays were also performed to help explain findings in the experimental huts. RESULTS: With unwashed nets, mosquito mortality was higher in huts with PermaNet 3.0 compared to Olyset Plus (41% vs. 28%, P < 0.001). After 20 washes, mortality declined significantly with PermaNet 3.0 (41% unwashed vs. 17% after washing P < 0.001), but not with Olyset Plus (28% unwashed vs. 24% after washing P = 0.433); Olyset Plus induced significantly higher mortality than PermaNet 3.0 and Olyset Net after 20 washes. PermaNet 3.0 showed a higher wash retention of PBO compared to Olyset Plus. A non-inferiority analysis performed with data from unwashed and washed nets together using a margin recommended by the WHO, showed that PermaNet 3.0 was non-inferior to Olyset Plus in terms of mosquito mortality (25% with Olyset Plus vs. 27% with PermaNet 3.0, OR = 1.528, 95%CI = 1.02-2.29) but not in reducing mosquito feeding (25% with Olyset Plus vs. 30% with PermaNet 3.0, OR = 1.192, 95%CI = 0.77-1.84). Both pyrethroid-PBO nets were superior to Olyset Net. CONCLUSION: Olyset Plus outperformed PermaNet 3.0 in terms of its ability to cause greater margins of improved mosquito mortality compared to a standard pyrethroid net, after multiple standardized washes. However, using a margin of non-inferiority defined by the WHO, PermaNet 3.0 was non-inferior to Olyset Plus in inducing mosquito mortality. Considering the low levels of mortality observed and increasing pyrethroid-resistance in West Africa, it is unclear whether either of these nets would demonstrate the same epidemiological impact observed in community trials in East Africa.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Animais , Benin , Mosquitos Vetores/efeitos dos fármacos
5.
Malar J ; 20(1): 180, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836778

RESUMO

BACKGROUND: The effectiveness of long-lasting insecticidal nets (LLIN), the primary method for preventing malaria in Africa, is compromised by evolution and spread of pyrethroid resistance. Further gains require new insecticides with novel modes of action. Chlorfenapyr is a pyrrole insecticide that disrupts mitochrondrial function and confers no cross-resistance to neurotoxic insecticides. Interceptor® G2 LN (IG2) is an insecticide-mixture LLIN, which combines wash-resistant formulations of chlorfenapyr and the pyrethroid alpha-cypermethrin. The objective was to determine IG2 efficacy under controlled household-like conditions for personal protection and control of wild, pyrethroid-resistant Anopheles funestus mosquitoes. METHODS: Experimental hut trials tested IG2 efficacy against two positive controls-a chlorfenapyr-treated net and a standard alpha-cypermethrin LLIN, Interceptor LN (IG1)-consistent with World Health Organization (WHO) evaluation guidelines. Mosquito mortality, blood-feeding inhibition, personal protection, repellency and insecticide-induced exiting were recorded after zero and 20 washing cycles. The trial was repeated and analysed using multivariate and meta-analysis. RESULTS: In the two trials held in NE Tanzania, An. funestus mortality was 2.27 (risk ratio 95% CI 1.13-4.56) times greater with unwashed Interceptor G2 than with unwashed Interceptor LN (p = 0.012). There was no significant loss in mortality with IG2 between 0 and 20 washes (1.04, 95% CI 0.83-1.30, p = 0.73). Comparison with chlorfenapyr treated net indicated that most mortality was induced by the chlorfenapyr component of IG2 (0.96, CI 0.74-1.23), while comparison with Interceptor LN indicated blood-feeding was inhibited by the pyrethroid component of IG2 (IG2: 0.70, CI 0.44-1.11 vs IG1: 0.61, CI 0.39-0.97). Both insecticide components contributed to exiting from the huts but the contributions were heterogeneous between trials (heterogeneity Q = 36, P = 0.02). WHO susceptibility tests with pyrethroid papers recorded 44% survival in An. funestus. CONCLUSIONS: The high mortality recorded by IG2 against pyrethroid-resistant An. funestus provides first field evidence of high efficacy against this primary, anthropophilic, malaria vector.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Piretrinas/farmacologia , Animais , Humanos , Tanzânia
6.
Malar J ; 19(1): 402, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172495

RESUMO

BACKGROUND: The success of malaria control using long-lasting insecticidal nets (LLINs) is threatened by pyrethroid resistance developed by the malaria vectors, worldwide. To combat the resistance, synergist piperonyl butoxide (PBO) incorporated LLINs is one of the available options. In the current phase II hut trial, the efficacy of Veeralin®LN (an alpha-cypermethrin and PBO-incorporated net) was evaluated against Anopheles culicifacies, a pyrethroid resistant malaria vector. METHODS: The performance of Veeralin®LN was compared with MAGNet®LN and untreated net in reducing the entry, induced exit, mortality and blood feeding inhibition of target vector species. RESULTS: The performance of Veeralin was equal to MAGNet in terms of reducing hut entry, inhibiting blood feeding and inducing exophily, and with regard to causing mortality Veeralin was better than MAGNet. When compared to untreated net, a significant reduction in hut entry and blood feeding and an increase in exophily and mortality were observed with Veeralin. In cone bioassays, unwashed Veeralin caused > 80% mortality of An. culicifacies. CONCLUSIONS: Veeralin performed equal to (entry, exit, feeding) or better than (mortality in huts and cone bioassays) MAGNet and could be an effective tool against pyrethroid resistant malaria vectors.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Controle de Mosquitos , Butóxido de Piperonila , Piretrinas , Animais , Feminino , Índia
7.
Malar J ; 19(1): 43, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973734

RESUMO

BACKGROUND: The development of resistance in vectors is one of the major impediments for malaria control. Adding synergists to insecticides has proven to be an alternative choice for controlling resistant mosquitoes. DawaPlus 3.0 and DawaPlus 4.0 are new long-lasting insecticidal nets (LLINs) in which deltamethrin and a synergist, piperonyl butoxide (PBO) are added into filaments and their efficacy was tested against resistant malaria vector, Anopheles culicifacies in experimental huts in India. METHODS: The performance of two trial nets in terms of deterrence induced exiting, blood-feeding inhibition and mortality of An. culicifacies was compared with DawaPlus 2.0 and untreated net. RESULTS: There was a significant reduction in entry, blood feeding and mortality (p < 0.05) and increase in exit rates of An. culicifacies in the treatment arms compared to untreated arm. But, both candidate LNs washed 20 times could not perform better than the washed reference net (DawaPlus 2.0). Cone bioassay results showed that all the treatment arms (both washed and unwashed) produced < 80% mortality of An. culicifacies before and after hut evaluation. CONCLUSIONS: DawaPlus 3.0 and DawaPlus 4.0 with their current specification may not be as effective as required to control the resistant vector, An. culicifacies, in east-central India.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida/normas , Inseticidas , Mosquitos Vetores , Sinergistas de Praguicidas , Animais , Anopheles/fisiologia , Bioensaio , Interpretação Estatística de Dados , Comportamento Alimentar , Habitação , Humanos , Índia , Resistência a Inseticidas , Mosquitos Vetores/fisiologia , Nitrilas , Butóxido de Piperonila , Distribuição de Poisson , Piretrinas
8.
Malar J ; 19(1): 249, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660479

RESUMO

BACKGROUND: New classes of insecticides with novel modes of action, which can provide effective and prolonged control of insecticide-resistant malaria vector populations, are urgently needed for indoor residual spraying. Such insecticides can be included in a rotation plan to manage and prevent further development of resistance in mosquito vectors of malaria. Chlorfenapyr, a novel pyrrole insecticide with a unique mode of action, is being developed as a long-lasting IRS formulation. METHODS: The efficacy of several formulations of chlorfenapyr alone and as mixtures with alpha-cypermethrin were evaluated in an experimental hut trial against wild pyrethroid-resistant Anopheles gambiae sensu lato in Cové, Benin, in an attempt to identify the most effective and long-lasting formulations for IRS. The trial lasted 12 months. A comparison was made with alpha-cypermethrin and bendiocarb formulations. CDC bottle bioassays were performed to investigate cross-resistance to chlorfenapyr in the local vector population. RESULTS: Mortality rates in World Health Organization (WHO) cylinder bioassays were < 5% with pyrethroids due to high levels of pyrethroid resistance, but > 95% with bendiocarb thus confirming susceptibility to carbamates in the vector population. CDC bottle bioassays showed no cross-resistance between pyrethroids and chlorfenapyr. Overall mortality of free-flying mosquitoes entering the experimental huts over the 12-month trial was 4% with alpha-cypermethrin and 12% with bendiocarb. The chlorfenapyr solo-formulations induced significantly higher levels of mortality (38-46%) compared to the bendiocarb (12% P < 0.001) and to the mixture formulations (18-22%, P < 0.05). The original Sylando 240SC formulation of chlorfenapyr was more efficacious than all other novel chlorfenapyr formulations tested. Bendiocarb induced > 80% mortality in the first month, but this declined sharply to < 20% by the third month while the mortality rates achieved with the chlorfenapyr formulations (38-46%) were persistent lasting 7-10 months. The mixtures induced significantly lower percentage mortality than chlorfenapyr-solo formulations. Wall cone bioassays only showed mortality rates that were consistent with chlorfenapyr IRS treated huts when the exposure time was increased to 2 h. CONCLUSION: Indoor residual spraying with chlorfenapyr (Sylando® 240SC) provides moderate but prolonged control of pyrethroid-resistant malaria vectors compared to pyrethroid and bendiocarb IRS. Wall cone bioassays on chlorfenapyr-treated walls required longer exposure times of 2 h than the customary 30 min indicating that WHO guidelines on residual cone bioassays need to be more insecticide-specific.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Benin , Malária/prevenção & controle , Mosquitos Vetores/efeitos dos fármacos
9.
Malar J ; 18(1): 59, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841885

RESUMO

BACKGROUND: MAGNet LN is a wash resistant long-lasting insecticidal (polyethylene) net (LLIN) in which the alpha-cypermethrin insecticide is incorporated within the 150 denier high density polyethylene monofilaments of the nets. The bio-efficacy of MAGNet LN was reported to be high even after 25 washes. The LN met the WHO criteria of Phase I evaluation and obtained recommendation from the World Health Organization Pesticide Evaluation Scheme (WHOPES) for Phase II trial. For registration of the LN in India, the current study was conducted to evaluate its efficacy after 20 or 25 washes compared to negative control (untreated net) and positive control (Duranet LN) in experimental huts against a wild, free flying pyrethroid susceptible population of Anopheles fluviatilis in terms of deterrence, blood-feeding inhibition, mortality and induced exophily. METHODS: The evaluation was carried out in six experimental huts located at Kandhaguda village in Malkangiri district, Odisha state following the WHO guidelines. RESULTS: The study showed that 25 times washed MAGNet LN produced 100% mortality in cone bioassays before and after hut evaluation. MAGNet washed 25 times did not differ significantly from all other treated nets in terms of deterring hut entry, induced exophily, blood feeding inhibition and causing mortality of An. fluviatilis. CONCLUSIONS: MAGNet LN showed extended wash resistance retaining its bio-efficacy up to 25 washes and met the WHOPES requirement of passing Phase II evaluation.


Assuntos
Anopheles/fisiologia , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Animais , Bioensaio , Comportamento Alimentar , Índia , Análise de Sobrevida
10.
Malar J ; 17(1): 94, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471881

RESUMO

BACKGROUND: In this semi-field study, a new polymer-enhanced deltamethrin formulation, K-Othrine® PolyZone, was compared to a standard deltamethrin product for residual activity against a susceptible strain of laboratory-reared Anopheles gambiae using standard WHO cone bioassays. METHODS: Residual insecticide efficacy was recorded after exposure to metal, cement and wood panels maintained in experimental huts in sub-tropical environmental conditions in north central Florida, USA, and panels stored in a climate controlled chamber located at the Centers for Disease Control and Prevention, Georgia, USA. CONCLUSIONS: K-Othrine® PolyZone demonstrated 100% control on metal and cement panels 1 year post application and > 80% control on wood panels up to 6 mo. The new formulation should be considered for use in indoor residual spray programmes requiring long-term control of malaria vectors.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Materiais de Construção , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Bioensaio , Interações Medicamentosas , Florida , Georgia , Análise de Sobrevida
11.
Malar J ; 16(1): 82, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212636

RESUMO

BACKGROUND: A novel, insecticide-treated, durable wall lining (ITWL), which mimics indoor residual spraying (IRS), has been developed to provide prolonged vector control when fixed to the inner walls of houses. PermaNet® ITWL is a polypropylene material containing non-pyrethroids (abamectin and fenpyroximate) which migrate gradually to the surface. METHODS: An experimental hut trial was conducted in an area of pyrethroid-resistant Anopheles gambiae s.l. and Anopheles funestus s.s. to compare the efficacy of non-pyrethroid ITWL, long-lasting insecticidal nets (LLIN) (Interceptor®), pyrethroid ITWL (ZeroVector®), and non-pyrethroid ITWL + LLIN. RESULTS: The non-pyrethroid ITWL produced relatively low levels of mortality, between 40-50% for An. funestus and An. gambiae, across all treatments. Against An. funestus, the non-pyrethroid ITWL when used without LLIN produced 47% mortality but this level of mortality was not significantly different to that of the LLIN alone (29%, P = 0.306) or ITWL + LLIN (35%, P = 0.385). Mortality levels for An. gambiae were similar to An. funestus with non-pyrethroid ITWL, producing 43% mortality compared with 26% for the LLIN. Exiting rates from ITWL huts were similar to the control and highest when the LLIN was present. An attempt to restrict mosquito access by covering the eave gap with ITWL (one eave open vs four open) had no effect on numbers entering. The LLIN provided personal protection when added to the ITWL with only 30% blood-fed compared with 69 and 56% (P = 0.001) for ITWL alone. Cone bioassays on ITWL with 30 min exposure after the trial produced mortality of >90% using field An. gambiae. CONCLUSIONS: Despite high mortality in bioassays, the hut trial produced only limited mortality which was attributed to pyrethroid resistance against the pyrethroid ITWL and low efficacy in the non-pyrethroid ITWL. Hut ceilings were left uncovered and may have served as a potential untreated refuge. By analogy to IRS campaigns, which also do not routinely treat ceilings, high community coverage with ITWL may still reduce malaria transmission. Restriction of eave gaps by 75% proved an inadequate barrier to mosquito entry. The findings represent the first 2 months after installation and do not necessarily predict long-term efficacy.


Assuntos
Anopheles , Benzoatos , Resistência a Inseticidas , Inseticidas , Ivermectina/análogos & derivados , Controle de Mosquitos , Pirazóis , Piretrinas , Animais , Humanos , Malária/prevenção & controle , Polipropilenos , Tanzânia
12.
Malar J ; 16(1): 340, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814307

RESUMO

BACKGROUND: Malaria control today is threatened by widespread insecticide resistance in vector populations. The World Health Organization (WHO) recommends the use of a mixture of unrelated insecticides for indoor residual spraying (IRS) and long-lasting insecticidal nets (LNs) or as a combination of interventions for improved vector control and insecticide resistance management. Studies investigating the efficacy of these different strategies are necessary. METHODS: The efficacy of Interceptor® G2 LN, a newly developed LN treated with a mixture of chlorfenapyr (a pyrrole) and alpha-cypermethrin (a pyrethroid), was compared to a combined chlorfenapyr IRS and Interceptor® LN (a standard alpha-cypermethrin LN) intervention in experimental huts in Cove Southern Benin, against wild, free-flying, pyrethroid-resistant Anopheles gambiae s.l. A direct comparison was also made with a pyrethroid-only net (Interceptor® LN) alone and chorfenapyr IRS alone. RESULTS: WHO resistance bioassays performed during the trial demonstrated a pyrethroid resistance frequency of >90% in the wild An. gambiae s.l. from the Cove hut site. Mortality in the control (untreated net) hut was 5%. Mortality with Interceptor® LN (24%) was lower than with chlorfenapyr IRS alone (59%, P < 0.001). The combined Interceptor® LN and chlorfenapyr IRS intervention and the mixture net (Interceptor® G2 LN) provided significantly higher mortality rates (73 and 76%, respectively) and these did not differ significantly between both treatments (P = 0.15). Interceptor LN induced 46% blood-feeding inhibition compared to the control untreated net, while chlorfenapyr IRS alone provided none. Both mixture/combination strategies also induced substantial levels of blood-feeding inhibition (38% with combined interventions and 30% with Interceptor® G2 LN). A similar trend of improved mortality of pyrethroid-resistant An. gambiae s.l. from Cove was observed with Interceptor® G2 LN (79%) compared to Interceptor LN (42%, P < 0.001) in WHO tunnel tests. CONCLUSION: The use of chlorfenapyr and alpha-cypermethrin together as a mixture on nets (Interceptor® G2 LN) or a combined chlorfenapyr IRS and pyrethroid LN intervention provides improved control of pyrethroid-resistant malaria vectors by inducing significantly higher levels of mortality through the chlorfenapyr component and providing personal protection through the pyrethroid component. Both strategies are comparable in their potential to improve the control of malaria transmitted by pyrethroid resistant mosquito vectors.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas , Animais , Feminino
13.
Acta Trop ; 259: 107376, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39218380

RESUMO

BACKGROUND: The emergence of insecticide resistance and its spread through populations of malaria vectors has decreased the number of insecticides available for control. Insecticide resistance has been observed in vector populations across sub-Saharan Africa in malaria endemic areas. Therefore, new compounds with different modes of action are needed that can be used in the management of resistance. The current study assessed the bioefficacy of the new indoor residual spray formulation, VECTRON™ T500 against Klypson 500 WG and water against laboratory reared and wild populations of Anopheles gambiae s.l.. The comparative experimental hut trial was implemented between June 2022 and December 2022 to determine the efficacy of VECTRON™ T500, containing the active ingredient (ai) broflanilide as a 50 % wettable powder (WP). The efficacy of VECTRON™ T500 was compared with a positive control, Klypson 500 WG, a wettable granule (WG) formulation that contains 50 % clothianidin. Cement and mud walls were sprayed with VECTRON™ T500, Klypson 500 WG with water sprayed as a negative control. The two insecticides and negative control were evaluated monthly for six months against laboratory and the field-derived An. gambiae s.l. using the standard WHO cone bioassays. Each wall had two cones on each day of testing. VECTRON™ T500 was sprayed on both surface types at a rate of 100mg ai/m2 whilst Klypson 500 WG was applied at a rate of 300 mg ai/m2. For both wall surface types, the vector from the laboratory-reared and the wild populations exhibited a low knockdown effect to both VECTRON™ T500 and Klypson 500 WG. A total of 3,840 mosquitoes were used of which 2,880 (75 %) were susceptible colony of An. gambiae s.s. and 960 (25 %) were wild An. gambiae s.l.. The VECTRON™ T500 induced a mortality of 97.8 %-98.1 % in the laboratory population and 83.2-95.0 % wild population mosquitoes on cement and mud-walled huts respectively while Klypson 500 WG ranged from 89.6-99.0 % for wild and 99.0-99.3 % for the laboratory population mosquitoes on cement and mud walls respectively. The knockdown due to VECTRON™ T500 was 7.08 % in the sixth month, while for Klypson 500 WG was 16.04-17.50 %. The monthly wall cone bioassay mortality with VECTRON™ T500 remained over 80 % for 6 months post-spraying for both laboratory and wild populations. The findings of this study have shown VECTRON™ T500 to have extended efficacy against malaria vector mosquitoes when applied to cement and mud walls. The evaluated new IRS formulation, VECTRON™ T500, performed equally with the positive control, Klypson 500 WG, regarding its impact on vector mortality.


Assuntos
Anopheles , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Animais , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Feminino , Malária/prevenção & controle , Malária/transmissão , Habitação , Resistência a Inseticidas
14.
Cell Rep ; 43(8): 114566, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39088320

RESUMO

Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.


Assuntos
Anopheles , Sistema Enzimático do Citocromo P-450 , Guanidinas , Resistência a Inseticidas , Inseticidas , Malária , Neonicotinoides , Piretrinas , Tiazóis , Animais , Tiazóis/farmacologia , Guanidinas/farmacologia , Resistência a Inseticidas/genética , Anopheles/efeitos dos fármacos , Anopheles/genética , Piretrinas/farmacologia , Piretrinas/metabolismo , Neonicotinoides/farmacologia , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Especificidade por Substrato , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
15.
Parasit Vectors ; 16(1): 417, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964334

RESUMO

BACKGROUND: A three-dimensional window screen (3D-Screen) has been developed to create a window double-screen trap (3D-WDST), effectively capturing and preventing the escape of mosquitoes. A 2015 laboratory study demonstrated the 3D-Screen's efficacy, capturing 92% of mosquitoes in a double-screen setup during wind tunnel assays. To further evaluate its effectiveness, phase II experimental hut trials were conducted in Muheza, Tanzania. METHODS: Three experimental hut trials were carried out between 2016 and 2017. Trial I tested two versions of the 3D-WDST in huts with open or closed eaves, with one version using a single 3D-Screen and the other using two 3D-Screens. Trial II examined the 3D-WDST with two 3D-Screens in huts with or without baffles, while Trial III compared handmade and machine-made 3D structures. Mosquito capturing efficacy of the 3D-WDST was measured by comparing the number of mosquitoes collected in the test hut to a control hut with standard exit traps. RESULTS: Trial I showed that the 3D-WDST with two 3D-Screens used in huts with open eaves achieved the highest mosquito-capturing efficacy. This treatment captured 33.11% (CI 7.40-58.81) of female anophelines relative to the total collected in this hut (3D-WDST and room collections) and 27.27% (CI 4.23-50.31) of female anophelines relative to the total collected in the control hut (exit traps, room, and verandahs collections). In Trial II, the two 3D-Screens version of the 3D-WDST captured 70.32% (CI 56.87-83.77) and 51.07% (CI 21.72-80.41) of female anophelines in huts with and without baffles, respectively. Compared to the control hut, the capturing efficacy for female anophelines was 138.6% (37.23-239.9) and 42.41% (14.77-70.05) for huts with and without baffles, respectively. Trial III demonstrated similar performance between hand- and machine-made 3D structures. CONCLUSIONS: The 3D-WDST proved effective in capturing malaria vectors under semi-field experimental hut conditions. Using 3D-Screens on both sides of the window openings was more effective than using a single-sided 3D-Screen. Additionally, both hand- and machine-made 3D structures exhibited equally effective performance, supporting the production of durable cones on an industrial scale for future large-scale studies evaluating the 3D-WDST at the community level.


Assuntos
Anopheles , Inseticidas , Malária , Feminino , Animais , Controle de Mosquitos/métodos , Mosquitos Vetores , Tanzânia , Malária/prevenção & controle
16.
Parasit Vectors ; 13(1): 466, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917255

RESUMO

BACKGROUND: A new generation of IRS insecticides which can provide improved and prolonged control of pyrethroid-resistant malaria vector populations are being developed. Fludora® Fusion is a new IRS insecticide containing a mixture of deltamethrin and clothianidin, a neonicotinoid. METHODS: The efficacy of Fludora® Fusion IRS was evaluated over 11-12 months on concrete and mud substrates in laboratory bioassays and experimental huts against wild free-flying pyrethroid-resistant Anopheles gambiae (sensu lato) in Cové, Benin. A comparison was made with the two active ingredients of the mixture; clothianidin and deltamethrin, applied alone. CDC bottle bioassays were also performed to investigate resistance to clothianidin in the wild vector population. RESULTS: Fludora® Fusion induced > 80% laboratory cone bioassay mortality with both susceptible and pyrethroid-resistant An. gambiae (s.l.) for 7-9 months on concrete block substrates and 12 months on mud block substrates. The vector population at the experimental hut site was fully susceptible to clothianidin in CDC bottle bioassays. Overall mortality rates of wild free-flying pyrethroid-resistant An. gambiae (s.l.) entering the experimental huts during the 11-month trial were < 15% with deltamethrin and significantly higher with Fludora® Fusion (69-71%) and clothianidin alone (72-78%). Initial high experimental hut mortality rates with Fludora® Fusion (> 80%) only declined by 50% after 8 months. Monthly in situ wall cone bioassay mortality of susceptible mosquitoes was > 80% for 9-12 months with Fludora® Fusion and clothianidin alone. Fludora® Fusion induced significantly higher levels of early exiting of mosquitoes compared to clothianidin alone (55-60% vs 37-38%, P < 0.05). CONCLUSIONS: Indoor residual spraying with Fludora® Fusion induced high and prolonged mortality of wild pyrethroid-resistant malaria vectors for 7-10 months mostly due to the clothianidin component and substantial early exiting of mosquitoes from treated huts due to the pyrethroid component. Fludora® Fusion is an important addition to the current portfolio of IRS insecticides with the potential to significantly reduce transmission of malaria by pyrethroid-resistant mosquito vectors.


Assuntos
Anopheles/efeitos dos fármacos , Guanidinas/farmacologia , Inseticidas/farmacologia , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Tiazóis/farmacologia , Animais , Anopheles/fisiologia , Benin , Humanos , Resistência a Inseticidas , Laboratórios , Controle de Mosquitos , Mosquitos Vetores/fisiologia
17.
Trans R Soc Trop Med Hyg ; 108(2): 84-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24463582

RESUMO

BACKGROUND: Using the same insecticide for multiple successive indoor residual spraying (IRS) cycles is not recommended; instead, the National Malaria Control Program (NMCP) has decided to select another insecticide (insecticide B) in addition to bendiocarb for indoor residual spraying. METHODS: An experimental hut trial comparing the effectiveness of three classes of insecticides (one carbamate [bendiocarb], two organophosphates [fenitrothion and pirimiphos methyl] and one pyrethroid [lambdacyalothrin]) was conducted in Malanville, northern Benin, against wild free entered resistant Anopheles gambiae s.l. population to pyrethroids. RESULTS: Fenitrothion and pirimiphos methyl yielded the highest rate of deterrence. Their mean rates were respectively 46.6% and 35.4%. Regarding blood feeding inhibition, only fenitrothion has induced a significant inhibition rate (25.4% as mean rate). As regards the exophily rates, only lambdacyhalothrin has induced the highest rate (39.7%). Pirimiphos methyl showed the highest mortality rate and also induced a mortality rate of at least 80% in blood fed An. gambiae population after 24 h observation time. Furthermore, the huts treated with pirimiphos methyl showed the highest residual effect, followed by lambdacyhalothrin. CONCLUSION: Benin NMCP has selected pirimiphos methyl as insecticide B to alternate or combine to bendiocarb (carbamate) because of the adverse effects of fenitrothion on the sleepers and its short residual effect on walls.


Assuntos
Anopheles/efeitos dos fármacos , Controle de Insetos/métodos , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas , Malária/prevenção & controle , Compostos Organotiofosforados , Fenilcarbamatos , Animais , Benin , Habitação
18.
Mem. Inst. Oswaldo Cruz ; 113(9): e180131, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-955122

RESUMO

BACKGROUND Behavioural effects of insecticides on endophagic phlebotomine sand fly vectors of Leishmania are poorly understood mainly because of the lack of an experimental hut (EH) in which to study them. OBJECTIVE To build an EH to evaluate the effects of long-lasting insecticide-treated nets (LLINs) on Lutzomyia longiflocosa. METHODS The study had two phases: (1) Laboratory experiments using tunnel tests to select the traps for the EH; and (2) EH construction and evaluation of the effects of deltamethrin and lambda-cyhalothrin LLINs on L. longiflocosa females inside the EH. FINDINGS Phase 1: The horizontal-slit trap was the best trap. This trap collected the highest percentage of sand flies, and prevented them from escaping. Therefore, this trap was used in the EH. Phase 2: The main effects of LLINs on L. longiflocosa in the EH were: landing inhibition, inhibition from entering the bednet, induced exophily, and high mortality (total and inside exit traps). CONCLUSIONS The EH was effective for evaluating the effects of LLINs on endophagic sand flies. Although both types of LLINs showed high efficacy, the lambda-cyhalothrin-treated LLIN performed better. This is the first report of induced exophily in sand flies.


Assuntos
Psychodidae , Inseticidas/toxicidade , Leishmania , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA