Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.776
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Physiol ; 85: 339-362, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36137277

RESUMO

High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Sobrecarga de Ferro , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Resistência à Insulina/fisiologia
2.
Annu Rev Med ; 74: 261-277, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35905974

RESUMO

Hepcidin, the iron-regulatory hormone, determines plasma iron concentrations and total body iron content. Hepcidin, secreted by hepatocytes, functions by controlling the activity of the cellular iron exporter ferroportin, which delivers iron to plasma from intestinal iron absorption and from iron stores. Hepcidin concentration in plasma is increased by iron loading and inflammation and is suppressed by erythropoietic stimulation and during pregnancy. Hepcidin deficiency causes iron overload in hemochromatosis and anemias with ineffective erythropoiesis. Hepcidin excess causes iron-restrictive anemias including anemia of inflammation. The development of hepcidin diagnostics and therapeutic agonists and antagonists should improve the treatment of iron disorders.


Assuntos
Anemia , Hemocromatose , Humanos , Ferro , Hepcidinas , Inflamação
3.
J Biol Chem ; 299(10): 105238, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690687

RESUMO

Matriptase-2 (MT2), encoded by TMPRSS6, is a membrane-anchored serine protease. It plays a key role in iron homeostasis by suppressing the iron-regulatory hormone, hepcidin. Lack of functional MT2 results in an inappropriately high hepcidin and iron-refractory iron-deficiency anemia. Mt2 cleaves multiple components of the hepcidin-induction pathway in vitro. It is inhibited by the membrane-anchored serine protease inhibitor, Hai-2. Earlier in vivo studies show that Mt2 can suppress hepcidin expression independently of its proteolytic activity. In this study, our data indicate that hepatic Mt2 was a limiting factor in suppressing hepcidin. Studies in Tmprss6-/- mice revealed that increases in dietary iron to ∼0.5% were sufficient to overcome the high hepcidin barrier and to correct iron-deficiency anemia. Interestingly, the increased iron in Tmprss6-/- mice was able to further upregulate hepcidin expression to a similar magnitude as in wild-type mice. These results suggest that a lack of Mt2 does not impact the iron induction of hepcidin. Additional studies of wild-type Mt2 and the proteolytic-dead form, fMt2S762A, indicated that the function of Mt2 is to lower the basal levels of hepcidin expression in a manner that primarily relies on its nonproteolytic role. This idea is supported by the studies in mice with the hepatocyte-specific ablation of Hai-2, which showed a marginal impact on iron homeostasis and no significant effects on iron regulation of hepcidin. Together, these observations suggest that the function of Mt2 is to set the basal levels of hepcidin expression and that this process is primarily accomplished through a nonproteolytic mechanism.

4.
J Biol Chem ; 299(12): 105374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866631

RESUMO

Iron delivery to the plasma is closely coupled to erythropoiesis, the production of red blood cells, as this process consumes most of the circulating plasma iron. In response to hemorrhage and other erythropoietic stresses, increased erythropoietin stimulates the production of the hormone erythroferrone (ERFE) by erythrocyte precursors (erythroblasts) developing in erythropoietic tissues. ERFE acts on the liver to inhibit bone morphogenetic protein (BMP) signaling and thereby decrease hepcidin production. Decreased circulating hepcidin concentrations then allow the release of iron from stores and increase iron absorption from the diet. Guided by evolutionary analysis and Alphafold2 protein complex modeling, we used targeted ERFE mutations, deletions, and synthetic ERFE segments together with cell-based bioassays and surface plasmon resonance to probe the structural features required for bioactivity and BMP binding. We define the ERFE active domain and multiple structural features that act together to entrap BMP ligands. In particular, the hydrophobic helical segment 81 to 86 and specifically the highly conserved tryptophan W82 in the N-terminal region are essential for ERFE bioactivity and Alphafold2 modeling places W82 between two tryptophans in its ligands BMP2, BMP6, and the BMP2/6 heterodimer, an interaction similar to those that bind BMPs to their cognate receptors. Finally, we identify the cationic region 96-107 and the globular TNFα-like domain 186-354 as structural determinants of ERFE multimerization that increase the avidity of ERFE for BMP ligands. Collectively, our results provide further insight into the ERFE-mediated inhibition of BMP signaling in response to erythropoietic stress.


Assuntos
Hepcidinas , Ferro , Hormônios Peptídicos , Domínios Proteicos , Proteínas Morfogenéticas Ósseas/metabolismo , Eritropoese , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Humanos , Linhagem Celular , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Estrutura Terciária de Proteína , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estresse Fisiológico
5.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G310-G317, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252872

RESUMO

The Activin A Receptor type I (ALK2) is a critical component of BMP-SMAD signaling that, in the presence of ligands, phosphorylates cytosolic SMAD1/5/8 and modulates important biological processes, including bone formation and iron metabolism. In hepatocytes, the BMP-SMAD pathway controls the expression of hepcidin, the liver peptide hormone that regulates body iron homeostasis via the BMP receptors ALK2 and ALK3, and the hemochromatosis proteins. The main negative regulator of the pathway in the liver is transmembrane serine protease 6 (TMPRSS6), which downregulates hepcidin by cleaving the BMP coreceptor hemojuvelin. ALK2 function is inhibited also by the immunophilin FKBP12, which maintains the receptor in an inactive conformation. FKBP12 sequestration by tacrolimus or its silencing upregulates hepcidin in primary hepatocytes and in vivo in acute but not chronic settings. Interestingly, gain-of-function mutations in ALK2 that impair FKBP12 binding to the receptor and activate the pathway cause a bone phenotype in patients affected by Fibrodysplasia Ossificans Progressiva but not hepcidin and iron metabolism dysfunction. This observation suggests that additional mechanisms are active in the liver to compensate for the increased BMP-SMAD signaling. Here we demonstrate that Fkbp12 downregulation in hepatocytes by antisense oligonucleotide treatment upregulates the expression of the main hepcidin inhibitor Tmprss6, thus counteracting the ALK2-mediated activation of the pathway. Combined downregulation of both Fkbp12 and Tmprss6 blocks this compensatory mechanism. Our findings reveal a previously unrecognized functional cross talk between FKBP12 and TMPRSS6, the main BMP-SMAD pathway inhibitors, in the control of hepcidin transcription.NEW & NOTEWORTHY This study uncovers a previously unrecognized mechanism of hepcidin and BMP-SMAD pathway regulation in hepatocytes mediated by the immunophilin FKBP12 and the transmembrane serine protease TMPRSS6.


Assuntos
Hepcidinas , Proteína 1A de Ligação a Tacrolimo , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Proteínas de Membrana/genética , Serina , Serina Endopeptidases/genética , Serina Proteases , Proteína 1A de Ligação a Tacrolimo/genética
6.
Br J Haematol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977031

RESUMO

Iron-refractory iron deficiency anaemia (IRIDA) is a rare autosomal recessive disorder, distinguished by hypochromic microcytic anaemia, low transferrin levels and inappropriately elevated hepcidin (HEPC) levels. It is caused by mutations in TMPRSS6 gene. Systematic screening of 500 pregnant women with iron deficiency anaemia having moderate to severe microcytosis with no other causes of anaemia were enrolled to rule out oral iron refractoriness. It identified a final cohort of 10 (2.15% prevalence) individuals with IRIDA phenotype. Haematological and biochemical analysis revealed significant differences between iron responders and iron non-responders, with iron non-responders showing lower haemoglobin, red blood cell count, serum iron and serum ferritin levels, along with elevated HEPC (9.47 ± 2.75 ng/mL, p = 0.0009) and erythropoietin (4.58 ± 4.07 µ/mL, p = 0.0196) levels. Genetic sequencing of the TMPRSS6 gene in this final cohort identified 10 novel variants, including seven missense and three frame-shift mutations, with four missense variants showing high functional impact defining the IRIDA phenotype. Structural analysis revealed significant damage caused by two variants (p.L83R and p.S235R). This study provides valuable insights into IRIDA among pregnant women in the Indian subcontinent, unveiling its underlying causes of unresponsiveness, genetic mechanisms and prevalence. Furthermore, research collaboration is essential to validate these findings and develop effective treatments.

7.
Br J Haematol ; 204(3): 759-773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253961

RESUMO

Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Sobrecarga de Ferro , Adulto , Criança , Feminino , Humanos , Gravidez , Ferro/metabolismo , Anemia Ferropriva/terapia , Sobrecarga de Ferro/tratamento farmacológico
8.
J Neuroinflammation ; 21(1): 15, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195497

RESUMO

BACKGROUND: Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated. METHODS: In the present study, we generated GFAP-Cre-mediated hepcidin conditional knockout mice (HampGFAP cKO) to explore the effect of hepcidin deficiency on hippocampal structure and neurocognition. RESULTS: We found that the HampGFAP cKO mice developed AD-like brain atrophy and memory deficits. In particular, the weight of the hippocampus and the number of granule neurons in the dentate gyrus were significantly reduced. Further investigation demonstrated that the morphological change in the hippocampus of HampGFAP cKO mice was attributed to impaired neurogenesis caused by decreased proliferation of neural stem cells. Regarding the molecular mechanism, increased iron content after depletion of hepcidin followed by an elevated level of the inflammatory factor tumor necrosis factor-α accounted for the impairment of hippocampal neurogenesis in HampGFAP cKO mice. These observations were further verified in GFAP promoter-driven hepcidin knockdown mice and in Nestin-Cre-mediated hepcidin conditional knockout mice. CONCLUSIONS: The present findings demonstrated a critical role for hepcidin in hippocampal neurogenesis and validated the importance of iron and associated inflammatory cytokines as key modulators of neurodevelopment, providing insights into the potential pathogenesis of cognitive dysfunction and related treatments.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso Central , Animais , Humanos , Camundongos , Atrofia , Encéfalo , Hepcidinas/genética , Hipocampo , Ferro , Transtornos da Memória/genética , Camundongos Knockout
9.
Blood Cells Mol Dis ; 104: 102777, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391347

RESUMO

Iron is an essential nutrient for microbes, plants and animals. Multicellular organisms have evolved multiple strategies to control invading microbes by restricting microbial access to iron. Hypoferremia of inflammation is a rapidly-acting organismal response that prevents the formation of iron species that would be readily accessible to microbes. This review takes an evolutionary perspective to explore the mechanisms and host defense function of hypoferremia of inflammation and its clinical implications.


Assuntos
Hepcidinas , Inflamação , Animais , Ferro
10.
IUBMB Life ; 76(8): 523-533, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38348962

RESUMO

Ferroportin (FPN) is a transmembrane protein and is the only known iron exporter that helps in maintaining iron homeostasis in vertebrates. To maintain stable iron equilibrium in the body, ferroportin works in conjunction with a peptide called hepcidin. In this study, we have identified an alternatively spliced novel isoform of the human SLC40A1 gene, which encodes for the FPN protein and is found to be expressed in different tissues. The novel transcript has an alternate last exon and encodes 31-amino acid long peptide sequence that replaces 104 amino acids at C-terminal in the novel transcript. Molecular modelling and molecular dynamics (MD) simulation studies revealed key structural features of the novel isoform (FPN-N). FPN-N was predicted to have 12 transmembrane domains similar to the reported isoform (FPN), despite being much smaller in size. FPN-N was found to interact with hepcidin, a key regulator of ferroportin activity. Also, the iron-binding sites were retained in the novel isoform as revealed by the MD simulation of FPN-N in bilipid membrane. The novel isoform identified in this study may play important role in iron homeostasis. However, further studies are required to characterize the FPN-N isoform and decipher its role inside the cell.


Assuntos
Processamento Alternativo , Proteínas de Transporte de Cátions , Hepcidinas , Ferro , Simulação de Dinâmica Molecular , Isoformas de Proteínas , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/química , Ferro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Sítios de Ligação , Modelos Moleculares
11.
Annu Rev Nutr ; 43: 279-300, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37253681

RESUMO

Pregnancy entails a large negative balance of iron, an essential micronutrient. During pregnancy, iron requirements increase substantially to support both maternal red blood cell expansion and the development of the placenta and fetus. As insufficient iron has long been linked to adverse pregnancy outcomes, universal iron supplementation is common practice before and during pregnancy. However, in high-resource countries with iron fortification of staple foods and increased red meat consumption, the effects of too much iron supplementation during pregnancy have become a concern because iron excess has also been linked to adverse pregnancy outcomes. In this review, we address physiologic iron homeostasis of the mother, placenta, and fetus and discuss perturbations in iron homeostasis that result in pathological pregnancy. As many mechanistic regulatory systems have been deduced from animal models, we also discuss the principles learned from these models and how these may apply to human pregnancy.


Assuntos
Placenta , Resultado da Gravidez , Animais , Gravidez , Feminino , Humanos , Feto , Ferro , Homeostase
12.
Cytokine ; 177: 156559, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412767

RESUMO

Over the years, there has been progress in understanding the molecular aspects of iron metabolism and erythropoiesis. However, despite research conducted both in laboratories and living organisms, there are still unanswered questions due to the complex nature of these fields. In this study we investigated the effects of hookworm infection on iron metabolism and how the hosts response to anemia is affected using hamsters infected with Ancylostoma ceylanicum as a model. Our data revealed interesting relationships between infection-induced anemia, erythropoiesis, iron metabolism, and immune modulation, such that the elevated production of erythropoietin (EPO) in renal tissue indicated intensified erythropoiesis in response to anemia. Additionally, the increased expression of the erythroferrone (ERFE) gene in the spleen suggested its involvement in iron regulation and erythropoiesis. Gene expression patterns of genes related to iron metabolism varied in different tissues, indicating tissue-specific adaptations to hypoxia. The modulation of pro-inflammatory and anti-inflammatory cytokines highlighted the delicate balance between immune response and erythropoiesis. Data derived from the investigation of changes induced in iron metabolism and stress erythropoiesis following anemia aid in our understanding of mechanisms related to blood spoliation and anemia, which could potentially be extrapolated or compared to other types or causes of anemia. These findings also contribute to our understanding of the pathophysiology of erythropoiesis in the context of blood loss.


Assuntos
Anemia , Eritropoetina , Infecções por Uncinaria , Humanos , Eritropoese/fisiologia , Hepcidinas/genética , Anemia/etiologia , Ferro , Eritropoetina/metabolismo , Infecções por Uncinaria/complicações
13.
Mov Disord ; 39(7): 1088-1098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38686449

RESUMO

BACKGROUND: Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. OBJECTIVES: The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. METHODS: In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). RESULTS: We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. CONCLUSIONS: We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Ferro , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/sangue , Ataxia de Friedreich/metabolismo , Feminino , Masculino , Adulto , Ferro/metabolismo , Fígado/metabolismo , Fígado/patologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Adulto Jovem , Baço/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/sangue , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/sangue , Hepcidinas/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia
14.
FASEB J ; 37(11): e23243, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800888

RESUMO

Hepcidin negatively regulates systemic iron levels by inhibiting iron entry into the circulation. Hepcidin production is increased in response to an increase in systemic iron via the activation of the bone morphogenetic protein (BMP) pathway. Regulation of hepcidin expression by iron status has been proposed on the basis of evidence mainly from rodents and humans. We evaluated the effect of iron administration on plasma hepcidin concentrations in calves and the expression of bovine hepcidin by the BMP pathway in a cell culture study. Hematocrit as well as levels of blood hemoglobin and plasma iron were lower than the reference level in calves aged 1-4 weeks. Although intramuscular administration of iron increased iron-related parameters, plasma hepcidin concentrations were unaffected. Treatment with BMP6 increased hepcidin expression in human liver-derived cells but not in bovine liver-derived cells. A luciferase-based reporter assay revealed that Smad4 was required for hepcidin reporter transcription induced by Smad1. The reporter activity of hepcidin was lower in the cells transfected with bovine Smad4 than in those transfected with murine Smad4. The lower expression levels of bovine Smad4 were responsible for the lower activity of the hepcidin reporter, which might be due to the instability of bovine Smad4 mRNA. In fact, the endogenous Smad4 protein levels were lower in bovine cells than in human and murine cells. Smad4 also confers TGF-ß/activin-mediated signaling. Induction of TGF-ß-responsive genes was also lower after treatment with TGF-ß1 in bovine hepatocytes than in human hepatoma cells. We revealed the unique regulation of bovine hepcidin expression and the characteristic TGF-ß family signaling mediated by bovine Smad4. The present study suggests that knowledge of the regulatory expression of hepcidin as well as TGF-ß family signaling obtained in murine and human cells is not always applicable to bovine cells.


Assuntos
Hepcidinas , Proteína Smad4 , Animais , Bovinos , Humanos , Camundongos , Hepcidinas/genética , Hepcidinas/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Ferro/metabolismo , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
Ann Hematol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039174

RESUMO

Hepcidin production is regulated by iron concentration, erythropoietic activity, and inflammation. There is no reference method for determining its levels, but results obtained through various methods strongly correlate and can be compared using recalibration equations. OBJECTIVE: To describe recalibrated serum hepcidin values at different percentiles in schoolchildren, considering age, sex, inflammatory processes, H. pylori infection, and iron status. METHODS: Secondary analysis of data incorporating information on inflammation, H. pylori infection, and iron status of 349 schoolchildren. Hepcidin analysis was performed using a competitive ELISA, and recalibrated hepcidin values were calculated using the inverse of the linear regression model equation obtained by van der Vorm et al. Results: Recalibrated hepcidin values were lower than non-calibrated values. In schoolchildren without infection/inflammation and without iron deficiency, recalibrated values at the 50th percentile (25th-75th) were 4.89 ng/mL (2.68-8.42). For schoolchildren without infection/inflammation but with iron deficiency, recalibrated values were 2.34 ng/mL (1.10-6.58), the lowest hepcidin values observed. The highest values were found in the group with infection/inflammation, regardless of iron deficiency status. CONCLUSIONS: Recalibrated hepcidin values were lower than non-calibrated values. The highest values were observed in schoolchildren with infectious or inflammatory processes, and the lowest values were observed in schoolchildren with iron deficiency but only in the absence of infectious or inflammatory processes. Using recalibrated hepcidin values allows comparison between data obtained using different analytical methods.

16.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833010

RESUMO

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Assuntos
Akkermansia , Faecalibacterium , Hepcidinas , Macrófagos , Humanos , Células CACO-2 , Microbioma Gastrointestinal , Células Hep G2 , Hepcidinas/genética , Hepcidinas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ferro/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Células THP-1
17.
Eur J Haematol ; 113(3): 340-350, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38785334

RESUMO

OBJECTIVES: Rusfertide is a potent peptide mimetic of hepcidin being investigated for the treatment of polycythemia vera. This randomized, placebo-controlled, double-blind study evaluated the safety, pharmacokinetics, and pharmacodynamics of single and repeated subcutaneous doses of an aqueous formulation of rusfertide in healthy adult males. METHODS: Subjects received single doses of 1, 3, 10, 20, 40, or 80 mg rusfertide or placebo. A separate cohort of subjects received two doses of 40 mg rusfertide or placebo 1 week apart. Blood samples for pharmacokinetics and pharmacodynamics were collected, and adverse events, clinical laboratory tests, 12-lead electrocardiograms, and vital signs were monitored. RESULTS: Rusfertide was well tolerated. There were no serious or severe treatment-emergent adverse events, and no patterns of clinically important adverse events, or laboratory, vital sign, or electrocardiogram abnormalities. Mean maximum rusfertide plasma concentration (Cmax) and area under the concentration-time curve increased with dose, but less than dose proportionally. Median time to Cmax was 2-4.5 h for 40 and 80 mg rusfertide and 8-24 h for lower doses. Apparent clearance and half-life increased with dose. Single doses of rusfertide 1-80 mg were associated with dose-dependent decreases in serum iron and transferrin-iron saturation. CONCLUSIONS: Rusfertide was well tolerated and showed dose-dependent pharmacokinetics and pharmacodynamics.


Assuntos
Voluntários Saudáveis , Hepcidinas , Humanos , Hepcidinas/sangue , Masculino , Adulto , Método Duplo-Cego , Pessoa de Meia-Idade , Adulto Jovem , Relação Dose-Resposta a Droga , Composição de Medicamentos , Adolescente , Ferro
18.
Cell Biol Int ; 48(5): 737-754, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38410054

RESUMO

Macrophages in the endometrium promote receptivity and implantation by secreting proinflammatory cytokines and other factors like fractalkine (FKN). Macrophages are closely linked to regulating iron homeostasis and can modulate iron availability in the tissue microenvironment. It has been revealed that the iron metabolism of the mother is crucial in fertility. Iron metabolism is strictly controlled by hepcidin, the principal iron regulatory protein. The inflammatory cytokines can modulate hepcidin synthesis and, therefore, the iron metabolism of the endometrium. It was proven recently that FKN, a unique chemokine, is implicated in maternal-fetal communication and may contribute to endometrial receptivity and implantation. In the present study, we investigated the effect of activated THP-1 macrophages and FKN on the iron metabolism of the HEC-1A endometrial cells. We established a noncontact coculture with or without recombinant human FKN supplementation to study the impact of the macrophage-derived factors and FKN on the regulation of hepcidin synthesis and iron release and storage of endometrial cells. Based on our findings, the conditioned medium of the activated macrophages could modify hepcidin synthesis via the nuclear factor kappa-light-chain-enhancer of activated B cells, the signal transducer and activator of transcription 3, and the transferrin receptor 2/bone morphogenetic protein 6/suppressor of mothers against decapentaplegic 1/5/8 signaling pathways, and FKN could alter this effect on the endometrial cells. It was also revealed that the conditioned macrophage medium and FKN modulated the iron release and storage of HEC-1A cells. FKN signaling may be involved in the management of iron trafficking of the endometrium by the regulation of hepcidin. It can contribute to the iron supply for fetal development at the early stage of the pregnancy.


Assuntos
Quimiocina CX3CL1 , Hepcidinas , Feminino , Humanos , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacologia , Hepcidinas/metabolismo , Endométrio/metabolismo , Macrófagos/metabolismo , Ferro/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 43(5): 713-725, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951059

RESUMO

BACKGROUND: Hepcidin is a liver-derived hormone that controls systemic iron homeostasis, by inhibiting the iron exporter ferroportin in the gut and spleen, respective sites of iron absorption and recycling. Hepcidin is also expressed ectopically in the context of cardiovascular disease. However, the precise role of ectopic hepcidin in underlying pathophysiology is unknown. In patients with abdominal aortic aneurysm (AAA), hepcidin is markedly induced in smooth muscle cells (SMCs) of the aneurysm wall and inversely correlated with the expression of LCN2 (lipocalin-2), a protein implicated in AAA pathology. In addition, plasma hepcidin levels were inversely correlated with aneurysm growth, suggesting hepcidin has a potential disease-modifying role. METHODS: To probe the role of SMC-derived hepcidin in the setting of AAA, we applied AngII (Angiotensin-II)-induced AAA model to mice harbouring an inducible, SMC-specific deletion of hepcidin. To determine whether SMC-derived hepcidin acted cell-autonomously, we also used mice harboring an inducible SMC-specific knock-in of hepcidin-resistant ferroportinC326Y. The involvement of LCN2 was established using a LCN2-neutralizing antibody. RESULTS: Mice with SMC-specific deletion of hepcidin or knock-in of hepcidin-resistant ferroportinC326Y had a heightened AAA phenotype compared with controls. In both models, SMCs exhibited raised ferroportin expression and reduced iron retention, accompanied by failure to suppress LCN2, impaired autophagy in SMCs, and greater aortic neutrophil infiltration. Pretreatment with LCN2-neutralizing antibody restored autophagy, reduced neutrophil infiltration, and prevented the heightened AAA phenotype. Finally, plasma hepcidin levels were consistently lower in mice with SMC-specific deletion of hepcidin than in controls, indicating that SMC-derived hepcidin contributes to the circulating pool in AAA. CONCLUSIONS: Hepcidin elevation in SMCs plays a protective role in the setting of AAA. These findings are the first demonstration of a protective rather than deleterious role for hepcidin in cardiovascular disease. They highlight the need to further explore the prognostic and therapeutic value of hepcidin outside disorders of iron homeostasis.


Assuntos
Aneurisma da Aorta Abdominal , Doenças Cardiovasculares , Camundongos , Animais , Hepcidinas/genética , Doenças Cardiovasculares/metabolismo , Músculo Liso Vascular/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Miócitos de Músculo Liso/metabolismo , Anticorpos Neutralizantes , Ferro/metabolismo
20.
Fish Shellfish Immunol ; 146: 109406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278338

RESUMO

Hepcidin, initially identified in human blood ultrafiltrate as cysteine rich Liver Expressed Antimicrobial Peptide (LEAP-1), is a core molecular conduit between iron trafficking and immune response. Though a great share of studies has been focused on the iron regulatory function of hepcidins, investigations on the antimicrobial aspects are relatively less. The present study is aimed at identification of hepcidin from a teleost fish, Alepes djedaba followed by its recombinant expression, testing antibacterial property, stability and evaluation of cytotoxicity. Modes of action on bacterial pathogens were also examined. A novel hepcidin isoform, Ad-Hep belonging to the HAMP1 (Hepcidin antimicrobial peptide 1) group of hepcidins was identified from the shrimp scad, Alepes djedaba. Ad-Hep with 2.9 kDa size was found to be a cysteine rich, cationic peptide (+4) with antiparallel beta sheet conformation, a furin cleavage site (RXXR) and 'ATCUN' motif. It was heterologously expressed in E. coli Rosettagami B(DE3)PLysS cells and the recombinant peptide, rAd-Hep was found to have significant antibacterial activity, especially against Edwardsiella tarda, Vibrio parahaemolyticus and Escherichia coli. Membrane depolarization followed by membrane permeabilization and Reactive Oxygen Species (ROS) production were found to be the modes of action of rAd-Hep on bacterial cells. Ad-Hep was found to be non-haemolytic to hRBC and non-cytotoxic in mammalian cell line. Stability of the peptide at varying temperature, pH and metal salts qualify them for applications in vivo. With significant bactericidal activity coupled with direct killing mechanisms, the rAd-Hep can be a promising drug candidate for therapeutic applications in medicine and fish culture systems.


Assuntos
Escherichia coli , Hepcidinas , Animais , Humanos , Cisteína , Peixes/metabolismo , Isoformas de Proteínas , Antibacterianos/farmacologia , Ferro , Peptídeos , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA