RESUMO
One of the most fundamental questions in the field of Cys-loop receptors (pentameric ligand-gated ion channels, pLGICs) is how the affinity for neurotransmitters and the conductive/nonconductive state of the transmembrane pore are correlated despite the â¼60-Å distance between the corresponding domains. Proposed mechanisms differ, but they all converge into the idea that interactions between wild-type side chains across the extracellular-transmembrane-domain (ECD-TMD) interface are crucial for this phenomenon. Indeed, the successful design of fully functional chimeras that combine intact ECD and TMD modules from different wild-type pLGICs has commonly been ascribed to the residual conservation of sequence that exists at the level of the interfacial loops even between evolutionarily distant parent channels. Here, using mutagenesis, patch-clamp electrophysiology, and radiolabeled-ligand binding experiments, we studied the effect of eliminating this residual conservation of sequence on ion-channel function and cell-surface expression. From our results, we conclude that proper state interconversion ("gating") does not require conservation of sequence-or even physicochemical properties-across the ECD-TMD interface. Wild-type ECD and TMD side chains undoubtedly interact with their surroundings, but the interactions between them-straddling the interface-do not seem to be more important for gating than those occurring elsewhere in the protein. We propose that gating of pLGICs requires, instead, that the overall structure of the interfacial loops be conserved, and that their relative orientation and distance be the appropriate ones for changes in one side to result in changes in the other, in a phenomenon akin to the nonspecific "bumping" of closely apposed domains.
Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Ativação do Canal Iônico , Transdução de Sinais , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Galinhas , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Domínios ProteicosRESUMO
Emamectin benzoate (EB) is a highly effective and low-toxicity pesticide for the control of Bursaphelenchus xylophilus. However, its action mechanism in B. xylophilus has not yet been verified. Here, the genes (Bxy-glc-1, Bxy-glc-2, Bxy-glc-4, and Bxy-avr-14) encoding the glutamate-gated chloride channel (GluCl) of B. xylophilus were analysed and cloned. Functional validation of the target genes was conducted using RNAi and pathogenicity detection assays. The results of the bioinformatics analysis showed that the four GluCl genes contained the Cys-loop region and three transmembrane structural domains. Molecular docking and molecular dynamics simulation predictions revealed that BXY-GLC-2, BXY-GLC-4, and BXY-GLC-1 all had strong binding affinities to EB, and BXY-AVR-14 had no binding affinity to EB. The expression and in situ hybridisation of Bxy-glc-1, Bxy-glc-2, Bxy-glc-4, and Bxy-avr-14 was significantly higher in adult B. xylophilus than at other developmental stages. Interference of Bxy-glc-1, Bxy-glc-2, and Bxy-glc-4 significantly reduced adult mortality relative to the control group, and interference of Bxy-avr-14 did not have a significant on adult mortality. Adult mortality was lowest in the combined Bxy-glc-2 + Bxy-glc-4 treatment group, followed by the Bxy-glc-1 + Bxy-glc-2 and Bxy-glc-1 + Bxy-glc-4 groups. No significant changes were observed in the mortality rate of the Bxy-avr-14 group and the combination of the other three genes. The dsBxy-glc-1, dsBxy-glc-2, and dsBxy-glc-4 groups accelerated the progression of pine wilt disease induced by EB relative to the sole EB-treated group. Our results confirmed that Bxy-glc-1, Bxy-glc-2, and Bxy-glc-4 are target genes of GluCl in B. xylophilus.
Assuntos
Ivermectina , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Animais , Simulação de Acoplamento Molecular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Pinus/parasitologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Simulação de Dinâmica MolecularRESUMO
Emamectin benzoate (EB), a derivative of avermectin, is the primary insecticide used to control the fall armyworm (FAW) in China. However, the specific molecular targets of EB against FAW remain unclear. In this study, we cloned the glutamate-gated chloride channel (GluCl) gene, which is known to be a primary molecular target for avermectin. We first investigated the transcript levels of SfGluCl in FAW and found that the expression level of SfGluCl in the head and nerve cord was significantly higher than that in other tissues. Furthermore, we found that the expression level of SfGluCl was significantly higher in eggs than that in other developmental stages, including larvae, pupae, and adults. Additionally, we identified three variable splice forms of SfGluCl in exons 3 and 9 and found that their splice frequencies remained unaffected by treatment with the LC50 of EB. RNAi mediated knockdown of SfGluCl showed a significant reduction of 42% and 65% after 48 and 72 h of dsRNA feeding, respectively. Importantly, knockdown of SfGluCl sifgnificantly reduced LC50 and LC90 EB treatment induced mortality of FAW larvae by 15% and 44%, respectively, compared to the control group feeding by dsEGFP. In contrast, there were no significant changes in the mortality of FAW larvae treated with the control insecticides chlorantraniliprole and spinetoram. Finally, molecular docking simulations revealed that EB bound to the large amino-terminal extracellular domain of SfGluCl by forming five hydrogen bonds, two alkyl hydrophobic interactions and one salt bridge. These findings strongly suggest that GluCl may serve as one of the molecular targets of EB in FAW, shedding light on the mode of action of this important insecticide.
Assuntos
Inseticidas , Animais , Inseticidas/farmacologia , Spodoptera/genética , Simulação de Acoplamento Molecular , Resistência a Inseticidas/genética , Larva/genéticaRESUMO
The conventional paradigm for developing new treatments for disease mainly involves either the discovery of new drug targets, or finding new, improved drugs for old targets. However, an ion channel found only in invertebrates offers the potential of a completely new paradigm in which an established drug target can be re-engineered to serve as a new candidate therapeutic agent. The L-glutamate-gated chloride channels (GluCls) of invertebrates are absent from vertebrate genomes, offering the opportunity to introduce this exogenous, inhibitory, L-glutamate receptor into vertebrate neuronal circuits either as a tool with which to study neural networks, or a candidate therapy. Epileptic seizures can involve L-glutamate-induced hyper-excitation and toxicity. Variant GluCls, with their inhibitory responses to L-glutamate, when engineered into human neurons, might counter the excitotoxic effects of excess L-glutamate. In reviewing recent studies on model organisms, it appears that this approach might offer a new paradigm for the development of candidate therapeutics for epilepsy.
Assuntos
Descoberta de Drogas , Preparações Farmacêuticas , Ácido Glutâmico , Humanos , NeurôniosRESUMO
Glutamate-gated chloride channels (GluCls) mediate inhibitory synaptic transmission in invertebrate nervous systems, and only one GluCl gene has been found in insects. Therefore, insect GluCls are one of the major targets of insecticides including avermectins. In the present study, a 1347â¯bp full-length cDNA encoding a 449-amino acid protein (named MsGluCl, GenBank ID: MK336885) was cloned from the oriental armyworm, Mythimna separata, and characterized two alternative splicing variants of MsGluCl. The protein shares 76.9-98.6% identity with other insect GluCl isoforms. Spatial and temporal expression analysis revealed that MsGluCl was highly expressed in the 3rd instar and adult head. Dietary ingestion of dsMsGluCl significantly reduced the mRNA level of MsGluCl and decreased abamectin mortality. Thus, our results reveal that MsGluCl could be the molecular target of abamectin and provide the basis for further understanding the resistance mechanism to abamectin in arthropods.
Assuntos
Processamento Alternativo/genética , Canais de Cloreto/metabolismo , Clonagem Molecular/métodos , Mariposas/genética , Animais , Canais de Cloreto/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Mariposas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The Bemisia tabaci (Gennadius) cryptic species complex comprises very destructive insect pests of agricultural crops worldwide and has been found to be resistant to various insecticides in China. Abamectin is one of the most widely used insecticides for insect pest control and the glutamate-gated chloride channel (GluCl) in insects was presumed to be the main target site of abamectin. In this study, a 1353bp full-length cDNA encoding GluCl (named BtGluCl, GenBank ID: MF673854) was cloned and characterized from B. tabaci. BtGluCl encodes 450 amino acids, which shares 71-81% identity with other insect GluCl isoforms. Spatial and temporal expression revealed BtGluCl was highly expressed in the 4th nymphal instar and adult head, and the least expressed in the 1st nymphal instar and adult leg. Dietary ingestion of dsBtGluCl significantly reduced the mRNA level of BtGluCl in the treated adults by 62.9% and greatly decreased abamectin-induced mortality. Thus, our results could be conducive to further understanding the mechanisms of resistance to abamectin in arthropods.
Assuntos
Canais de Cloreto/genética , Hemípteros/efeitos dos fármacos , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Interferência de RNA , Processamento Alternativo , Sequência de Aminoácidos , Aminoácidos/análise , Animais , Canais de Cloreto/química , Clonagem Molecular , DNA Complementar/genética , Dieta , Resistência a Medicamentos , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hemípteros/genética , Ivermectina/farmacologia , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de AminoácidosRESUMO
Fluxametamide is a novel wide-spectrum insecticide that was discovered and synthesized by Nissan Chemical Industries, Ltd. To identify the mode of action of fluxametamide, we first performed [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) binding assays. Fluxametamide potently inhibited the specific binding of [3H]EBOB to housefly-head membranes, suggesting that fluxametamide affects insect γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Next, the antagonism of housefly GABACls and glutamate-gated chloride channels (GluCls) was examined using the two-electrode voltage clamp (TEVC) method. Fluxametamide inhibited agonist responses in both ion channels expressed in Xenopus oocytes in the nanomolar range, indicating that this insecticide is a ligand-gated chloride channel (LGCC) antagonist. The insecticidal and LGCC antagonist potencies of fluxametamide against fipronil-susceptible and fipronil-resistant strains of small brown planthoppers and two-spotted spider mites, which are insensitive to fipronil, were evaluated. Fluxametamide exhibited similar levels of both activities in these fipronil-susceptible and fipronil-resistant arthropod pests. These data indicate that fluxametamide exerts distinctive antagonism of arthropod GABACls by binding to a site different from those for existing antagonists. In contrast to its profound actions on the arthropod LGCCs, the antagonistic activity of fluxametamide against rat GABACls and human glycine-gated chloride channels was nearly insignificant, suggesting that fluxametamide has high target-site selectivity for arthropods over mammals. Overall, fluxametamide is a new type of LGCC antagonist insecticide with excellent safety for mammals at the target-site level.
Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/metabolismo , Inseticidas/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Animais , InsetosRESUMO
Okaramines produced by Penicillium simplicissimum AK-40 activate l-glutamate-gated chloride channels (GluCls) and thus paralyze insects. However, the okaramine binding site on insect GluCls is poorly understood. Sequence alignment shows that the equivalent of residue Leucine319 of the okaramine B sensitive Bombyx mori (B. mori) GluCl is a phenylalanine in the okaramine B insensitive B. mori γ-aminobutyric acid-gated chloride channel of the same species. This residue is located in the third transmembrane (TM3) region, a location which in a nematode GluCl is close to the ivermectin binding site. The B. mori GluCl containing the L319F mutation retained its sensitivity to l-glutamate, but responses to ivermectin were reduced and those to okaramine B were completely blocked.
Assuntos
Azetidinas/farmacologia , Azocinas/farmacologia , Bombyx/efeitos dos fármacos , Bombyx/genética , Membrana Celular/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Alcaloides Indólicos/farmacologia , Mutação , Sequência de Aminoácidos , Animais , Bombyx/metabolismo , Canais de Cloreto/genética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Glutâmico/farmacologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ivermectina/farmacologia , Modelos Moleculares , Conformação Proteica , Alinhamento de SequênciaRESUMO
The diamondback moth, Plutella xylostella, is a global pest of cruciferous vegetables. Abamectin resistance in a field population of P. xylostella was introgressed into the susceptible Roth strain. The resulting introgression strain Roth-Abm showed 11 000-fold resistance to abamectin compared with Roth. An A309V substitution at the N-terminus of the third transmembrane helix (M3) of the glutamate-gated chloride channel of P. xylostella (PxGluCl) was identified in Roth-Abm. The frequency of the V309 allele of PxGluCl was 94.7% in Roth-Abm, whereas no such allele was detected in Roth. A subpopulation of Roth-Abm was kept without abamectin selection for 20 generations to produce a revertant strain, Roth-Abm-D. Abamectin resistance in Roth-Abm-D declined to 1150-fold compared with Roth, with the V309 allele frequency decreased to 9.6%. After treatment of the Roth-Abm-D strain with 80 mg/l abamectin the V309 allele frequency in the survivors increased to 55%. This demonstrates that the A309V mutation in PxGluCl is strongly associated with a 10-fold increase in abamectin resistance in Roth-Abm relative to Roth-Abm-D. Homology modelling and automated ligand docking results suggest that the A309V substitution allosterically modifies the abamectin-binding site, as opposed to directly eliminating a key binding contact. Other resistance mechanisms to abamectin in Roth-Abm are discussed besides the A309V mutation of PxGluCl.
Assuntos
Canais de Cloreto/genética , Resistência a Inseticidas/genética , Mariposas/genética , Animais , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Mariposas/efeitos dos fármacos , Mutação PuntualRESUMO
The use of insecticide-treated nets and indoor residual insecticides targeting adult mosquito vectors is a key element in malaria control programs. However, mosquito resistance to the insecticides used in these applications threatens malaria control efforts. Recently, the mass drug administration of ivermectin (IVM) has been shown to kill Anopheles gambiae mosquitoes and disrupt Plasmodium falciparum transmission in the field. We cloned the molecular target of IVM from A. gambiae, the glutamate-gated chloride channel (AgGluCl), and characterized its transcriptional patterns, protein expression and functional responses to glutamate and IVM. AgGluCl cloning revealed an unpredicted fourth splice isoform as well as a novel exon and splice site. The predicted gene products contained heterogeneity in the N-terminal extracellular domain and the intracellular loop region. Responses to glutamate and IVM were measured using two-electrode voltage clamp on Xenopus laevis oocytes expressing AgGluCl. IVM induced non-persistent currents in AgGluCl-a1 and did not potentiate glutamate responses. In contrast, AgGluCl-b was insensitive to IVM, suggesting that the AgGluCl gene could produce IVM-sensitive and -insensitive homomultimers from alternative splicing. AgGluCl isoform-specific transcripts were measured across tissues, ages, blood feeding status and sex, and were found to be differentially transcribed across these physiological variables. Lastly, we stained adult, female A. gambiae for GluCl expression. The channel was expressed in the antenna, Johnston's organ, supraesophageal ganglion and thoracic ganglia. In summary, we have characterized the first GluCl from a mosquito, A. gambiae, and described its unique activity and expression with respect to it as the target of the insecticide IVM.
Assuntos
Anopheles/efeitos dos fármacos , Canais de Cloreto/metabolismo , Inseticidas/farmacologia , Ivermectina/farmacologia , Fatores Etários , Processamento Alternativo , Animais , Anopheles/metabolismo , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Feminino , Ácido Glutâmico/farmacologia , Insetos Vetores , Masculino , Oócitos/fisiologia , Xenopus laevisRESUMO
Glutamate-gated chloride channels (GluCls) are inhibitory neurotransmitter receptors that are present only in invertebrates such as nematodes and insects. These channels are important targets of insecticidal, acaricidal, and anthelmintic macrolides such as avermectins, ivermectin (IVM), and milbemycins. To identify the amino acid residues that interact with IVM in GluCls, three IVM B1a derivatives with different photoreactive substitutions at C-13 were synthesized in the present study. These derivatives displayed low- or subnanomolar affinity for parasitic nematode (Haemonchus contortus) and silkworm (Bombyx mori) GluCls expressed in COS-1 cells. The derivatives also activated homomeric H. contortus GluCls expressed in Xenopus oocytes. The results indicate that synthesized photoreactive IVM B1a derivatives have superior affinity and functionality for chemically labeling the macrolide-binding site in GluCls. .
Assuntos
Canais de Cloreto/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Insetos/metabolismo , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Animais , Bombyx , Células COS , Canais de Cloreto/genética , Chlorocebus aethiops , Feminino , Haemonchus , Proteínas de Helminto/genética , Proteínas de Insetos/genética , Ivermectina/síntese química , Oócitos/metabolismo , Xenopus laevisRESUMO
The frequent and extensive use of insecticides leads to the evolution of insecticide resistance, which has become one of the constraints on global agricultural production. Avermectins are microbial-derived insecticides that target a wide number of insect pests, including the diamondback moth Plutella xylostella, an important global pest of brassicaceous vegetables. However, field populations of P. xylostella have evolved serious resistance to avermectins, including abamectin, thereby threatening the efficiency of these insecticides. In this study, a novel valine to isoleucine mutation (V263I) was identified in the glutamate-gated chloride channel (GluCl) of field P. xylostella populations, which showed different levels of resistance to abamectin. Electrophysiological analysis revealed that the V263I mutation significantly reduced the sensitivity of PxGluCl to abamectin by 6.9-fold. Genome-modified Drosophila melanogaster carrying the V263I mutation exhibited 27.1-fold resistance to abamectin. Then, a knockin strain (V263I-KI) of P. xylostella expressing the homozygous V263I mutation was successfully constructed using the CRISPR/Cas9. The V263I-KI had high resistance to abamectin (106.3-fold), but significantly reduced fecundity. In this study, the function of V263I mutation in PxGluCl was verified for the first time. These findings provide a more comprehensive understanding of abamectin resistance mechanisms and lay the foundation for providing a new molecular detection method for abamectin resistance monitoring.
Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Drosophila melanogaster , Mariposas/genética , Mutação , Resistência a Inseticidas/genéticaRESUMO
In our previous study, a series of novel pyrazoloquinazolines were synthesized. Pyrazoloquinazoline 5a showed high insecticidal activity against the diamondback moth (Plutella xylostella) and no cross-resistance to fipronil. Patch clamp electrophysiology performed on P. xylostella pupae brains and two-electrode voltage clamp electrophysiology performed on Xenopus Laevis oocytes indicated that 5a might act on the ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) and glutamate-gated chloride channel (GluCl). Moreover, 5a's potency on PxGluCl was about 15-fold higher than on fipronil, which may explain why there was no cross-resistance between 5a and fipronil. Downregulation of the PxGluCl transcription level significantly enhanced the insecticidal activity of 5a on P. xylostella. These findings shed light on the mode of action of 5a and provide important insights into the development of new insecticides for agricultural applications.
Assuntos
Inseticidas , Canais Iônicos de Abertura Ativada por Ligante , Mariposas , Animais , Mariposas/genética , Cloretos , Ligantes , Inseticidas/farmacologia , Canais de Cloreto/genética , Receptores de GABA , Resistência a InseticidasRESUMO
Pesticide resistance relies on a myriad of mechanisms, ranging from single mutations to a complex and polygenic architecture, and it involves mechanisms such as target-site insensitivity, metabolic detoxification, or a combination of these, with either additive or synergistic effects. Several resistance mechanisms against abamectin, a macrocyclic lactone widely used in crop protection, have been reported in the cosmopolitan pest Tetranychus urticae. However, it has been shown that a single mechanism cannot account for the high levels of abamectin resistance found across different mite populations. Here, we used experimental evolution combined with bulked segregant analyses to map quantitative trait loci (QTL) associated with abamectin resistance in two genetically unrelated populations of T. urticae. In these two independent QTL mapping experiments, three and four QTLs were identified, of which three were shared between experiments. Shared QTLs contained genes encoding subunits of the glutamate-gated chloride channel (GluCl) and harboured previously reported mutations, including G314D in GluCl1 and G326E in GluCl3, but also novel resistance candidate loci, including DNA helicases and chemosensory receptors. Surprisingly, the fourth QTL, present only in only one of the experiments and thus unique for one resistant parental line, revealed a non-functional variant of GluCl2, suggesting gene knock-out as resistance mechanism. Our study uncovers the complex basis of abamectin resistance, and it highlights the intraspecific diversity of genetic mechanisms underlying resistance in a cosmopolitan pest.
RESUMO
Glutamate-gated chloride channels belong to the Cys-loop receptor superfamily. Glutamate-gated chloride channels are activated by glutamate and form substrates for the antiparasitic drugs from the avermectin family. Glutamate-gated chloride channels are pentameric, and each subunit contains an N-terminal extracellular domain that binds glutamate and 4 helical transmembrane domains, which contain binding sites for avermectin drugs. In order to provide more insight into phylum-wide patterns of glutamate-gated chloride subunit gene expansion and sequence diversity across nematodes, we have developed a database of predicted glutamate-gated chloride subunit genes from 125 nematode species. Our analysis into this dataset described assorted patterns of species-specific glutamate-gated chloride gene counts across different nematodes as well as sequence diversity in key residues thought to be involved in avermectin binding.
Assuntos
Cloretos , Ácido Glutâmico , Animais , Caenorhabditis elegans/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Ácido Glutâmico/metabolismoRESUMO
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Assuntos
Anti-Helmínticos , Nematoides , Receptores Nicotínicos , Acetilcolina/metabolismo , Animais , Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacologia , Nematoides/fisiologia , Receptores de GABA , Receptores Nicotínicos/metabolismoRESUMO
BACKGROUND: Western flower thrips Frankliniella occidentalis is a serious polyphagous pest worldwide. In this study, we investigated the potential mechanisms of resistance including enhanced metabolism and target site insensitivity in an emamectin benzoate (EB)-resistant (EB-R) strain. RESULTS: The EB-R strain of F. occidentalis showed 356-fold increased resistance compared to a susceptible RDA strain. Analysis of cross-resistance to four other insecticides confirmed that EB resistance is highly specific to the contact toxicity of EB. Synergistic bioassay and quantitative PCR of cytochrome P450 monooxygenase (CYP) genes revealed that three overexpressed Cyps were likely involved in resistance. Among three putative glutamate-gated chloride channel (GluCl) genes identified, FoGluClc showed four radical amino acid substitutions and 3.8-fold and 31-fold transcription level in the head and integument in the EB-R strain when compared to the RDA strain. Backcrossing analysis and RNA interference confirmed that both amino acid substitution and overexpression of FoGluClc are responsible for EB resistance. In situ hybridization revealed that FoGluClc is mainly distributed in the integument in the EB-R strain. Cross-comparison of known genomes and transcriptomes of thrips species revealed that FoGluClc is unique to the Frankliniella genus. CONCLUSION: While mutations and overexpression of FoGluClc play major roles in EB resistance, the overexpressed Cyps are partially involved as metabolic factors. Higher expression of FoGluClc in the integument may suggest its role in the first-line defense against EB in the EB-R strain. Unique distribution of FoGluClc in the Frankliniella genus but not in other thrips species further suggests that FoGluClc may be a surplus channel not having an essential endogenous function and is thus recruited as a defense barrier against xenobiotics. © 2022 Society of Chemical Industry.
Assuntos
Inseticidas , Tisanópteros , Animais , Canais de Cloreto , Sistema Enzimático do Citocromo P-450 , Flores , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Tisanópteros/genéticaRESUMO
The insects have different physiological and morphological characteristics in various developmental stages. The difference in the characteristics may be related to the different sensitivity of insects to insecticides. In avermectin resistant strain screening assay, we found that the Drosophila larvae displayed a higher sensitivity to the insecticidal effect of avermectin, compared with adults. In this study, we found that the Drosophila larvae have relatively thicker chitin layer, faster avermectin metabolism and lower P-glycoprotein (P-gp) level, when compared with the adults. Besides, the expression levels of the molecular targets of avermectin, glutamate-gated chloride channel and γ-aminobutyric acid (GABA)-gated chloride channel, are lower in the larval stage than the adult. These results suggested that lower P-gp level in the body especially in brain may be the major reason for the higher sensitivity of Drosophila larvae to the insecticide. In summary, these results shed new light on the concept that different developmental stages of insects display different sensitivity to the same insecticide, which also provided a physiological explanation of the relevant mechanism of the difference of sensitivity of insect at its larval and adult stages to insecticide.
Assuntos
Drosophila melanogaster/metabolismo , Resistência a Inseticidas , Inseticidas/toxicidade , Ivermectina/análogos & derivados , Larva/metabolismo , Animais , Ivermectina/toxicidadeRESUMO
Glutamate-gated chloride channels (GluCls) are found only in invertebrates and mediate fast inhibitory neurotransmission. The structural and functional diversity of GluCls are produced through assembly of multiple subunits and via posttranscriptional alternations. Alternative splicing is the most common way to achieve this in insect GluCls and splicing occurs primarily at exons 3 and 9. As expression pattern and pharmacological properties of exon 9 alternative splices in invertebrate GluCls remain poorly understood, the cDNAs encoding three alternative splice variants (9a, 9b and 9c) of the PxGluCl gene from the diamondback moth Plutella xylostella were constructed and their pharmacological characterizations were examined using electrophysiological studies. Alternative splicing of exon 9 had little to no impact on PxGluCl sensitivity towards the agonist glutamate when subunits were singly or co-expressed in Xenopus oocytes. In contrast, the allosteric modulator abamectin and the chloride channel blocker fipronil had differing effects on PxGluCl splice variants. PxGluCl9c channels were more resistant to abamectin and PxGluCl9b channels were more sensitive to fipronil than other homomeric channels. In addition, heteromeric channels containing different splice variants showed similar sensitivity to abamectin (except for 9c) and reduced sensitivity to fipronil than homomeric channels. These findings suggest that functionally indistinguishable but pharmacologically distinct GluCls could be formed in P. xylostella and that the upregulated constitutive expression of the specific variants may contribute to the evolution of insecticide resistance in P. xylostella and other arthropods.
Assuntos
Processamento Alternativo/efeitos dos fármacos , Canais de Cloreto , Éxons , Proteínas de Insetos , Resistência a Inseticidas , Ivermectina/análogos & derivados , Pirazóis/farmacologia , Animais , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/genética , Ivermectina/farmacologia , Mariposas/genética , Mariposas/metabolismoRESUMO
A novel L-glutamate-gated anion channel (IscaGluCl1) has been cloned from the black-legged tick, Ixodes scapularis, which transmits multiple pathogens including the agents of Lyme disease and human granulocytic anaplasmosis. When mRNA encoding IscaGluCl1 was expressed in Xenopus laevis oocytes, we detected robust 50-400â¯nA currents in response to 100⯵M L-glutamate. Responses to L-glutamate were concentration-dependent (pEC50 3.64⯱â¯0.11). Ibotenate was a partial agonist on IscaGluCl1. We detected no response to 100⯵M aspartate, quisqualate, kainate, AMPA or NMDA. Ivermectin at 1⯵M activated IscaGluCl1, whereas picrotoxinin (pIC50 6.20⯱â¯0.04) and the phenylpyrazole fipronil (pIC50 6.90⯱â¯0.04) showed concentration-dependent block of the L-glutamate response. The indole alkaloid okaramine B, isolated from fermentation products of Penicillium simplicissimum (strain AK40) grown on okara pulp, activated IscaGluCl1 in a concentration-dependent manner (pEC50 5.43⯱â¯0.43) and may serve as a candidate lead compound for the development of new acaricides.