Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Appl Clin Med Phys ; : e14439, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031633

RESUMO

BACKGROUND: Coincidence of the treatment and imaging isocenter coordinates is required to safely perform small-margin treatments, such as stereotactic radiosurgery of multiple brain metastases. A comprehensive and direct methodology for verifying concordance of kilovoltage cone-beam computed tomography (kV-CBCT) and treatment coordinates using an x-ray CT-based polymer gel dosimeter (dGEL) and onboard kV-CBCT was previously reported. Using this methodology, we tested the ability of a new commercially available x-ray CT-based polymer dGEL with a rapid response to provide efficient quality assurance (QA). PURPOSE: The aim of this study was to evaluate the robustness of the three-dimensional geometric QA methodology using dGEL. METHODS: The dGEL were commercially manufactured. The prescribed dose for each field was determined by visually identifying the 5, 10, and 20 Gy isodose lines. A linear accelerator was used to irradiate the gels with seven non-coplanar beams. An in-house analysis program was used to identify the beam axes and treatment isocenter in kV-CBCT coordinates by processing the pre- and post-irradiation CBCT images. The impact of the radiation dose on the test reproducibility was examined, and the detectability of an intentional geometric error was assessed. RESULTS: The treatment isocenter was within 0.4 mm of the imaging isocenter for all radiation doses. The residual error of the test with the intentional error was within 0.2 mm. The analysis and image quality variations for a single dGEL introduced displacement errors less than 0.3 mm. CONCLUSIONS: The test assessed the coincidence of treatment and kV-CBCT isocenter coordinates and detected errors with high robustness. Even for a 10 Gy dose, the test yielded results comparable with those obtained using higher radiation doses owing to the rapid response of the dGEL dosimeter.

2.
J Appl Clin Med Phys ; : e14489, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186819

RESUMO

PURPOSE: To evaluate the feasibility of an open-source, semi-automated, and reproducible vertex placement tool to improve the efficiency of lattice radiotherapy (LRT) planning. We used polymer gel dosimetry with a Cone Beam CT (CBCT) readout to commission this LRT technique. MATERIAL AND METHODS: We generated a volumetric modulated arc therapy (VMAT)-based LRT plan on a 2 L NIPAM polymer gel dosimeter using our Eclipse Acuros version 15.6 AcurosXB beam model, and also recalculated the plan with a pre-clinical Acuros v18.0 dose calculation algorithm with the enhanced leaf modelling (ELM). With the assistance of the MAAS-SFRThelper software, a lattice vertex diameter of 1.5 cm and center-to-center spacing of 3 cm were used to place the spheres in a hexagonal, closed packed structure. The verification plan included four gantry arcs with 15°, 345°, 75°, 105° collimator angles. The spheres were prescribed 20 Gy to 50% of their combined volume. The 6 MV Flattening Filter Free beam energy was used to deliver the verification plan. The dosimetric accuracy of the LRT delivery was evaluated with 1D dose profiles, 2D isodose maps, and a 3D global gamma analysis. RESULTS: Qualitative comparisons between the 1D dose profiles of the Eclipse plan and measured gel showed good consistency at the prescription dose mark. The average diameter measured 13.3 ± 0.2 mm (gel for v15.6), 12.6 mm (v15.6 plan), 13.1 ± 0.2 mm (gel for v18.0), and 12.3 mm (v18.0 plan). 3D gamma analysis showed that all gamma pass percent were > 95% except at 1% and 2% at the 1 mm distance to agreement criteria. CONCLUSION: This study presents a novel application of gel dosimetry in verifying the dosimetric accuracy of LRT, achieving excellent 3D gamma results. The treatment planning was facilitated by publicly available software that automatically placed the vertices for consistency and efficiency.

3.
J Xray Sci Technol ; 31(4): 825-836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212060

RESUMO

BACKGROUND: Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated. OBJECTIVE: This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies. METHODS: The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days. RESULTS: The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times. CONCLUSION: The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.


Assuntos
Polímeros , Dosímetros de Radiação , Elétrons , Géis , Radiometria/métodos , Imageamento por Ressonância Magnética
4.
J Appl Clin Med Phys ; 22(10): 278-287, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34436819

RESUMO

This study aims to verify the dose delivery of prostate radiotherapy treatments in an adult pelvic phantom with two metallic hip and femur prosthesis using a four-field box technique. The prostate planned target volume (PTV) tridimensional (3D) dose distribution was evaluated using gel dosimetry, and thermoluminescent dosimeters (TLD) were used for point-dose measurements outside it. Both results were compared to the treatment planning system (TPS) dose calculation without using heterogeneity corrections to evaluate the influence of the metal in the dose distribution. MAGIC-f gel dosimeter (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper with Formaldehyde) associated with magnetic resonance imaging was used. TLD were positioned at several points at the bone metal interface and the sacrum region. The comparison of the gel measured and the TPS calculated dose distributions were done using gamma analysis (3%/3 mm), and a pass rate of 93% was achieved. The TLD dose values at the bone-metal interface showed variations from the planned dose. However, at the sacrum region, where the beams did not intercept the prosthesis, there was a good agreement between TPS planning and TLD measurements. Our results show how the combination of 3D dosimetry and measurements at specific points in the phantom allowed a comprehensive view of the dose distribution and identified that care must also be paid to regions outside the PTV.


Assuntos
Próstata , Planejamento da Radioterapia Assistida por Computador , Adulto , Fêmur , Humanos , Masculino , Imagens de Fantasmas , Próteses e Implantes , Radiometria , Dosagem Radioterapêutica , Dosimetria Termoluminescente
5.
J Xray Sci Technol ; 28(4): 641-658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390644

RESUMO

OBJECTIVE: Several physical factors such as dose rate and photon energy may change response and sensitivity of polymer gel dosimeters. This study aims to evaluate the R2-dose response and sensitivity dependence of PASSAG-U gel dosimeters with 3% and 5% urea on dose rate and photon energy. MATERIALS AND METHODS: The PASSAG-U gel dosimeters were prepared under normal atmospheric conditions. The obtained gel dosimeters were irradiated to different dose rates (100, 200, and 300 cGy/min) and photon energies (6 and 15 MV). Finally, responses (R2) of the PASSAG-U gel dosimeters with 3% and 5% urea were analyzed by MRI technique at 1, 10, 14 days after the irradiation process. RESULTS: The findings showed that the R2-dose responses of PASSAG-U gel dosimeters with 3% and 5% urea do not vary under the differently evaluated dose rates and photon energies. The R2-dose sensitivity of PASSAG-U polymer gel dosimeter with 3% urea does not change under the differently evaluated dose rates and photon energies, but it changes for PASSAG-U polymer gel dosimeter with 5% urea. The dose resolution values ranged from 0.20 to 0.86 Gy and from 0.27 to 2.20 Gy for the PASSAG-U gel dosimeter with 3% and 5% urea for the different dose rates and photon energies, respectively. Furthermore, it was revealed that the R2-dose response and sensitivity dependence of PASSAG-U gel dosimeters with 3% and 5% urea on dose rate and photon energy can vary over post irradiation time. CONCLUSIONS: The study results demonstrated that dosimetric characteristics (dependence of dose rate and photon energy, and dose resolution) of PASSAG-U gel dosimeter with 3% were better than those of PASSAG-U gel dosimeter with 5% urea.


Assuntos
Dosímetros de Radiação , Relação Dose-Resposta à Radiação , Géis , Imageamento por Ressonância Magnética , Fótons , Polímeros , Doses de Radiação , Radiometria , Sensibilidade e Especificidade , Ureia/análise
6.
J Appl Clin Med Phys ; 20(7): 87-99, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31183949

RESUMO

FlexyDos3D, a silicone-based chemical radiation dosimeter, has great potential to serve as a three-dimensional (3D) deformable dosimetric tool to verify complex dose distributions delivered by modern radiotherapy techniques. To facilitate its clinical application, its radiological tissue needs to be clarified. In this study we investigated its tissue-equivalence in comparison with water and Solid Water (RMI457). We found that its effective and mean atomic numbers were 40% and 20% higher and the total interaction probabilities for kV x-ray photons were larger than those of water respectively. To assess the influence of its over-response to kV photons, its HU value was measured by kV computed tomography (CT) and was found higher than all the soft-tissue substitutes. When applied for dose calculation without correction, this effect led to an 8% overestimation in electron density via HU-value mapping and 0.65% underestimation in target dose. Furthermore, depth dose curves (PDDs) and off-axis ratios (profiles) at various beam conditions as well as the dose distribution of a full-arc VMAT plan in FlexyDos3D and reference materials were simulated by Monte Carlo, where the results showed great agreement. As indicated, FlexyDos3D exhibits excellent radiological water-equivalence for clinical MV x-ray dosimetry, while its nonwater-equivalent effect for low energy x-ray dosimetry requires necessary correction. The key findings of this study provide pertinent reference for further FlexyDos3D characterization research.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Método de Monte Carlo , Imagens de Fantasmas , Dosímetros de Radiação/normas , Silicones/química , Desenho de Equipamento , Humanos , Doses de Radiação
7.
J Synchrotron Radiat ; 25(Pt 6): 1768-1773, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407188

RESUMO

The emission of fluorescent X-rays and low-energy electrons by mid-/high-Z nanoparticles upon irradiation with either X-ray photons or high-energy ion beams is referred to as the nanoradiator effect (NRE). A track analysis of NRE was performed using reactive oxygen species (ROS) gels, to which macrophages containing gold nanoparticles (AuNPs) were attached, together with single-cell irradiation of the intracellular nanoparticles from a microbeam of synchrotron X-rays, and the range and distribution of ^\bulletOH and O2^{ \bullet - } produced were compared with those of the Fe-nanoradiator by magnetite nanoparticles (FeONP, Fe3O4). The Au-nanoradiator generated ROS fluorescence to a greater depth and wider angle with respect to the incident X-rays than that of the Fe-nanoradiator. The ROS-oxidant fluorescence intensity ratios of ^\bulletOH to O2^{ \bullet - } were different for the AuNPs and FeONPs, reflecting different relative yields of electrons and fluorescent X-rays from NRE. In the region immediately (<100 µm) below the irradiated cell, ^\bulletOH-radicals were distributed mainly along two or three tracks in the depth direction in the FeONP- or AuNP-ROS gel. In contrast, O2^{ \bullet - } was scattered more abundantly in random directions in the AuNP-ROS gel than in the FeONP-ROS gel. Track analysis of X-ray photoelectric nanoradiator radiation showed a different range of dose distribution and relative emission compositions between Au- and Fe-nanoradiators, suggesting more extensive damage beyond a single cell containing AuNPs than one containing FeONPs.

8.
J Appl Clin Med Phys ; 19(1): 138-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29226607

RESUMO

The Convolution algorithm, implemented in Leksell GammaPlan® ver. Here, 10, is the first algorithm for Leksell Gamma Knife that takes heterogeneities into account and models dose build-up effects close to tissue boundaries. The aim of this study was preliminary comparison of the Convolution and TMR10 algorithms for real clinical cases and dosimetric verification of the algorithms, using measurements in a phantom. A total of 25 patients involved in comparison of the Convolution and TMR10 algorithms were divided into three groups: patients with benign tumors close to heterogeneities, patients with functional disorders, and patients with tumors located far from heterogeneities. Differences were observed especially in the group of patients with tumors close to heterogeneities, where the difference in maximal dose to critical structures for the Convolution algorithm was up to 15% compared to the TMR10 algorithm. Dosimetric verification of the algorithm was performed, using a radiochromic gel dosimeter based on Turnbull blue dye in a special heterogeneous phantom. Relative dose distributions measured with the radiochromic gel dosimeter agreed very well with both the TMR10 and Convolution calculations. We observed small discrepancies in the direction in which the largest inhomogeneity was positioned. Verification results indicated that the Convolution algorithm provides a different dose distribution, especially in regions close to heterogeneities and particularly for lower isodose volumes. However, the results obtained with gamma analyses in the gel dosimetry experiment did not verify the assumption that the Convolution algorithm provides more accurate dose calculation.


Assuntos
Algoritmos , Dosimetria Fotográfica , Neoplasias/cirurgia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
9.
J Synchrotron Radiat ; 23(Pt 5): 1191-6, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577774

RESUMO

Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\bullet{\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.

10.
Appl Microbiol Biotechnol ; 100(11): 4803-16, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27100529

RESUMO

In past decades, the possibility of using high atomic number nanoparticle has gained interest in gel dosimetry to enhance the dose deposited in the tumor while using low radiation as well as for better imaging purposes. Sparing of healthy tissues and targeting the tumor part have become much more captivating with the help of these systems. The gel dosimetry is a the three-dimensional dosimeter for extracting the dose, which can be used along with the nanoparticles like gold, platinum, and silver, for better therapeutic efficiency for modern radiotherapy techniques. These nanoparticles of different size prepared either by chemical route or green synthesis and incorporated into the gel system respond in a different manner. Having wide applications in therapeutic field, this study reviews the use of gel dosimeters in the therapeutic procedures and also with the aid of nanoparticles so as to achieve dose enhancement. The biological activity of the various nanoparticles has been discussed.


Assuntos
Géis/química , Nanopartículas Metálicas/química , Radiometria/instrumentação , Dosagem Radioterapêutica , Animais , Bismuto/química , Bismuto/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Gadolínio/química , Géis/farmacologia , Ouro/química , Ouro/farmacologia , Háfnio/química , Humanos , Iodo/química , Ferro/química , Ferro/farmacologia , Nanotecnologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Óxidos/química , Platina/química , Platina/farmacologia , Prata/química , Prata/farmacologia
11.
Phys Med Biol ; 69(15)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959910

RESUMO

Objective.To develop and benchmark a novel 3D dose verification technique consisting of polymer gel dosimetry (PGD) with cone-beam-CT (CBCT) readout through a two-institution study. The technique has potential for wide and robust applicability through reliance on CBCT readout.Approach. Three treatment plans (3-field, TG119-C-shape spine, 4-target SRS) were created by two independent institutions (Institutions A and B). A Varian Truebeam linear accelerator was used to deliver the plans to NIPAM polymer gel dosimeters produced at both institutions using an identical approach. For readout, a slow CBCT scan mode was used to acquire pre- and post-irradiation images of the gel (1 mm slice thickness). Independent gel analysis tools were used to process the PGD images (A: VistaAce software, B: in-house MATLAB code). Comparing planned and measured doses, the analysis involved a combination of 1D line profiles, 2D contour plots, and 3D global gamma maps (criteria ranging between 2%1 mm and 5%2 mm, with a 10% dose threshold).Main results. For all gamma criteria tested, the 3D gamma pass rates were all above 90% for 3-field and 88% for the SRS plan. For the C-shape spine plan, we benchmarked our 2% 2 mm result against previously published work using film analysis (93.4%). For 2%2 mm, 99.4% (Institution A data), and 89.7% (Institution B data) were obtained based on VistaAce software analysis, 83.7% (Institution A data), and 82.9% (Institution B data) based on MATLAB.Significance. The benchmark data demonstrate that when two institutions follow the same rigorous procedures gamma passing rates up to 99%, for 2%2 mm criteria can be achieved for substantively different treatment plans. The use of different software and calibration techniques may have contributed to the variation in the 3D gamma results. By sharing the data across institutions, we observe the gamma passing rate is more consistent within each pipeline, indicating the need for standardized analysis methods.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Aceleradores de Partículas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Radiometria/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imageamento Tridimensional/métodos , Polímeros/química
12.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38579691

RESUMO

Background.Modern radiation therapy technologies aim to enhance radiation dose precision to the tumor and utilize hypofractionated treatment regimens. Verifying the dose distributions associated with these advanced radiation therapy treatments remains an active research area due to the complexity of delivery systems and the lack of suitable three-dimensional dosimetry tools. Gel dosimeters are a potential tool for measuring these complex dose distributions. A prototype tabletop solid-tank fan-beam optical CT scanner for readout of gel dosimeters was recently developed. This scanner does not have a straight raypath from source to detector, thus images cannot be reconstructed using filtered backprojection (FBP) and iterative techniques are required.Purpose.To compare a subset of the top performing algorithms in terms of image quality and quantitatively determine the optimal algorithm while accounting for refraction within the optical CT system. The following algorithms were compared: Landweber, superiorized Landweber with the fast gradient projection perturbation routine (S-LAND-FGP), the fast iterative shrinkage/thresholding algorithm with total variation penalty term (FISTA-TV), a monotone version of FISTA-TV (MFISTA-TV), superiorized conjugate gradient with the nonascending perturbation routine (S-CG-NA), superiorized conjugate gradient with the fast gradient projection perturbation routine (S-CG-FGP), superiorized conjugate gradient with with two iterations of CG performed on the current iterate and the nonascending perturbation routine (S-CG-2-NA).Methods.A ray tracing simulator was developed to track the path of light rays as they traverse the different mediums of the optical CT scanner. Two clinical phantoms and several synthetic phantoms were produced and used to evaluate the reconstruction techniques under known conditions. Reconstructed images were analyzed in terms of spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal non-uniformity (SNU), mean relative difference (MRD) and reconstruction time. We developed an image quality based method to find the optimal stopping iteration window for each algorithm. Imaging data from the prototype optical CT scanner was reconstructed and analysed to determine the optimal algorithm for this application.Results.The optimal algorithms found through the quantitative scoring metric were FISTA-TV and S-CG-2-NA. MFISTA-TV was found to behave almost identically to FISTA-TV however MFISTA-TV was unable to resolve some of the synthetic phantoms. S-CG-NA showed extreme fluctuations in the SNR and CNR values. S-CG-FGP had large fluctuations in the SNR and CNR values and the algorithm has less noise reduction than FISTA-TV and worse spatial resolution than S-CG-2-NA. S-LAND-FGP had many of the same characteristics as FISTA-TV; high noise reduction and stability from over iterating. However, S-LAND-FGP has worse SNR, CNR and SNU values as well as longer reconstruction time. S-CG-2-NA has superior spatial resolution to all algorithms while still maintaining good noise reduction and is uniquely stable from over iterating.Conclusions.Both optimal algorithms (FISTA-TV and S-CG-2-NA) are stable from over iterating and have excellent edge detection with ESF MTF 50% values of 1.266 mm-1and 0.992 mm-1. FISTA-TV had the greatest noise reduction with SNR, CNR and SNU values of 424, 434 and 0.91 × 10-4, respectively. However, low spatial resolution makes FISTA-TV only viable for large field dosimetry. S-CG-2-NA has better spatial resolution than FISTA-TV with PSF and LSF MTF 50% values of 1.581 mm-1and 0.738 mm-1, but less noise reduction. S-CG-2-NA still maintains good SNR, CNR, and SNU values of 168, 158 and 1.13 × 10-4, respectively. Thus, S-CG-2-NA is a well rounded reconstruction algorithm that would be the preferable choice for small field dosimetry.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radiometria/métodos , Razão Sinal-Ruído , Algoritmos
13.
Gels ; 10(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38391476

RESUMO

Accurate dosimetric verification is becoming increasingly important in radiotherapy. Although polymer gel dosimetry may be useful for verifying complex 3D dose distributions, it has limitations for clinical application due to its strong reactivity with oxygen and other contaminants. Therefore, it is important that the material of the gel storage container blocks reaction with external contaminants. In this study, we tested the effect of air and the chemical permeability of various polymer-based 3D printing materials that can be used as gel containers. A methacrylic acid, gelatin, and tetrakis (hydroxymethyl) phosphonium chloride gel was used. Five types of printing materials that can be applied to the fused deposition modeling (FDM)-type 3D printer were compared: acrylonitrile butadiene styrene (ABS), co-polyester (CPE), polycarbonate (PC), polylactic acid (PLA), and polypropylene (PP) (reference: glass vial). The map of R2 (1/T2) relaxation rates for each material, obtained from magnetic resonance imaging scans, was analyzed. Additionally, response histograms and dose calibration curves from the R2 map were evaluated. The R2 distribution showed that CPE had sharper boundaries than the other materials, and the profile gradient of CPE was also closest to the reference vial. Histograms and dose calibration showed that CPE provided the most homogeneous and the highest relative response of 83.5%, with 8.6% root mean square error, compared with the reference vial. These results indicate that CPE is a reasonable material for the FDM-type 3D printing gel container.

14.
Phys Med ; 123: 103415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38901143

RESUMO

PURPOSE: Employing a Fresnel lens and a point-like light source to create a convergent light beam for the camera effectively minimizes stray light and enhances image quality in optical computed tomography (OCT), benefiting 3D dosimetry applications. This study outlines the development of an economical cone-beam optical computed scanner for 3D dosimetry. METHODS: Optical performance was assessed by calculating modulation transfer function (MTF) with pattern charts. Stray light was evaluated by imaging a cylinder flask and a square grid with 5 mm diameter holes to determine the stray-to-primary ratio. Reconstruction quality was determined using SIRT-TV and compared with spectrophotometry attenuation coefficients, with the best regularization parameter (λ = 0.01) chosen based on contrast-to-noise ratio (CNR). Dosimetry performance was assessed by determining percentage dose depth (PDD) for a 6MV beam with a 5 × 5 cm2 field using FXO-f gel dosimeter, compared with ionization chamber data. RESULTS: MTF evaluation yielded ≥ 50 % agreement with pattern charts. Stray-to-primary ratio was less than 0.1 or 10 % of the total signal. Reconstruction showed low noise and artifacts, with optimal CNR at λ = 0.01. Attenuation coefficients from optical CT aligned with spectrometer measurements within 1.2 %. PDD calculated with FXO-f gel dosimeter closely matched ionization chamber data (<1.2 % difference), achieving a dose resolution of 0.1 Gy. CONCLUSION: The built and optimization the de optical-CT based on a convergent beam is read to perform the 3D quality assurance in clinical applications.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Radiometria/instrumentação , Radiometria/métodos , Luz , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Óptica/métodos , Tomografia Óptica/instrumentação , Razão Sinal-Ruído
15.
Gels ; 10(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534590

RESUMO

In recent decades, hydrogels have emerged as innovative soft materials with widespread applications in the medical and biomedical fields, including drug delivery, tissue engineering, and gel dosimetry. In this work, a comprehensive study of the macroscopic and microscopic properties of hydrogel matrices based on Poly(vinyl-alcohol) (PVA) chemically crosslinked with Glutaraldehyde (GTA) was reported. Five different kinds of PVAs differing in molecular weight and degree of hydrolysis were considered. The local microscopic organization of the hydrogels was studied through the use of the 1H nuclear magnetic resonance relaxometry technique. Various macroscopic properties (gel fraction, water loss, contact angle, swelling degree, viscosity, and Young's Modulus) were investigated with the aim of finding a correlation between them and the features of the hydrogel matrix. Additionally, an optical characterization was performed on all the hydrogels loaded with Fricke solution to assess their dosimetric behavior. The results obtained indicate that the degree of PVA hydrolysis is a crucial parameter influencing the structure of the hydrogel matrix. This factor should be considered for ensuring stability over time, a vital property in the context of potential biomedical applications where hydrogels act as radiological tissue-equivalent materials.

16.
Phys Med Biol ; 69(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38330494

RESUMO

Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.


Assuntos
Polímeros , Radioterapia Conformacional , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Radiometria/métodos
17.
Phys Med ; 114: 102684, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37778206

RESUMO

A silicon-based three-dimensional dosimeter can be formed in a free shape without a container and deformed because of its flexibility. Several studies have focused on enhancing its radiological characteristics and assessing its applicability as a quality assurance tool for image-guided and adaptive radiation therapy, considering motion and deformation. Here, we applied a fluorescence probe (dihydrorhodamine 6G, DHR6G) to a silicon elastomer as a new radiosensitive compound that converts nonfluorescent into fluorescent dyes using irradiation, and its fluorescence intensity increases linearly with the absorbed dose. In this study, we demonstrated a cost-effective synthesis method and optimized the composition conditions. The results showed that the DHR6G-SE prepared from 2.2 × 10-3 wt% DHR6G, 0.024 wt% pyridine, and a silicone elastomer (SE) (SILPOT TM 184, base/curing agent = 10/1) exhibited a linear increase in fluorescence with radiation exposure within a dose range of 0-8 Gy and a highly stable sensitivity for as long as 64 h. To demonstrate its container-less characteristics, the possibility of dosimetry for low-energy X-rays using DHR6G-SE was investigated.


Assuntos
Dosímetros de Radiação , Silicones , Radiometria/métodos , Rodaminas
18.
Phys Med ; 113: 102656, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625218

RESUMO

PURPOSE: The end-to-end (E2E) quality assurance (QA) test is a unique tool for validating the treatment chain undergone by patients in external radiotherapy. It should be conducted in three dimensions (3D) to get accurate results. This study aims to implement these tests with Fricke-Xylenol orange-Gelatin (FXG) gel dosimeter and a newly developed dual-wavelength reading method on the Vista16™ optical Computed Tomography (CT) scanner (ModusQA) for three treatment techniques in stereotactic radiotherapy, on Novalis (Varian) and CyberKnife (Accuray) linear accelerators. METHODS: The tests were performed in head phantoms. Gel measurements were compared with planned dose distributions and measured by film and ion chamber measurements by plotting isodose curves and dose profiles, and by conducting a 3D local gamma-index analysis (2%/2mm criteria). RESULTS: Gamma passing rates were higher than 95 %. Point dose differences between treatment planning and gel and ion chamber measurements at the isocenter were < 2.3 % for both treatments delivered on the Novalis accelerator, while this difference was higher than 4 % for the treatment delivered on the CyberKnife, highlighting a small overdosing of the tumor volume. A good agreement was observed between gel and film dose profiles. CONCLUSIONS: This study presents the successful implementation of 3D E2E QA tests for stereotactic radiotherapy with FXG gel dosimetry and a dual-wavelength reading method on an optical CT scanner. This dosimetric method provides 3D absolute dose distributions in the 0.25 - 10 Gy dose range with a high spatial resolution and a dose uncertainty of around 2 % (k=1).


Assuntos
Gelatina , Radiocirurgia , Humanos , Dosímetros de Radiação , Tomografia Computadorizada de Feixe Cônico
19.
Biomed Phys Eng Express ; 9(5)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37236157

RESUMO

Purpose. EDBreast gel is an alternative Fricke gel dosimeter, read by Magnetic Resonance Imaging, in which sucrose is added to lower diffusion effects. This paper aims at determining the dosimetric characteristics of this dosimeter.Methods. The characterization has been performed in high energy photon beams. The dose-response of the gel has been evaluated as well as its detection limit, its fading effects, the reproducibility of its response and its stability over time. Its energy and dose-rate dependence has been investigated, and the overall dose uncertainty budget established. Once characterized, the dosimetry method has been applied to a simple reference irradiation case in a 6 MV photon beam, with the measurement of the lateral dose profile of a 2 × 2 cm2field. The results have been compared with microDiamond measurements.Results. In addition to its low diffusivity, the gel presents a high sensitivity, no dose-rate dependence consideringTPR20-10values ranging from 0.66 to 0.79 and an energy response comparable to ionization chambers. However, its non-linear dose-response induces a high uncertainty on the measured dose (8 % (k=1) at 20 Gy) and reproducibility issues. The profile measurements displayed discrepancies compared to the microDiamond due to diffusion effects. The appropriate spatial resolution was estimated using the diffusion coefficient.Conclusion. EDBreast gel dosimeter presents interesting characteristics for applications in clinics, but the linearity of its dose-response should be improved to lower the uncertainties and to enhance the reproducibility.


Assuntos
Dosímetros de Radiação , Radiometria , Reprodutibilidade dos Testes , Radiometria/métodos , Difusão , Incerteza
20.
Med Phys ; 50(10): 6334-6353, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37190786

RESUMO

BACKGROUND: Gel dosimeters are a potential tool for measuring the complex dose distributions that characterize modern radiotherapy. A prototype tabletop solid-tank fan-beam optical CT scanner for readout of gel dosimeters was recently developed. This scanner does not have a straight raypath from source to detector, thus images cannot be reconstructed using filtered backprojection (FBP) and iterative techniques are required. Iterative image reconstruction requires a system matrix that describes the geometry of the imaging system. Stored system matrices can become immensely large, making them impractical for storage on a typical desktop computer. PURPOSE: Here we develop a method to reduce the storage size of optical CT system matrices through use of polar coordinate discretization while accounting for the refraction in optical CT systems. METHODS: A ray tracing simulator was developed to track the path of light rays as they traverse the different mediums of the optical CT scanner. Cartesian coordinate discretized system matrices (CCDSMs) and polar coordinate discretized system matrices (PCDSMs) were generated by discretizing the reconstruction area of the optical CT scanner into a Cartesian pixel grid and a polar coordinate pixel grid, respectively. The length of each ray through each pixel was calculated and used to populate the system matrices. To ensure equal weighting during iterative reconstruction, the radial rings of PCDSMs were asymmetrically spaced such that the area of each polar pixel was constant. Two clinical phantoms and several synthetic phantoms were produced and used to evaluate the reconstruction techniques under known conditions. Reconstructed images were analyzed in terms of spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal nonuniformity (SNU), and Gamma map pass percentage. RESULTS: A storage size reduction of 99.72% was found when comparing a PCDSM to a CCDSM with the same total number of pixels. Images reconstructed with a PCDSM were found to have superior SNR, CNR, SNU, and Gamma (1 mm, 1%) pass percentage compared to those reconstructed with a CCDSM. Increasing spatial resolution in the radial direction with increasing radial distance was found in both PCDSM and CCDSM reconstructions due to the outer regions refracting light more severely. Images reconstructed with a PCDSM showed a decrease in spatial resolution in the azimuthal directions as radial distance increases, due to the widening of the polar pixels. However, this can be mitigated with only a slight increase in storage size by increasing the number of projections. A loss of spatial resolution in the radial direction within 5 mm radially from center was found when reconstructing with a PCDSM, due to the large innermost pixels. However, this was remedied by increasing the number of radial rings within the PCDSM, yielding radial spatial resolution on par with images reconstructed with a CCDSM and a storage size reduction of 99.26%. CONCLUSIONS: Discretizing the image pixel elements in polar coordinates achieved a system matrix storage size reduction of 99.26% with only minimal reduction in the image quality.


Assuntos
Radiometria , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Radiometria/métodos , Tomógrafos Computadorizados , Razão Sinal-Ruído , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA