Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938830

RESUMO

The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.


Assuntos
Histonas , Peixe-Zebra , Animais , Histonas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cromatina/genética , Processamento de Proteína Pós-Traducional , Desenvolvimento Embrionário/genética , Nucleossomos
2.
EMBO Rep ; 25(4): 1936-1961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438802

RESUMO

Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.


Assuntos
Dano ao DNA , Proteínas Nucleares , Animais , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação/genética , Reparo do DNA
3.
J Biol Chem ; 300(4): 107150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462164

RESUMO

Histone 2A monoubiquitination (uH2A) underscores a key epigenetic regulation of gene expression. In this report, we show that the deubiquitinase for uH2A, ubiquitin-specific peptidase 16 (USP16), is modified by O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation involves the installation of the O-GlcNAc moiety to Ser/Thr residues. It crosstalks with Ser/Thr phosphorylation, affects protein-protein interaction, alters enzyme activity or protein folding, and changes protein subcellular localization. In our study, we first confirmed that USP16 is glycosylated on Thr203 and Ser214, as reported in a previous chemoenzymatic screen. We then discovered that mutation of the O-GlcNAcylation site Thr203, which is adjacent to deubiquitination-required Cys204, reduces the deubiquitination activity toward H2AK119ub in vitro and in cells, while mutation on Ser214 had the opposite effects. Using USP16 Ser552 phosphorylation-specific antibodies, we demonstrated that O-GlcNAcylation antagonizes cyclin-dependent kinase 1-mediated phosphorylation and promotes USP16 nuclear export. O-GlcNAcylation of USP16 is also required for deubiquitination of Polo-like kinase 1, a mitotic master kinase, and the subsequent chromosome segregation and cytokinesis. In summary, our study revealed that O-GlcNAcylation of USP16 at Thr203 and Ser214 coordinates deubiquitination of uH2A and Polo-like kinase 1, thus ensuring proper cell cycle progression.


Assuntos
Acetilglucosamina , Ubiquitina Tiolesterase , Ubiquitinação , Humanos , Acetilglucosamina/metabolismo , Transporte Ativo do Núcleo Celular , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Glicosilação , Células HEK293 , Células HeLa , Histonas/metabolismo , Fosforilação , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética
4.
J Biol Chem ; 300(8): 107531, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971312

RESUMO

TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation, and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR-specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator, and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.

5.
J Pathol ; 263(3): 386-395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801208

RESUMO

While increased DNA damage is a well-described feature of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), it is unclear whether all lineages and all regions of the marrow are homogeneously affected. In this study, we performed immunohistochemistry on formalin-fixed, paraffin-embedded whole-section bone marrow biopsies using a well-established antibody to detect pH2A.X (phosphorylated histone variant H2A.X) that recognizes DNA double-strand breaks. Focusing on TP53-mutated and complex karyotype MDS/AML, we find a greater pH2A.X+ DNA damage burden compared to TP53 wild-type neoplastic cases and non-neoplastic controls. To understand how double-strand breaks vary between lineages and spatially in TP53-mutated specimens, we applied a low-multiplex immunofluorescence staining and spatial analysis protocol to visualize pH2A.X+ cells with p53 protein staining and lineage markers. pH2A.X marked predominantly mid- to late-stage erythroids, whereas early erythroids and CD34+ blasts were relatively spared. In a prototypical example, these pH2A.X+ erythroids were organized locally as distinct colonies, and each colony displayed pH2A.X+ puncta at a synchronous level. This highly coordinated immunophenotypic expression was also seen for p53 protein staining and among presumed early myeloid colonies. Neighborhood clustering analysis showed distinct marrow regions differentially enriched in pH2A.X+/p53+ erythroid or myeloid colonies, indicating spatial heterogeneity of DNA-damage response and p53 protein expression. The lineage and architectural context within which DNA damage phenotype and oncogenic protein are expressed is relevant to current therapeutic developments that leverage macrophage phagocytosis to remove leukemic cells in part due to irreparable DNA damage. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Mutação , Síndromes Mielodisplásicas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Pessoa de Meia-Idade , Dano ao DNA , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Idoso , Feminino , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Histonas/genética , Medula Óssea/patologia , Medula Óssea/metabolismo , Idoso de 80 Anos ou mais , Imuno-Histoquímica
6.
Mol Cell ; 67(2): 203-213.e4, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28648778

RESUMO

Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Replicação do DNA , DNA Fúngico/metabolismo , Neurospora/metabolismo , Nucleossomos/metabolismo , Animais , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/genética , Histonas/metabolismo , Neurospora/genética , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Tempo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
7.
Mol Cell ; 66(4): 458-472.e5, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525740

RESUMO

Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response.


Assuntos
Cromatina/enzimologia , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Lisina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/patologia , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Mutação , Ligação Proteica , Interferência de RNA , Fatores de Tempo , Transcrição Gênica , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases
8.
J Biol Chem ; 299(12): 105360, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863263

RESUMO

Protein arginine N-methyltransferases are a family of epigenetic enzymes responsible for monomethylation or dimethylation of arginine residues on histones. Dysregulation of protein arginine N-methyltransferase activity can lead to aberrant gene expression and cancer. Recent studies have shown that PRMT2 expression and histone H3 methylation at arginine 8 are correlated with disease severity in glioblastoma multiforme, hepatocellular carcinoma, and renal cell carcinoma. In this study, we explore a noncatalytic mechanistic role for PRMT2 in histone methylation by investigating interactions between PRMT2, histone peptides and proteins, and other PRMTs using analytical and enzymatic approaches. We quantify interactions between PRMT2, peptide ligands, and PRMT1 in a cofactor- and domain-dependent manner using differential scanning fluorimetry. We found that PRMT2 modulates the substrate specificity of PRMT1. Using calf thymus histones as substrates, we saw that a 10-fold excess of PRMT2 promotes PRMT1 methylation of both histone H4 and histone H2A. We found equimolar or a 10-fold excess of PRMT2 to PRMT1 can improve the catalytic efficiency of PRMT1 towards individual histone substrates H2A, H3, and H4. We further evaluated the effects of PRMT2 towards PRMT1 on unmodified histone octamers and mononucleosomes and found marginal PRMT1 activity improvements in histone octamers but significantly greater methylation of mononucleosomes in the presence of 10-fold excess of PRMT2. This work reveals the ability of PRMT2 to serve a noncatalytic role through its SH3 domain in driving site-specific histone methylation marks.


Assuntos
Histonas , Proteína-Arginina N-Metiltransferases , Arginina/metabolismo , Histonas/metabolismo , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Fluorometria , Especificidade por Substrato , Estabilidade Proteica , Ligação Proteica , Domínios Proteicos , Ligantes , Humanos
9.
EMBO J ; 39(3): e101863, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31769059

RESUMO

Chromosome segregation in mitosis requires the removal of catenation between sister chromatids. Timely decatenation of sister DNAs at mitotic centromeres by topoisomerase IIα (TOP2A) is crucial to maintain genomic stability. The chromatin factors that recruit TOP2A to centromeres during mitosis remain unknown. Here, we show that histone H2A Thr-120 phosphorylation (H2ApT120), a modification generated by the mitotic kinase Bub1, is necessary and sufficient for the centromeric localization of TOP2A. Phosphorylation at residue-120 enhances histone H2A binding to TOP2A in vitro. The C-gate and the extreme C-terminal region are important for H2ApT120-dependent localization of TOP2A at centromeres. Preventing H2ApT120-mediated accumulation of TOP2A at mitotic centromeres interferes with sister chromatid disjunction, as evidenced by increased frequency of anaphase ultra-fine bridges (UFBs) that contain catenated DNA. Tethering TOP2A to centromeres bypasses the requirement for H2ApT120 in suppressing anaphase UFBs. These results demonstrate that H2ApT120 acts as a landmark that recruits TOP2A to mitotic centromeres to decatenate sister DNAs. Our study reveals a fundamental role for histone phosphorylation in resolving centromere DNA entanglements and safeguarding genomic stability during mitosis.


Assuntos
Centrômero/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Histonas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Sítios de Ligação , Linhagem Celular , Segregação de Cromossomos , Instabilidade Genômica , Células HeLa , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Treonina
10.
Bioessays ; 44(12): e2200166, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317523

RESUMO

Alternative non-B-DNA conformations formed under physiological conditions by sequences called flipons include left-handed Z-DNA, three-stranded triplexes, and four-stranded i-motifs and quadruplexes. These conformations accumulate and release energy to enable the local assembly of cellular machines in a context specific manner. In these transactions, nucleosomes store power, serving like rechargeable batteries, while flipons smooth energy flows from source to sink by acting as capacitors or resistors. Here, I review the known biological roles for flipons. I present recent and unequivocal findings showing how innate immune responses are regulated by Z-flipons that identify endogenous RNAs as self. Evidence is also presented supporting important roles for other flipon classes. In these examples, the dynamic exchange of energy between flipons and nucleosomes enables rapid switching of genetic programs without altering flipon sequence. The increased phenotypic diversity enabled by flipons drives their natural selection, with adaptations evolving faster than is possible by codon mutation alone.


Assuntos
Cromatina , Nucleossomos , Histonas/metabolismo , Montagem e Desmontagem da Cromatina , Genômica
11.
Genes Cells ; 27(2): 93-112, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34910346

RESUMO

H2A.Z, an evolutionally well-conserved histone H2A variant, is involved in many biological processes. Although the function of H2A.Z in euchromatic gene regulation is well known, its function and deposition mechanism in heterochromatin are still unclear. Here, we report that H2A.Z plays multiple roles in fission yeast heterochromatin. While a small amount of H2A.Z localizes at pericentromeric heterochromatin, loss of methylation of histone H3 at Lys9 (H3K9me) induces the accumulation of H2A.Z, which is dependent on the H2A.Z loader, SWR complex. The accumulated H2A.Z suppresses heterochromatic non-coding RNA transcription. This transcriptional repression activity requires the N-terminal tail of H2A.Z, which is involved in the regulation of euchromatic gene transcription. RNAi-defective cells, in which a substantial amount of H3K9me is retained by RNAi-independent heterochromatin assembly, also accumulate H2A.Z at heterochromatin, and the additional loss of H2A.Z in these cells triggers a further decrease in H3K9me. Our results suggest that H2A.Z facilitates RNAi-independent heterochromatin assembly by antagonizing the demethylation activity of Epe1, an eraser of H3K9me. Furthermore, H2A.Z suppresses Epe1-mediated transcriptional activation, which is required for subtelomeric gene repression. Our results provide novel evidence that H2A.Z plays diverse roles in chromatin silencing.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Montagem e Desmontagem da Cromatina , Heterocromatina/genética , Histonas/metabolismo , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Development ; 146(13)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31189663

RESUMO

Epigenetic regulation, including histone-to-protamine exchanges, controls spermiogenesis. However, the underlying mechanisms of this regulation are largely unknown. Here, we report that PHF7, a testis-specific PHD and RING finger domain-containing protein, is essential for histone-to-protamine exchange in mice. PHF7 is specifically expressed during spermiogenesis. PHF7 deletion results in male infertility due to aberrant histone retention and impaired protamine replacement in elongated spermatids. Mechanistically, PHF7 can simultaneously bind histone H2A and H3; its PHD domain, a histone code reader, can specifically bind H3K4me3/me2, and its RING domain, a histone writer, can ubiquitylate H2A. Thus, our study reveals that PHF7 is a novel E3 ligase that can specifically ubiquitylate H2A through binding H3K4me3/me2 prior to histone-to-protamine exchange.


Assuntos
Histonas/metabolismo , Protaminas/metabolismo , Espermatogênese/genética , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação/genética , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Testículo/metabolismo , Ubiquitina-Proteína Ligases/genética
13.
Cell Mol Life Sci ; 78(1): 373-384, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32318758

RESUMO

Faithful chromosome segregation during mitosis requires the correct assembly of kinetochore on the centromere. CENP-A is a variant of histone H3, which specializes the centromere region on chromatin and mediates the kinetochore assembly. The Mis18 complex plays a critical role in initiating the centromere loading of the newly-synthesized CENP-A. However, it remains unclear how Mis18 complex (spMis18, spMis16 and spMis19) is located to the centromere to license the recruitment of Cnp1CENP-A in Schizosaccharomyces pombe. We found that spMis18 directly binds to nucleosomal DNA through its extreme C-terminus and interacts with H2A-H2B dimer via the acidic region on the surface of its Yippee-like domain. Live-cell imaging confirmed that mutation of the acidic region and deletion of the extreme C-terminus significantly impairs the localization of spMis18 and Cnp1 to the centromere and delays chromosome segregation during mitosis. Our findings illustrate that the interaction of spMis18 with histone H2A-H2B and DNA plays important roles in the recruitment of spMis18 and Cnp1 to the centromere in fission yeast.


Assuntos
Proteínas de Transporte/metabolismo , DNA/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cristalografia por Raios X , DNA/química , Dimerização , Histonas/genética , Microscopia de Fluorescência , Mitose , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Imagem com Lapso de Tempo
14.
Proc Natl Acad Sci U S A ; 116(13): 6270-6279, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850541

RESUMO

In budding yeast, which possesses simple point centromeres, we discovered that all of its centromeres express long noncoding RNAs (cenRNAs), especially in S phase. Induction of cenRNAs coincides with CENP-ACse4 loading time and is dependent on DNA replication. Centromeric transcription is repressed by centromere-binding factor Cbf1 and histone H2A variant H2A.ZHtz1 Deletion of CBF1 and H2A.ZHTZ1 results in an up-regulation of cenRNAs; an increased loss of a minichromosome; elevated aneuploidy; a down-regulation of the protein levels of centromeric proteins CENP-ACse4, CENP-A chaperone HJURPScm3, CENP-CMif2, SurvivinBir1, and INCENPSli15; and a reduced chromatin localization of CENP-ACse4, CENP-CMif2, and Aurora BIpl1 When the RNA interference system was introduced to knock down all cenRNAs from the endogenous chromosomes, but not the cenRNA from the circular minichromosome, an increase in minichromosome loss was still observed, suggesting that cenRNA functions in trans to regulate centromere activity. CenRNA knockdown partially alleviates minichromosome loss in cbf1Δ, htz1Δ, and cbf1Δ htz1Δ in a dose-dependent manner, demonstrating that cenRNA level is tightly regulated to epigenetically control point centromere function.


Assuntos
Centrômero/metabolismo , Segregação de Cromossomos/fisiologia , RNA não Traduzido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Aurora Quinases/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/metabolismo , Centrômero/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Histonas/genética , Histonas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Interferência de RNA/fisiologia , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulação para Cima
15.
Proteome Sci ; 19(1): 12, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635120

RESUMO

BACKGROUND: Gout is a common and complex form of immunoreactive arthritis based on hyperuricemia, while the symptoms would turn to remission or even got worse. So, it is hard to early identify whether an asymptomatic hyperuricemia (AHU) patient will be susceptible to get acute gout attack and it is also hard to predict the process of gout remission to flare. Here, we report that the plasma proteins profile can distinguish among acute gout (AG), remission of gout (RG), AHU patients, and healthy controls. METHODS: We established an isobaric tags for relative and absolute quantification (iTRAQ) and parallel reaction monitoring (PRM) based method to measure the plasma proteins for AG group (n = 8), RG group (n = 7), AHU group (n = 7) and healthy controls (n = 8). RESULTS: Eleven differentially expressed proteins such as Histone H2A, Histone H2B, Thrombospondin-1 (THBS1), Myeloperoxidase (MPO), Complement C2, Complement component C8 beta chain (C8B), Alpha-1-acid glycoprotein 1 (ORM1), Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Carbonic anhydrase 1 (CA1), Serum albumin (ALB) and Multimerin-1 (MMRN1) were identified. Histone H2A, Histone H2B and THBS1 might be the strongest influential regulator to maintain the balance and stability of the gout process. The complement and coagulation cascades is one of the main functional pathways in the mechanism of gout process. CONCLUSIONS: Histone H2A, Histone H2B and THBS1 are potential candidate genes for novel biomarkers in discriminating gout attack from AHU or RG, providing new theoretical insights for the prognosis, treatment, and management of gout process. TRIAL REGISTRATION: This study is not a clinical trial.

16.
Proc Natl Acad Sci U S A ; 115(7): 1558-1563, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386386

RESUMO

RING1 is an E3-ubiquitin ligase that is involved in epigenetic control of transcription during development. It is a component of the polycomb repressive complex 1, and its role in that complex is to ubiquitylate histone H2A. In a 13-year-old girl with syndromic neurodevelopmental disabilities, we identified a de novo mutation, RING1 p.R95Q, which alters a conserved arginine residue in the catalytic RING domain. In vitro assays demonstrated that the mutant RING1 retains capacity to catalyze ubiquitin chain formation, but is defective in its ability to ubiquitylate histone H2A in nucleosomes. Consistent with this in vitro effect, cells of the patient showed decreased monoubiquitylation of histone H2A. We modeled the mutant RING1 in Caenorhabditis elegans by editing the comparable amino acid change into spat-3, the suggested RING1 ortholog. Animals with either the missense mutation or complete knockout of spat-3 were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance. Relevant to our patient, animals heterozygous for either the missense or knockout allele also showed neuronal defects. Our results support three conclusions: mutation of RING1 is the likely cause of a human neurodevelopmental syndrome, mutation of RING1 can disrupt histone H2A ubiquitylation without disrupting RING1 catalytic activity, and the comparable mutation in C. elegans spat-3 both recapitulates the effects on histone H2A ubiquitylation and leads to neurodevelopmental abnormalities. This role for RING1 adds to our understanding of the importance of aberrant epigenetic effects as causes of human neurodevelopmental disorders.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Transtornos do Neurodesenvolvimento/genética , Complexo Repressor Polycomb 1/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Estudos de Casos e Controles , Histonas/genética , Histonas/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/patologia , Nucleossomos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
J Biol Chem ; 294(8): 2827-2838, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30598506

RESUMO

Ribosomal proteins are the building blocks of ribosome biogenesis. Beyond their known participation in ribosome assembly, the ribosome-independent functions of ribosomal proteins are largely unknown. Here, using immunoprecipitation, subcellular fractionation, His-ubiquitin pulldown, and immunofluorescence microscopy assays, along with siRNA-based knockdown approaches, we demonstrate that ribosomal protein L6 (RPL6) directly interacts with histone H2A and is involved in the DNA damage response (DDR). We found that in response to DNA damage, RPL6 is recruited to DNA damage sites in a poly(ADP-ribose) polymerase (PARP)-dependent manner, promoting its interaction with H2A. We also observed that RPL6 depletion attenuates the interaction between mediator of DNA damage checkpoint 1 (MDC1) and H2A histone family member X, phosphorylated (γH2AX), impairs the accumulation of MDC1 at DNA damage sites, and reduces both the recruitment of ring finger protein 168 (RNF168) and H2A Lys-15 ubiquitination (H2AK15ub). These RPL6 depletion-induced events subsequently inhibited the recruitment of the following downstream repair proteins: tumor protein P53-binding protein 1 (TP53BP1) and BRCA1, DNA repair-associated (BRCA1). Moreover, the RPL6 knockdown resulted in defects in the DNA damage-induced G2-M checkpoint, DNA damage repair, and cell survival. In conclusion, our study identifies RPL6 as a critical regulatory factor involved in the DDR. These findings expand our knowledge of the extraribosomal functions of ribosomal proteins in cell physiology and deepen our understanding of the molecular mechanisms underlying DDR regulation.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína BRCA1/genética , Ciclo Celular , Sobrevivência Celular , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas Ribossômicas/genética , Transdução de Sinais , Ubiquitina , Ubiquitinação
18.
Mol Biol Evol ; 36(5): 1037-1055, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796450

RESUMO

Epigenetic information, which can be passed on independently of the DNA sequence, is stored in part in the form of histone posttranslational modifications and specific histone variants. Although complexes necessary for deposition have been identified for canonical and variant histones, information regarding the chromatin assembly pathways outside of the Opisthokonts remains limited. Tetrahymena thermophila, a ciliated protozoan, is particularly suitable to study and unravel the chromatin regulatory layers due to its unique physical separation of chromatin states in the form of two distinct nuclei present within the same cell. Using a functional proteomics pipeline, we carried out affinity purification followed by mass spectrometry of endogenously tagged T. thermophila histones H2A, H2B and variant Hv1.We identified a set of interacting proteins shared among the three analyzed histones that includes the FACT-complex, as well as H2A- or Hv1-specific chaperones. We find that putative subunits of T. thermophila versions of SWR- and INO80-complexes, as well as transcription-related histone chaperone Spt6Tt specifically copurify with Hv1. We also identified importin ß6 and the T. thermophila ortholog of nucleoplasmin 1 (cNpl1Tt) as H2A-H2B interacting partners. Our results further implicate Poly [ADP-ribose] polymerases in histone metabolism. Molecular evolutionary analysis, reciprocal affinity purification coupled to mass spectrometry experiments, and indirect immunofluorescence studies using endogenously tagged Spt16Tt (FACT-complex subunit), cNpl1Tt, and PARP6Tt underscore the validity of our approach and offer mechanistic insights. Our results reveal a highly conserved regulatory network for H2A (Hv1)-H2B concerning their nuclear import and assembly into chromatin.


Assuntos
Evolução Molecular , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Filogenia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteoma , Proteômica
19.
Exp Cell Res ; 379(1): 11-18, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30910399

RESUMO

Post-translational modifications of the histone H2A represent an important mechanism by which cells modulate the structure and function of chromatin. Ubiquitination at K119 of histone H2A is associated transcriptional repression, which is shown to be regulated by deubiquitinases (DUBs). Here, we performed a screen to identify novel DUBs for histone H2A. Although RNAi-mediated knockdown of USP28, USP32 and USP36 showed that their depletion resulted in the increase of ub-K119-H2A, only USP28-depleted cells showed increased cell proliferation. Notably, USP28 knockdown cells had decreased expression of p53, p21 and p16INK4a, suggesting that the effect of USP28 on cell proliferation was mediated by regulating the expression of p53, p21 and p16INK4a. In summary, we have shown that USP28 is a deubiquitinase for histone H2A and is involved in regulation of cell proliferation. Thus, USP28 represents a potentially novel therapeutic target for cancer.


Assuntos
Proliferação de Células/genética , Histonas/genética , Ubiquitina Tiolesterase/genética , Ubiquitinação/genética , Linhagem Celular , Cromatina/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Células HEK293 , Humanos , Processamento de Proteína Pós-Traducional/genética , Proteína Supressora de Tumor p53/genética
20.
Curr Genet ; 65(5): 1165-1171, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31073666

RESUMO

To ensure proper chromosome segregation during cell division, the centromere in many organisms is transcribed to produce a low level of long non-coding RNA to regulate the activity of the kinetochore. In the budding yeast point centromere, our recent work has shown that the level of centromeric RNAs (cenRNAs) is tightly regulated and repressed by the kinetochore protein Cbf1 and histone H2A variant H2A.ZHtz1, and de-repressed during S phase of the cell cycle. Too little or too much cenRNAs will disrupt centromere activity. Here, we discuss the current advance in the understanding of the action and regulation of cenRNAs at the point centromere of Saccharomyces cerevisiae. We further show that budding yeast cenRNAs are cryptic unstable transcripts (CUTs) that can be degraded by the nuclear RNA decay pathway. CenRNA provides an example that even CUTs, when present at the right time with the right level, can serve important cellular functions.


Assuntos
Centrômero/genética , Epigênese Genética , RNA não Traduzido/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Instabilidade Genômica , Histonas/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA