Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Mol Life Sci ; 79(3): 185, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279766

RESUMO

Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Proteólise , Proteoma/análise , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Domínio Catalítico/genética , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , N-Acetilgalactosaminiltransferases/genética , Proteômica/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
J Neurooncol ; 143(3): 405-415, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104223

RESUMO

PURPOSE: Metastatic non-small cell lung (NSCLC) cancer represents one of the most common types of brain metastasis. The mechanisms involved in how circulating cancer cells transmigrate into brain parenchyma are not fully understood. The aim of this work was to investigate the role of fucosylated carbohydrate epitopes CD15 and sialyated CD15s in cancer adhesion to brain-derived endothelial cells and determine their influence in blood-brain barrier (BBB) disruption METHODS: Three distinct, independent methods were used to measure brain endothelial integrity and include voltohmmeter (EVOM™), impedance spectroscopy (CellZscope®) and electric cell-substrate impedance sensing system (ECIS™). Two fucosyltransferases (FUT4 and 7) responsible for CD15 and CD15s synthesis were modulated in four human cancer cell lines (three lung cancer and one glioma). RESULTS: Overexpression of CD15 or CD15s epitopes led to increase in adhesion of cancer cells to cerebral endothelial cells compared with wild-type and cells with silenced CD15 or CD15s (p < 0.01). This overexpression led to the disruption of cerebral endothelial cell monolayers (p < 0.01). Knockdown of FUT4 and FUT7 in metastatic cancer cells prevented disruption of an in vitro BBB model. Surprisingly, although the cells characterised as 'non-metastatic', they became 'metastatic' -like when cells were forced to over-express either FUT4 or FUT7. CONCLUSIONS: Results from these studies suggest that overexpression of CD15 and CD15s could potentiate the transmigration of circulating NSCLC cells into the brain. The clinical significance of these studies includes the possible use of these epitopes as biomarkers for metastasis.


Assuntos
Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular , Células Endoteliais/patologia , Fucosiltransferases/metabolismo , Neoplasias Pulmonares/secundário , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Células Endoteliais/metabolismo , Fucosiltransferases/genética , Humanos , Antígenos CD15/genética , Antígenos CD15/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células Tumorais Cultivadas
3.
Biochim Biophys Acta ; 1842(9): 1681-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24953795

RESUMO

Sialyl Lewis X (sLe X, CD15s) is a key antigen produced on tumor cell surfaces during multidrug resistance (MDR) development. The present study investigated the effect of α1, 3 fucosyltransferase VII (FucT VII) and α2, 3 sialyltransferase IV (ST3Gal IV) on sLe X oligosaccharides synthesis as well as their impact on MDR development in acute myeloid leukemia cells (AML). FUT7 and ST3GAL4 were overexpressed in three AML MDR cells and bone marrow mononuclear cells (BMMC) of AML patients with MDR by real-time polymerase chain reaction (PCR). A close association was found between the expression levels of FUT7 and ST3GAL4 and the amount of sLe X oligosaccharides, as well as the phenotypic variation of MDR of HL60 and HL60/ADR cells both in vitro and in vivo. Manipulation of these two genes' expression modulated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway, thereby regulating the proportionally mutative expression of P-glycoprotein (P-gp) and multidrug resistance related protein 1 (MRP1), both of which are known to be involved in MDR. Blocking the PI3K/Akt pathway by its specific inhibitor LY294002 or Akt short hairpin RNA (shRNA) resulted in the reduced MDR of HL60/ADR cells. This study indicated that sLe X involved in the development of MDR of AML cells probably through FUT7 and ST3GAL4 regulating the activity of PI3K/Akt signaling pathway and the expression of P-gp and MRP1.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Fucosiltransferases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Oligossacarídeos/metabolismo , Sialiltransferases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adolescente , Adulto , Idoso , Apoptose , Western Blotting , Estudos de Casos e Controles , Proliferação de Células , Criança , Feminino , Citometria de Fluxo , Fucosiltransferases/antagonistas & inibidores , Fucosiltransferases/genética , Humanos , Técnicas Imunoenzimáticas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Antígeno Sialil Lewis X , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/genética , Transdução de Sinais , Células Tumorais Cultivadas , Adulto Jovem , beta-Galactosídeo alfa-2,3-Sialiltransferase
4.
J Genet Genomics ; 50(8): 573-581, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36898609

RESUMO

Early detection of lung cancer (LC) is vital for reducing LC-related mortality. However, noninvasive diagnostic tools remain a great challenge. We aim to identify blood-based biomarkers for the early detection of LC. Here, LC-associated hypomethylation in alpha-1,3-fucosyltransferase VII (FUT7) is identified via the Illumina 850K array in a discovery study and validated by mass spectrometry in two independent case-control studies with blood samples from 1720 LC patients (86.8% LC at stage I, blood is collected before surgery and treatment) and 3143 healthy controls. Compared to the controls, blood-based FUT7 hypomethylation is identified in LC patients at stage I, and even in LC patients with malignant nodules ≤ 1 cm and in patients with adenocarcinoma in situ. Gender plays a role in the LC-associated FUT7 hypomethylation in blood, which is more significant in males than in females. We also reveal that FUT7 hypomethylation in LC could be enhanced by the advanced stage of cancer, involvement of lymph nodes, and larger tumor size. Based on a large sample size and semi-quantitative methods, our study reveals a strong association between blood-based FUT7 hypomethylation and LC, suggesting that methylation signatures in blood may be a group of potential biomarkers for detection of early-stage LC.


Assuntos
Neoplasias Pulmonares , Masculino , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Metilação de DNA/genética , Biomarcadores , Biomarcadores Tumorais/genética , Fucosiltransferases/genética , Fucosiltransferases/metabolismo
5.
Clin Epigenetics ; 14(1): 167, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463240

RESUMO

BACKGROUND: The death rate of lung cancer (LC) ranks first in the world. Changes of DNA methylation in peripheral blood may be related to malignant tumors. It is necessary to explore blood-based biomarkers of methylation to detect LC. METHODS: Mass spectrometry assays were conducted to measure DNA methylation levels of seven CpG sites within FUT7 gene in the peripheral blood of 428 patients with LC, 233 patients with benign pulmonary nodule (BPN) and 862 normal controls (NC). The odds ratios (ORs) of all CpG sites were evaluated for their risk to LC using per SD change and tertiles analyses by logistic regression. The predictive ability of the seven FUT7 CpG sites and risk factors were evaluated by receiver operating characteristic curve (ROC). RESULTS: The methylation levels of seven CpG sites of FUT7 in LC were significantly lower than that in NC (P < 0.05). The per SD decrement of methylation level in CpG_1-7 was significantly associated with 65%, 38%, 59%, 46%, 23%, 20% and 68% higher risk for LC versus NC, respectively, and the adjusted ORs (95% CI) were 2.92 (2.17-3.96), 1.76 (1.29-2.38), 2.83 (2.09-3.82), 3.00 (2.17-4.16), 1.81 (1.35-2.43), 1.48 (1.11-1.97) and 3.04 (2.23-4.16) for the lowest tertiles of methylation level in CpG_1-7 compared with the top tertiles, respectively. The area under the curve (AUC) of FUT7_CpG_1-7 was 0.659 (CI 0.626-0.693), 0.792 (CI 0.736-0.848) and 0.729 (CI 0.665-0.792) in distinguishing LC versus NC, LUSC versus NC and LUSC versus BPN. CONCLUSIONS: Our study revealed an association between FUT7 hypomethylation and LC, especially for LUSC, which provides novel support for the blood-based methylation signatures as potential marker for assessing lung cancer risk.


Assuntos
Carcinoma de Células Escamosas , Metilação de DNA , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
6.
J Inflamm Res ; 14: 1069-1084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790621

RESUMO

BACKGROUND: Bladder urothelial carcinoma (BLCA) is one of the most frequently appearing, lethal and aggressive malignancies of the genitourinary system with growing morbidity and mortality, which affects human health seriously. Protein glycosylation, catalyzed by specific glycosyltransferase, has been found to be abnormal in several diseases, especially cancer. Fucosyltransferase VII (FUT7), one of the fucosyltransferases, was observed abnormally expressed in various cancers, however, the role of FUT7 in BLCA, and the association between its expression and clinical outcomes or immune infiltration remains unclear. METHODOLOGY: FUT7 expression in BLCA was analyzed in Oncomine database, which was further confirmed with immunohistochemistry and ELISA. The prognostic value of FUT7 for BLCA was evaluated with PrognoScan database, and its genetic alteration was examined in cBioPortal database. The proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) changes of bladder cancer cells after FUT7 siRNA or cDNA transfection were determined by CCK8, colony formation, transwell and Western blot, respectively. The correlation between FUT7 expression and immune infiltration levels was analyzed in TIMER and TISIDB databases, and the methylation level of FUT7 was detected in UALCAN database. RESULTS: The results showed that the expression of FUT7 was increased in BLCA, and patients with high FUT7 level were predicted to have lower overall survival and disease-specific survival rates, which were not influenced by FUT7 genetic alterations. Downregulation FUT7 inhibited the proliferation, migration, invasion and EMT of bladder cancer cells, whereas upregulation of FUT7 showed the opposite effects. We found that FUT7 was positively correlated with immune cell infiltration levels (CD8+ T cells, CD4+T cells, macrophage, neutrophil and dendritic cells), and also the expression of gene markers of immune cells. The negative correlation between FUT7 expression and FUT7 methylation level was observed, among which FUT7 expression was positively correlated with the abundance of 28 kinds of tumor-infiltrating lymphocytes (TILs), while FUT7 methylation level was negatively correlated with TILs. CONCLUSION: Altogether, these findings suggested that FUT7 possessed the potential to serve as a detection biomarker or immunotherapeutic target for BLCA.

7.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33963380

RESUMO

Metastasis is the spread of cancer cells to a secondary site within the body, and is the leading cause of death for cancer patients. The lung is a common site of metastasis for many cancer types, including melanoma. Identifying the genes involved in aiding metastasis of melanoma cells to the lungs is critical for the development of better treatments. As the accessibility of cell surface proteins makes them attractive therapeutic targets, we performed a CRISPR activation screen using a library of guide RNAs (gRNAs) targeting the transcription start sites of 2195 membrane protein-encoding genes, to identify genes whose upregulated expression aided pulmonary metastasis. Immunodeficient mice were subcutaneously injected in the flank with murine B16-F0 melanoma cells expressing dCas9 and the membrane protein library gRNAs, and their lungs collected after 14-21 days. Analysis was performed to identify the gRNAs that were enriched in the lungs relative to those present in the cells at the time of administration (day 0). We identified six genes whose increased expression promotes lung metastasis. These genes included several with well-characterized pro-metastatic roles (Fut7, Mgat5, and Pcdh7) that have not previously been linked to melanoma progression, genes linked to tumor progression but that have not previously been described as involved in metastasis (Olfr322 and Olfr441), as well as novel genes (Tmem116). Thus, we have identified genes that, when upregulated in melanoma cells, can aid successful metastasis and colonization of the lung, and therefore may represent novel therapeutic targets to inhibit pulmonary metastasis.


Assuntos
Neoplasias Pulmonares , Melanoma , Camundongos , Animais , Proteínas de Membrana/genética , Melanoma/genética , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos C57BL
8.
Life Sci ; 192: 231-237, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138114

RESUMO

Monocyte-endothelial adhesion is a hallmark feature of atherosclerosis at early stage and emerging evidence suggests that the glycosylation of vascular adhesive molecules and its ligands is involved in this process. Nevertheless, the mechanism underlying this process remains incompletely elucidated. In this study, we reported that treatment with inflammatory factors interleukin-1ß (IL-1ß) pronouncedly upregulated α1,3-fucosyltransferase VII gene (FUT7) mRNA and protein expression level in EA.hy926 endothelial cells. Moreover, FUT7 overexpression significantly promoted monocyte-endothelial adhesion, while FUT7 knockdown obviously inhibited IL-1ß-induced monocyte-endothelial adhesion. Further analysis demonstrated that fucosylation of selectin ligand endomucin was directly involved in IL-1ß-induced monocyte-endothelial adhesion. Finally, we demonstrated that p38 and extracellular signal-regulated kinase (ERK) MAPK signaling pathway was activated by IL-1ß, while inhibition of p38/ERK signaling pathway decreased FUT7 expression level and IL-1ß-induced monocyte-endothelial adhesion. In summary, these results provide a novel insight that FUT7-mediated fucosylation contribute to the initiation and progression of atherosclerosis.


Assuntos
Adesão Celular/efeitos dos fármacos , Fucose/metabolismo , Fucosiltransferases/metabolismo , Interleucina-1beta/farmacologia , Monócitos/efeitos dos fármacos , Sialomucinas/metabolismo , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Front Immunol ; 9: 2540, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455694

RESUMO

Human regulatory CD4+CD25+FOXP3+ T cells (Treg) play important roles in the maintenance of self-tolerance and immune homeostasis in various disease settings and are also involved in the suppression of effective immune responses. These cells are heterogeneous in phenotype and function, and the ability to reliably distinguish between various FOXP3-expressing subpopulations can affect the development of successful therapies. This study demonstrates that hypomethylated CpG sites, present in four regions of the FOXP3 locus, CAMTA1 and FUT7 gene regions, can be used to distinguish several subsets of Treg from conventional CD4+ T lymphocytes (Tcon) in donors of both genders. We describe a previously unreported strand-bias hemimethylation pattern in FOXP3 promoter and TSDR in donors of both genders, with the coding strand being demethylated within promoter and methylated within TSDR in all CD4+ lymphocyte subtypes, whereas the template strand follows the previously described pattern of methylation with both regions being more demethylated in Treg subtypes and mostly methylated in Tcon. This strand-specific approach within the TSDR may prove to be instrumental in correctly defining Treg subsets in health and in disease.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Fatores de Transcrição Forkhead/genética , Fucosiltransferases/genética , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Transativadores/genética , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA/genética , Feminino , Citometria de Fluxo , Marcadores Genéticos/genética , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/citologia , Masculino , Regiões Promotoras Genéticas/genética , Subpopulações de Linfócitos T/citologia , Linfócitos T Reguladores/citologia
10.
Biomaterials ; 34(33): 8213-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891082

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an important candidate for cell-based therapy since they can be easily isolated and expanded, secrete beneficial paracrine factors, and differentiate into multiple lineages. Since the endothelium at sites of injury and inflammation often express adhesion molecules belonging to the selectin family, methods to endow MSCs with selectin-ligands can enhance the efficacy of cell delivery and tissue engraftment. Here, we describe a construct 19Fc[FUT7(+)], where the first 19 amino acids of the pan-selectin ligand PSGL-1 (P-selectin glycoprotein ligand-1) was fused to a human IgG1. When expressed in HEK293T cells over-expressing the α(1,3)fucosyltransferase FUT7, 19Fc[FUT7(+)] is decorated by a core-2 sialyl Lewis-X sialofucosylated O-glycan. The non-covalent coupling of this protein onto MSC surface using palmitated protein G (PPG) enhanced cell binding to E- and P-selectin under hydrodynamic shear, without altering MSC multipotency. MSCs functionalized with 19Fc[FUT7(+)] were captured/tethered onto stimulated endothelial cell monolayers at wall shear stresses up to 4 dyn/cm(2). Once captured, the cells rolled robustly up to the highest shear stress tested, 10 dyn/cm(2). Unlike previous work where MSCs could only be captured onto selectin-bearing substrates at low or no-flow conditions, the current work presents a 'glycan engineering' strategy to enable leukocyte-like capture and rolling.


Assuntos
Glicoproteínas de Membrana/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Selectina E/metabolismo , Humanos , Microscopia Confocal , Selectina-P/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA