Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Annu Rev Biochem ; 85: 715-42, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27050154

RESUMO

Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.


Assuntos
Chaperonina 60/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico Pequenas/química , Proteínas Mitocondriais/química , Desdobramento de Proteína , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Agregados Proteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Rhodospirillum rubrum/química , Rhodospirillum rubrum/metabolismo
2.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35237814

RESUMO

Osp94 (also known as HSPA4L or HSPH3), a member of the Hsp110/Sse1 family of heat-shock proteins, has a longer C-terminus than found in Hsc70/Hsp70 family proteins, composed of the loop region with a partial substrate-binding domain (SBD) ß (L), and the SBDα and the C-terminal extension (H), but the functions of these domains are poorly understood. Here, we found that Osp94 suppressed heat-induced aggregation of luciferase (Luc). Osp94-bound heat-inactivated Luc was reactivated in the presence of rabbit reticulocyte lysate (RRL) and/or a combination of Hsc70 and Hsp40 (also known as HSPA8 and DNAJB1, respectively). Targeted deletion mutagenesis revealed that the SBDß and H domains of Osp94 are critical for protein disaggregation and RRL-mediated refolding. Reactivation of Hsp90-bound heat-inactivated Luc was abolished in the absence of RRL but compensated for by PA28α (also known as PSME1), a proteasome activator. Interestingly, the LH domain also reactivated heat-inactivated Luc, independently of PA28α. Biotin-tag cross-linking experiments indicated that the LH domain and PA28α interact with Luc bound by Hsp90 during refolding. A chimeric protein in which the H domain was exchanged for PA28α also mediated disaggregation and reactivation of heat-inactivated Luc. These results indicate that Osp94 acts as a holdase, and that the C-terminal region plays a PA28α-like role in the refolding of unfolded proteins.


Assuntos
Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Animais , Família , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Redobramento de Proteína , Coelhos
3.
Biopolymers ; 114(2): e23532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825649

RESUMO

Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown. As sessile plants experience stressful conditions more severe than those experienced by animals, we asked whether a plant HSP110 could also play a role in collaborating with HSP70/HSP40 in a system that increases the efficiency of disaggregation. Thus, the gene for a putative HSP110 from the cereal Sorghum bicolor was cloned and the protein, named SbHSP110, purified. For comparison purposes, human HsHSP110 (HSPH1/HSP105) was also purified and investigated in parallel. First, a combination of spectroscopic and hydrodynamic techniques was used for the characterization of the conformation and stability of recombinant SbHSP110, which was produced folded. Second, small-angle X-ray scattering and combined predictors of protein structure indicated that SbHSP110 and HsHSP110 have similar conformations. Then, the chaperone activities, which included protection against aggregation, refolding, and reactivation, were investigated, showing that SbHSP110 and HsHSP110 have similar functional activities. Altogether, the results add to the structure/function relationship study of HSP110s and support the hypothesis that plants have multiple strategies to act upon the reactivation of protein aggregates.


Assuntos
Proteínas de Saccharomyces cerevisiae , Sorghum , Animais , Humanos , Sorghum/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
4.
Cell Mol Life Sci ; 79(6): 332, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648235

RESUMO

Heat shock proteins (HSPs) play oncogenic roles in human tumours. We reported a somatic inactivating mutation of HSP110 (HSP110DE9) in mismatch repair-deficient (dMMR) cancers displaying microsatellite instability (MSI) but did not assess its impact. We evaluated the impact of the Hsp110DE9 mutation on tumour development and the chemotherapy response in a dMMR knock-in mouse model (Hsp110DE9KIMsh2KO mice). The effect of the Hsp110DE9 mutation on tumorigenesis and survival was evaluated in Msh2KO mice that were null (Hsp110wt), heterozygous (Hsp110DE9KI/+), or homozygous (Hsp110DE9KI/KI) for the Hsp110DE9 mutation by assessing tumoral syndrome (organomegaly index, tumour staging) and survival (Kaplan-Meier curves). 5-Fluorouracil (5-FU), which is the backbone of chemotherapy regimens in gastrointestinal cancers and is commonly used in other tumour types but is not effective against dMMR cells in vivo, was administered to Hsp110DE9KI/KI, Hsp110DE9KI/+, and Hsp110wtMsh2KO mice. Hsp110, Ki67 (proliferation marker) and activated caspase-3 (apoptosis marker) expression were assessed in normal and tumour tissue samples by western blotting, immunophenotyping and cell sorting. Hsp110wt expression was drastically reduced or totally lost in tumours from Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice. The Hsp110DE9 mutation did not affect overall survival or tumoral syndrome in Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice but drastically improved the 5-FU response in all cohorts (Msh2KOHsp110DE9KI/KI: P5fu = 0.001; Msh2KOHsp110DE9KI/+: P5fu = 0.005; Msh2KOHsp110wt: P5fu = 0.335). Histopathological examination and cell sorting analyses confirmed major hypersensitization to 5-FU-induced death of both Hsp110DE9KI/KI and Hsp110DE9KI/+ dMMR cancer cells. This study highlights how dMMR tumour cells adapt to HSP110 inactivation but become hypersensitive to 5-FU, suggesting Hsp110DE9 as a predictive factor of 5-FU efficacy.


Assuntos
Fluoruracila , Proteínas de Choque Térmico HSP110 , Neoplasias , Animais , Carcinogênese/genética , Fluoruracila/uso terapêutico , Proteínas de Choque Térmico HSP110/genética , Camundongos , Instabilidade de Microssatélites , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37648554

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) poses a significant challenge to liver transplantation (LT). The underlying mechanism primarily involves overactivation of the immune system. Heat shock protein 110 (HSP110) functions as a molecular chaperone that helps stabilize protein structures. METHODS: An IRI model was established by performing LT on Sprague-Dawley rats, and HSP110 was silenced using siRNA. Hematoxylin-eosin staining, TUNEL, immunohistochemistry, ELISA and liver enzyme analysis were performed to assess IRI following LT. Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes. RESULTS: Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT (P < 0.05). However, when rats were injected with siRNA-HSP110, IRI subsequent to LT was notably reduced (P < 0.05). Additionally, the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced (P < 0.05). Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver (P < 0.05). CONCLUSIONS: HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells. Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.

6.
Trends Biochem Sci ; 43(4): 285-300, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29501325

RESUMO

Protein aggregates are formed in cells with profoundly perturbed proteostasis, where the generation of misfolded proteins exceeds the cellular refolding and degradative capacity. They are a hallmark of protein conformational disorders and aged and/or environmentally stressed cells. Protein aggregation is a reversible process in vivo, which counteracts proteotoxicities derived from aggregate persistence, but the chaperone machineries involved in protein disaggregation in Metazoa were uncovered only recently. Here we highlight recent advances in the mechanistic understanding of the major protein disaggregation machinery mediated by the Hsp70 chaperone system and discuss emerging alternative disaggregation activities in multicellular organisms.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Animais , Humanos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Conformação Proteica
7.
J Biol Chem ; 296: 100567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753171

RESUMO

Molecular chaperones maintain proteostasis by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to numerous neurodegenerative disorders including Alzheimer's, Parkinson's, and Huntington's disease. Hsp110 is related to the canonical Hsp70 class of protein-folding molecular chaperones and interacts with Hsp70 as a nucleotide exchange factor (NEF). In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate-binding domain (SBD) whose biological roles remain undefined. Previous work in Drosophila melanogaster has implicated the sole Hsp110 gene (Hsc70cb) in proteinopathic neurodegeneration. We hypothesize that in addition to its role as an Hsp70 NEF, Drosophila Hsp110 may function as a protective protein "holdase," preventing the aggregation of unfolded polypeptides via the SBD-ß subdomain. We demonstrate for the first time that Drosophila Hsp110 effectively prevents aggregation of the model substrate citrate synthase. We also report the discovery of a redundant and heretofore unknown potent holdase capacity in a 138-amino-acid region of Hsp110 carboxyl terminal to both SBD-ß and SBD-α (henceforth called the C-terminal extension). This sequence is highly conserved in metazoan Hsp110 genes, completely absent from fungal representatives, and is computationally predicted to contain an intrinsically disordered region (IDR). We demonstrate that this IDR sequence within the human Hsp110s, Apg-1 and Hsp105α, inhibits the formation of amyloid Aß-42 and α-synuclein fibrils in vitro but cannot mediate fibril disassembly. Together these findings establish capacity for metazoan Hsp110 chaperones to suppress both general protein aggregation and amyloidogenesis, raising the possibility of exploitation of this IDR for therapeutic benefit.


Assuntos
Amiloide/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Agregados Proteicos , Animais
8.
J Biol Chem ; 297(3): 101082, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403698

RESUMO

Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the "holdase" activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain-domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDß interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDß contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the "holdase" activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Nucleotídeos/metabolismo , Ligação Proteica/genética , Domínios Proteicos/genética , Dobramento de Proteína
9.
J Biol Chem ; 295(21): 7301-7316, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284329

RESUMO

Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Homeodomínio/química , Agregação Patológica de Proteínas , Superóxido Dismutase-1/química , Proteínas Supressoras de Tumor/química , Substituição de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação de Sentido Incorreto , Superóxido Dismutase-1/genética , Proteínas Supressoras de Tumor/genética
10.
Int J Cancer ; 148(12): 3019-3031, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33506516

RESUMO

The presence of an inactivating heat shock protein 110 (HSP110) mutation in colorectal cancers has been correlated with an excellent prognosis and with the ability of HSP110 to favor the formation of tolerogenic (M2-like) macrophages. These clinical and experimental results suggest a potentially powerful new strategy against colorectal cancer: the inhibition of HSP110. In this work, as an alternative to neutralizing antibodies, Nanofitins (scaffold ~7 kDa proteins) targeting HSP110 were isolated from the screening of a synthetic Nanofitin library, and their capacity to bind (immunoprecipitation, biolayer interferometry) and to inhibit HSP110 was analyzed in vitro and in vivo. Three Nanofitins were found to inhibit HSP110 chaperone activity. Interestingly, they share a high degree of homology in their variable domain and target the peptide-binding domain of HSP110. In vitro, they inhibited the ability of HSP110 to favor M2-like macrophages. The Nanofitin with the highest affinity, A-C2, was studied in the CT26 colorectal cancer mice model. Our PET/scan experiments demonstrate that A-C2 may be localized within the tumor area, in accordance with the reported HSP110 abundance in the tumor microenvironment. A-C2 treatment reduced tumor growth and was associated with an increase in immune cells infiltrating the tumor and particularly cytotoxic macrophages. These results were confirmed in a chicken chorioallantoic membrane tumor model. Finally, we showed the complementarity between A-C2 and an anti-PD-L1 strategy in the in vivo and in ovo tumor models. Overall, Nanofitins appear to be promising new immunotherapeutic lead compounds.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Proteínas de Choque Térmico HSP110/antagonistas & inibidores , Macrófagos/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Biblioteca de Peptídeos , Tomografia por Emissão de Pósitrons , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Adv Exp Med Biol ; 1340: 11-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569020

RESUMO

Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.


Assuntos
Proteínas de Choque Térmico , Chaperonas Moleculares , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Dobramento de Proteína
12.
Proc Natl Acad Sci U S A ; 113(19): 5424-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114530

RESUMO

Recent studies have indicated that mammalian cells contain a cytosolic protein disaggregation machinery comprised of Hsc70, DnaJ homologs, and Hsp110 proteins, the last of which acts to accelerate a rate-limiting step of nucleotide exchange of Hsc70. We tested the ability of transgenic overexpression of a Thy1 promoter-driven human Hsp110 protein, HspA4L (Apg1), in neuronal cells of a transgenic G85R SOD1YFP ALS mouse strain to improve survival. Notably, G85R is a mutant version of Cu/Zn superoxide dismutase 1 (SOD1) that is unable to reach native form and that is prone to aggregation, with prominent YFP-fluorescent aggregates observed in the motor neurons of the transgenic mice as early as 1 mo of age. The several-fold overexpression of Hsp110 in motor neurons of these mice was associated with an increased median survival from ∼5.5 to 7.5 mo and increased maximum survival from 6.5 to 12 mo. Improvement of survival was also observed for a G93A mutant SOD1 ALS strain. We conclude that neurodegeneration associated with cytosolic misfolding and aggregation can be ameliorated by overexpression of Hsp110, likely enhancing the function of a cytosolic disaggregation machinery.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase-1/metabolismo , Taxa de Sobrevida , Esclerose Lateral Amiotrófica/genética , Animais , Feminino , Proteínas de Choque Térmico HSP110/genética , Masculino , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neurônios Motores/patologia , Dobramento de Proteína , Superóxido Dismutase-1/genética
13.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450862

RESUMO

Proteins must fold into their native structure and maintain it during their lifespan to display the desired activity. To ensure proper folding and stability, and avoid generation of misfolded conformations that can be potentially cytotoxic, cells synthesize a wide variety of molecular chaperones that assist folding of other proteins and avoid their aggregation, which unfortunately is unavoidable under acute stress conditions. A protein machinery in metazoa, composed of representatives of the Hsp70, Hsp40, and Hsp110 chaperone families, can reactivate protein aggregates. We revised herein the phosphorylation sites found so far in members of these chaperone families and the functional consequences associated with some of them. We also discuss how phosphorylation might regulate the chaperone activity and the interaction of human Hsp70 with its accessory and client proteins. Finally, we present the information that would be necessary to decrypt the effect that post-translational modifications, and especially phosphorylation, could have on the biological activity of the Hsp70 system, known as the "chaperone code".


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Proteínas de Choque Térmico HSP70/química , Humanos , Chaperonas Moleculares/química , Fosforilação , Agregados Proteicos , Ligação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 20(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083504

RESUMO

Hsp70s use ATP to generate forces that disassemble protein complexes and aggregates, and that translocate proteins into organelles. Entropic pulling has been proposed as a novel mechanism, distinct from the more familiar power-stroke and Brownian ratchet models, for how Hsp70s generate these forces. Experimental evidence supports entropic pulling, but this model may not be well understood among scientists studying these systems. In this review we address persistent misconceptions regarding the dynamics of proteins in solution that contribute to this lack of understanding, and we clarify the basic physics of entropic pulling with some simple analogies. We hope that increased understanding of the entropic pulling mechanism will inform future efforts to characterize how Hsp70s function as motors, and how they coordinate with their regulatory cochaperones in mechanochemical cycles that transduce the energy of ATP hydrolysis into physical changes in their protein substrates.


Assuntos
Entropia , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Biológicos , Proteínas Motores Moleculares/metabolismo , Trifosfato de Adenosina/metabolismo
15.
Hum Mutat ; 39(3): 441-453, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29227006

RESUMO

Every colorectal cancer (CRC) patient should be tested for microsatellite instability (MSI) to screen for Lynch syndrome. Evaluation of MSI status involves screening tumor DNA for the presence of somatic deletions in DNA repeats using PCR followed by fragment analysis. While this method may lack sensitivity due to the presence of a high level of germline DNA, which frequently contaminates the core of primary colon tumors, no other method developed to date is capable of modifying the standard PCR protocol to achieve improvement of MSI detection. Here, we describe a new approach developed for the ultra-sensitive detection of MSI in CRC based on E-ice-COLD-PCR, using HSP110 T17, a mononucleotide DNA repeat previously proposed as an optimal marker to detect MSI in tumor DNA, and an oligo(dT)16 LNA blocker probe complementary to wild-type genotypes. The HT17 E-ice-COLD-PCR assay improved MSI detection by 20-200-fold compared with standard PCR using HT17 alone. It presents an analytical sensitivity of 0.1%-0.05% of mutant alleles in wild-type background, thus greatly improving MSI detection in CRC samples highly contaminated with normal DNA. HT17 E-ice-COLD-PCR is a rapid, cost-effective, easy-to-implement, and highly sensitive method, which could significantly improve the detection of MSI in routine clinical testing.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Choque Térmico HSP110/genética , Instabilidade de Microssatélites , Reação em Cadeia da Polimerase/métodos , Linhagem Celular Tumoral , Temperatura Baixa , Células Germinativas/metabolismo , Humanos , Mutação/genética , Padrões de Referência
16.
Biol Chem ; 399(10): 1215-1221, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29908125

RESUMO

Cellular protein homeostasis (proteostasis) is maintained by a broad network of proteins involved in synthesis, folding, triage, repair and degradation. Chief among these are molecular chaperones and their cofactors that act as powerful protein remodelers. The growing realization that many human pathologies are fundamentally diseases of protein misfolding (proteopathies) has generated interest in understanding how the proteostasis network impacts onset and progression of these diseases. In this minireview, we highlight recent progress in understanding the enigmatic Hsp110 class of heat shock protein that acts as both a potent nucleotide exchange factor to regulate activity of the foldase Hsp70, and as a passive chaperone capable of recognizing and binding cellular substrates on its own, and its integration into the proteostasis network.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Deficiências na Proteostase/metabolismo , Proteostase , Animais , Humanos
17.
Cell Mol Life Sci ; 74(4): 617-629, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27522545

RESUMO

Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson's disease (PD), Alzheimer's disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.


Assuntos
Proteínas de Choque Térmico/metabolismo , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , Dobramento de Proteína , alfa-Sinucleína/metabolismo , Animais , Humanos , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/patologia , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , alfa-Sinucleína/química
18.
J Neurochem ; 130(5): 626-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24903326

RESUMO

Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat-related activities. The heat-shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species-induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP-15. In contrast to Hsp110- or Hsp70i-deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild-type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild-type mice that were treated with Celastrol or BGP-15 following TBI compared to TBI-treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI. Our data indicate that loss of Hsp110 or Hsp70 in mice increases brain injury following TBI. (a) One of the mechanisms underlying the increased cell death observed in the absence of these Hsps following TBI is the increased expression of ROS-induced p53 target genes known as Pigs. In addition, (b) using drugs (Celastrol or BGP-15) to increase Hsp70/Hsp110 levels protect cells against TBI, suggesting the beneficial effects of Hsp70/Hsp110 inducers to reduce the pathological consequences of TBI.


Assuntos
Lesões Encefálicas/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Multiplex , Análise de Sequência com Séries de Oligonucleotídeos , Oximas/farmacologia , Triterpenos Pentacíclicos , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia
19.
Heliyon ; 10(9): e29690, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707424

RESUMO

Plasmodium falciparum heat shock protein 70-1 (PfHsp70-1) and PfHsp70-z are essential cytosol localised chaperones of the malaria parasite. The two chaperones functionally interact to drive folding of several parasite proteins. While PfHsp70-1 is regarded as a canonical Hsp70 chaperone, PfHsp70-z belongs to the Hsp110 subcluster. One of the distinctive features of PfHsp70-z is its unique linker segment which delineates it from canonical Hsp70. In the current study, we elucidated the role of the linker in regulating Hsp70 self-association and client selection. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) and their respective linker switch mutants we investigated self-association of the chaperones using surface plasmon resonance (SPR) analysis. The effect of the changes on client selectivity was investigated on DnaK and its mutant through co-affinity chromatography coupled to LC-MS analysis. Our findings demonstrated that the linker is important for both Hsp70 self-association and client binding.

20.
Cancers (Basel) ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067355

RESUMO

Heat shock proteins (HSPs) are highly expressed in cancer cells and represent a promising target in anti-cancer therapy. In this study, we investigated for the first time the expression of high-molecular-weight HSP110, belonging to the HSP70 family of proteins, in Primary Effusion Lymphoma (PEL) and explored its role in their survival. This is a rare lymphoma associated with KSHV, for which an effective therapy remains to be discovered. The results obtained from this study suggest that targeting HSP110 could be a very promising strategy against PEL, as its silencing induced lysosomal membrane permeabilization, the cleavage of BID, caspase 8 activation, downregulated c-Myc, and strongly impaired the HR and NHEJ DNA repair pathways, leading to apoptotic cell death. Since chemical inhibitors of this HSP are not commercially available yet, this study encourages a more intense search in this direction in order to discover a new potential treatment that is effective against this and likely other B cell lymphomas that are known to overexpress HSP110.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA