Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Clin Lab Anal ; 36(5): e24348, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35312113

RESUMO

BACKGROUND: circRNA hsa_circ_0018289-mediated growth and metastasis of CC cells were investigated, as well as the mechanistic pathway. METHODS: Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was carried out to examine the expression of hsa_circ_0018289, microRNA (miR)-1294, and isoprenylcysteine carboxyl methyltransferase (ICMT). CC cell proliferation, migration, and invasion were evaluated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation, colony formation, transwell assays, Western blot analysis of ICMT, and glycolysis-associated proteins. Dual-luciferase reporter or RNA pull-down analysis of the target interaction between miR-1294 and hsa_hsa_circ_0018289 or ICMT. Xenograft model assay was implemented to assess the role of hsa_circ_0018289 in vivo. Immunofluorescence (IHC) was employed to detect the level of Ki-67. RESULTS: Hsa_circ_0018289 was elevated in CC tissues and cells, its deficiency could repress growth, metastasis, and glycolysis of CC cells in vitro, as well as hamper tumor growth in vivo. Hsa_circ_0018289 sponged miR-1294 while miR-1294 bound with ICMT, and the inhibition of miR-1294 or addition of ICMT could partially relieve the effect caused by hsa_circ_0018289 depletion. CONCLUSION: Hsa_circ_0018289 contributes to malignant development by regulating the miR-1294/ICMT axis, affording novel insight into CC therapy.


Assuntos
MicroRNAs , Proteínas Metiltransferases , RNA Circular , Neoplasias do Colo do Útero , Carcinogênese , Proliferação de Células/genética , Feminino , Humanos , MicroRNAs/genética , Proteínas Metiltransferases/genética , RNA Circular/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
2.
Biochem Biophys Res Commun ; 516(3): 784-789, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31253403

RESUMO

Development of chemo-resistance in nasopharyngeal carcinoma (NPC) poses the therapeutic challenge and its mechanisms are still poorly understood. In this work, we demonstrate that targeting isoprenylcysteine carboxylmethyltransferase (Icmt) is a therapeutic strategy to overcome NPC chemo-resistance. We found that Icmt mRNA and protein levels were increased in NPC cells after prolonged exposure to chemotherapy. Using pharmacological inhibitor cysmethynil or genetic siRNA approaches, we showed that Icmt inhibition was more effective against chemoresistant compared to chemosensitive NPC cells, suggesting that chemoresistant NPC cells is more dependent on Icmt function. The combination of Icmt inhibition with 5-FU or cisplatin resulted in greater efficacy than single chemotherapeutic agent alone in NPC. Notably, we demonstrated that the in vitro observations were translatable to in vivo NPC cancer xenograft mouse model. Mechanism analysis indicated that Icmt inhibition decreased Ras and RhoA activities, leading to the suppression of Ras and RhoA-mediated downstream signaling in NPC cells. The reverse of the inhibitory effects of cysmethynil by constitutively active Ras suggests that Ras is the critical effector of Icmt in NPC cells. Our work is the first to show that Icmt plays an important role in the development of NPC chemoresistance. Our findings also suggest that targeting Icmt represents a promising strategy to inhibit Ras function.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteínas Metiltransferases/genética , Proteínas ras/genética , Animais , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Fluoruracila/administração & dosagem , Humanos , Indóis/administração & dosagem , Camundongos Nus , Camundongos SCID , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Proteínas Metiltransferases/antagonistas & inibidores , Proteínas Metiltransferases/metabolismo , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteínas ras/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Biochem Biophys Res Commun ; 518(3): 584-589, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31451223

RESUMO

Isoprenylcysteine carboxylmethyltransferase (Icmt) which catalyzes the final step of prenylation of many oncoproteins, such as Ras. Despite studies on Icmt and its regulation in biological activities of various cancers, little is known on the expression, function and mechanisms of the impact of Icmt on hepatocellular carcinoma (HCC). We report here the findings that Icmt is critical for HCC growth, migration, survival and chemoresistance by multiple oncogenic pathways. Expression analysis on primary patient and cell line samples demonstrated that Icmt protein level was significantly higher in the majority (∼70%) of HCC tissues and cells than corresponding normal counterparts. Icmt depletion inhibited growth, survival and migration in HCC cells, and augmented the inhibitory effects of doxorubicin. Consistently, Icmt also inhibited growth, and migration, and induced apoptosis in HCC cells that are resistant to doxorubicin. In contrast, Icmt overexpression promoted growth and migration in normal liver cells. Mechanistically, Icmt inhibition suppressed Ras/Raf/Mek/Erk signaling and epithelial-mesenchymal transition (EMT) in HCC cells. Several different approaches demonstrated that Icmt was critical for HCC biological activities with the predominant role in cell response to chemotherapy. This previously unappreciated function of Icmt can be targeted to enhance chemotherapy in particular those HCC patients with high Icmt expression.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Metiltransferases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas Metiltransferases/análise , Transdução de Sinais/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 501(2): 556-562, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29746868

RESUMO

Inhibition of isoprenylcysteine carboxylmethyltransferase (Icmt), which catalyzes the final step of oncoproteins' prenylation, targets growth and survival of various cancers. In this work, we systematically studied the expression, functions and molecular signaling of Icmt in ovarian cancer. We show that the upregulation of Icmt expression is a common feature in patients with epithelial ovarian cancer regardless of age and disease stage. In line with the observations in ovarian cancer patients, a panel of epithelial ovarian cancer cell lines also demonstrates the significant increase on Icmt transcript and protein levels than normal ovarian epithelial cells. In addition, ovarian cancer cell lines with higher Icmt levels are more resistant to chemotherapeutic agents. We further show that Icmt inhibition by siRNA or inhibitor cysmethynil suppresses growth and induces apoptosis in ovarian cancer cells. Importantly, Icmt inhibition significantly augments chemotherapeutic agent's efficacy in vitro and in vivo, demonstrating the translational potential of Icmt inhibition in ovarian cancer. Mechanistically, we show that Ras activation is a critical effector of Icmt in ovarian cancer cells. Using cell culturing system, mouse model and patient samples, our work is the first to demonstrate the essential roles of Icmt in ovarian cancer via Ras signaling, particularly on its response to chemotherapy. Our findings suggest that Icmt inhibition is a promising therapeutic strategy to overcome chemoresistance in ovarian cancer, in particular, those patients with high Icmt expression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas ras/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Proteínas Metiltransferases/análise , Proteínas Metiltransferases/antagonistas & inibidores
5.
Curr Genet ; 64(2): 341-344, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28929213

RESUMO

Isoprenylcysteine-O-Carboxyl Methyltransferase (ICMT) catalyzes the final step in the prenylation process of different proteins including members of the Ras superfamily of GTPases. While cysteine methylation is essential in mammalian cells for growth, membrane association, and signalling by Ras and Rho GTPases, its role during signal transduction events in simple eukaryotes like yeasts appears irrelevant. By using a multidisciplinary approach our group has recently shown that, contrary to this initial assumption, in the fission yeast Schizosaccharomyces pombe ICMT activity encoded by the Mam4 gene is not only important to promote selective plasma membrane targeting of Ras and specific Rho GTPases, but also to allow precise downstream signalling to the mitogen-activated protein kinase and target of rapamycin pathways in response to diverse environmental cues. Thus, the dynamic regulation of in vivo methylation as a modulator of GTPase localization and function is an evolutionary conserved mechanism, making fission yeast an appealing model organism to study the regulation of this process.


Assuntos
Cisteína/metabolismo , Proteínas Metiltransferases/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas rho de Ligação ao GTP/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Cisteína/genética , Metilação , Prenilação de Proteína/genética , Schizosaccharomyces/genética , Transdução de Sinais/genética
6.
Eur J Nucl Med Mol Imaging ; 45(13): 2285-2299, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30259091

RESUMO

BACKGROUND: Effective anticancer therapy is thought to involve induction of tumour cell death through apoptosis and/or necrosis. [18F]ICMT-11, an isatin sulfonamide caspase-3/7-specific radiotracer, has been developed for PET imaging and shown to have favourable dosimetry, safety, and biodistribution. We report the translation of [18F]ICMT-11 PET to measure chemotherapy-induced caspase-3/7 activation in breast and lung cancer patients receiving first-line therapy. RESULTS: Breast tumour SUVmax of [18F]ICMT-11 was low at baseline and unchanged following therapy. Measurement of M30/M60 cytokeratin-18 cleavage products showed that therapy was predominantly not apoptosis in nature. While increases in caspase-3 staining on breast histology were seen, post-treatment caspase-3 positivity values were only approximately 1%; this low level of caspase-3 could have limited sensitive detection by [18F]ICMT-11-PET. Fourteen out of 15 breast cancer patients responded to first-line chemotherapy (complete or partial response); one patient had stable disease. Four patients showed increases in regions of high tumour [18F]ICMT-11 intensity on voxel-wise analysis of tumour data (classed as PADS); response was not exclusive to patients with this phenotype. In patients with lung cancer, multi-parametric [18F]ICMT-11 PET and MRI (diffusion-weighted- and dynamic contrast enhanced-MRI) showed that PET changes were concordant with cell death in the absence of significant perfusion changes. CONCLUSION: This study highlights the potential use of [18F]ICMT-11 PET as a promising candidate for non-invasive imaging of caspase3/7 activation, and the difficulties encountered in assessing early-treatment responses. We summarize that tumour response could occur in the absence of predominant chemotherapy-induced caspase-3/7 activation measured non-invasively across entire tumour lesions in patients with breast and lung cancer.


Assuntos
Azidas , Neoplasias da Mama/tratamento farmacológico , Caspase 3/metabolismo , Caspase 7/metabolismo , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/enzimologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/enzimologia , Masculino , Pessoa de Meia-Idade
7.
J Cell Biochem ; 118(12): 4508-4516, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28464387

RESUMO

To study the role of the nuclear factor (NF)-κB signaling pathway and P120-catenin in the inflammatory effects of intermittent cyclic mechanical tension (ICMT) on endplate chondrocytes. Inflammatory reactions of endplate chondrocyte were measured by real-time reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, a dual-luciferase reporter assay system, immunofluorescence, and Western blot analysis. ICMT loading led to inflammatory reactions of endplate chondrocytes in both the rabbit endplate cartilage model and rat endplate chondrocytes in vitro. Inhibition of NF-κB signaling significantly ameliorated the inflammation induced by ICMT in endplate chondrocytes. Moreover, the expression of P120-catenin was decreased by ICMT. However, over-expression of P120-catenin suppressed NF-κB signaling and reversed the inflammatory effects. P120-catenin prevents endplate chondrocytes from undergoing ICMT-mediated inflammation by suppressing the expression of NF-κB. J. Cell. Biochem. 118: 4508-4516, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Cateninas/biossíntese , Condrócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Resistência à Tração , Animais , Condrócitos/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Coelhos , Ratos , Ratos Sprague-Dawley , delta Catenina
8.
Biochem Biophys Res Commun ; 493(2): 921-927, 2017 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-28943437

RESUMO

Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Renais/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Prenilação/efeitos dos fármacos , Quinolinas/farmacologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia
9.
Amino Acids ; 49(9): 1469-1485, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28631011

RESUMO

Among the enzymes involved in the post-translational modification of Ras, isoprenyl carboxyl methyltransferase (ICMT) has been explored by a number of researchers as a significant enzyme controlling the activation of Ras. Indeed, inhibition of ICMT exhibited promising anti-cancer activity against various cancer cell lines. This paper reviews patents and research articles published between 2009 and 2016 that reported inhibitors of ICMT as potential chemotherapeutic agents targeting Ras-induced growth factor signaling. Since ICMT inhibitors can modulate Ras signaling pathway, it might be possible to develop a new class of anti-cancer drugs targeting Ras-related cancers. Researchers have discovered indole-based small-molecular ICMT inhibitors through high-throughput screening. Researchers at Duke University identified a prototypical inhibitor, cysmethynil. At Singapore University, Ramanujulu and his colleagues patented more potent compounds by optimizing cysmethynil. In addition, Rodriguez and Stevenson at Universidad Complutense De Madrid and Cancer Therapeutics CRC PTY Ltd., respectively, have developed inhibitors based on formulas other than the indole base. However, further optimization of chemicals targeted to functional groups is needed to improve the characteristics of ICMT inhibitors related to their application as drugs, such as solubility, effectiveness, and safety, to facilitate clinical use.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Indóis/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Metiltransferases/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Animais , Antineoplásicos/síntese química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Humanos , Indóis/síntese química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Patentes como Assunto , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Proteínas ras/metabolismo
10.
J Biol Chem ; 290(37): 22851-61, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216878

RESUMO

The Ras-like small GTPases RalA and RalB are well validated effectors of RAS oncogene-driven human cancer growth, and pharmacologic inhibitors of Ral function may provide an effective anti-Ras therapeutic strategy. Intriguingly, although RalA and RalB share strong overall amino acid sequence identity, exhibit essentially identical structural and biochemical properties, and can utilize the same downstream effectors, they also exhibit divergent and sometimes opposing roles in the tumorigenic and metastatic growth of different cancer types. These distinct biological functions have been attributed largely to sequence divergence in their carboxyl-terminal hypervariable regions. However, the role of posttranslational modifications signaled by the hypervariable region carboxyl-terminal tetrapeptide CAAX motif (C = cysteine, A = aliphatic amino acid, X = terminal residue) in Ral isoform-selective functions has not been addressed. We determined that these modifications have distinct roles and consequences. Both RalA and RalB require Ras converting CAAX endopeptidase 1 (RCE1) for association with the plasma membrane, albeit not with endomembranes, and loss of RCE1 caused mislocalization as well as sustained activation of both RalA and RalB. In contrast, isoprenylcysteine carboxylmethyltransferase (ICMT) deficiency disrupted plasma membrane localization only of RalB, whereas RalA depended on ICMT for efficient endosomal localization. Furthermore, the absence of ICMT increased stability of RalB but not RalA protein. Finally, palmitoylation was critical for subcellular localization of RalB but not RalA. In summary, we have identified striking isoform-specific consequences of distinct CAAX-signaled posttranslational modifications that contribute to the divergent subcellular localization and activity of RalA and RalB.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Proteínas ral de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Endossomos/genética , Endossomos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico/fisiologia , Proteínas ral de Ligação ao GTP/genética
11.
J Biol Chem ; 289(38): 26007-26020, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25059662

RESUMO

The eukaryotic integral membrane enzyme isoprenylcysteine carboxyl methyltransferase (ICMT) methylates the carboxylate of a lipid-modified cysteine at the C terminus of its protein substrates. This is the final post-translational modification of proteins containing a CAAX motif, including the oncoprotein Ras, and therefore, ICMT may serve as a therapeutic target in cancer development. ICMT has no discernible sequence homology with soluble methyltransferases, and aspects of its catalytic mechanism are unknown. For example, how both the methyl donor S-adenosyl-l-methionine (AdoMet), which is water-soluble, and the methyl acceptor isoprenylcysteine, which is lipophilic, are recognized within the same active site is not clear. To identify regions of ICMT critical for activity, we combined scanning mutagenesis with methyltransferase assays. We mutated nearly half of the residues of the ortholog of human ICMT from Anopheles gambiae and observed reduced or undetectable catalytic activity for 62 of the mutants. The crystal structure of a distantly related prokaryotic methyltransferase (Ma Mtase), which has sequence similarity with ICMT in its AdoMet binding site but methylates different substrates, provides context for the mutational analysis. The data suggest that ICMT and Ma MTase bind AdoMet in a similar manner. With regard to residues potentially involved in isoprenylcysteine binding, we identified numerous amino acids within transmembrane regions of ICMT that dramatically reduced catalytic activity when mutated. Certain substitutions of these caused substrate inhibition by isoprenylcysteine, suggesting that they contribute to the isoprenylcysteine binding site. The data provide evidence that the active site of ICMT spans both cytosolic and membrane-embedded regions of the protein.


Assuntos
Anopheles/enzimologia , Cisteína/análogos & derivados , Proteínas de Insetos/genética , Proteínas Metiltransferases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Domínio Catalítico , Sequência Conservada , Cisteína/química , Células HEK293 , Humanos , Proteínas de Insetos/química , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Metiltransferases/química , S-Adenosilmetionina/química , Homologia Estrutural de Proteína
12.
Curr Comput Aided Drug Des ; 20(7): 1055-1069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835128

RESUMO

BACKGROUND: ICMT (isoprenylcysteine carboxyl methyltransferase) is an enzyme that plays a key role in the post-translational modification of the K-Ras protein. The carboxyl methylation of this protein by ICMT is important for its proper localization and function. Cysmethynil (2-[5-(3-methylphenyl)-l-octyl-lH-indolo-3-yl] acetamide) causes K-Ras mislocalization and interrupts pathways that control cancer cell growth and division through inhibition of ICMT, but its poor water solubility makes it difficult and impractical for clinical use. This indicates that relatively high amounts of cysmethynil would be required to achieve an effective dose, which could result in significant adverse effects in patients. OBJECTIVE: The general objective of this work was to find virtually new compounds that present high solubility in water and are similar to the pharmacological activity of cysmethynil. MATERIALS AND METHODS: Pharmacophore modeling, pharmacophore-based virtual screening, prediction of ADMET properties (absorption, distribution, metabolism, excretion, and toxicity), and water solubility were performed to recover a water-soluble molecule that shares the same chemical characteristics as cysmethynil using Discovery Studio v16.1.0 (DS16.1), SwissADME server, and pkCSM server. RESULTS: In this study, ten pharmacophore model hypotheses were generated by exploiting the characteristics of cysmethynil. The pharmacophore model validated by the set test method was used to screen the "Elite Library®" and "Synergy Library" databases of Asinex. Only 1533 compounds corresponding to all the characteristics of the pharmacophore were retained. Then, the aqueous solubility in water at 25°C of these 1533 compounds was predicted by the Cheng and Merz model. Among these 1533 compounds, two had the optimal water solubility. Finally, the ADMET properties and Log S water solubility by three models (ESOL, Ali, and SILICOS-IT) of the two compounds and cysmethynil were compared, resulting in compound 2 as a potential inhibitor of ICMT. CONCLUSION: According to the results obtained, the identified compound presented a high solubility in water and could be similar to the pharmacological activity of cysmethynil.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Solubilidade , Humanos , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Simulação por Computador , Antineoplásicos/farmacologia , Antineoplásicos/química , Acetamidas/farmacologia , Acetamidas/química , Mutação , Indóis/química , Indóis/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Simulação de Acoplamento Molecular , Proteínas Metiltransferases
13.
Biochimie ; 222: 28-36, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38301884

RESUMO

Isoprenyl cysteine carboxyl methyltransferase (ICMT) catalyzes the last step of the prenylation pathway. Previously, we found that high ICMT levels enhance tumorigenesis in vivo and that its expression is repressed by the p53 tumor suppressor. Based on evidence suggesting that some ICMT substrates affect invasive traits, we wondered if this enzyme may promote metastasis. In this work, we found that ICMT overexpression enhanced lung metastasis in vivo. Accordingly, ICMT overexpression also promoted cellular functions associated with aggressive phenotypes such as migration and invasion in vitro. Considering that some ICMT substrates are involved in the regulation of actin cytoskeleton, we hypothesized that actin-rich structures, associated with invasion and metastasis, may be affected. Our findings revealed that ICMT enhanced the formation of invadopodia. Additionally, by analyzing cancer patient databases, we found that ICMT is overexpressed in several tumor types. Furthermore, the concurrent expression of ICMT and CTTN, which encodes a crucial component of invadopodia, showed a significant correlation with clinical outcome. In summary, our work identifies ICMT overexpression as a relevant alteration in human cancer that promotes the development of metastatic tumors.


Assuntos
Podossomos , Proteínas Metiltransferases , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Cortactina/metabolismo , Cortactina/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/enzimologia , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/metabolismo , Podossomos/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Metiltransferases/genética
14.
Bioorg Med Chem Lett ; 23(20): 5671-3, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23988355

RESUMO

Inhibition of isoprenylcysteine Carboxylmethyltransferase (ICMT) is of particular interest as a potential target for the development of cancer chemotherapeutic agents. Screening for inhibitors of ICMT utilises a scintillation proximity assay (SPA) in which Biotin-S-Farnesyl-L-Cysteine (BFC) acts as a surrogate substrate. A solid-phase synthesis protocol for the preparation of BFC using 2-chlorotrityl chloride resin as a solid support has been developed to provide sufficient supply of BFC for high throughput screening (HTS) and subsequent chemistry campaigns to target inhibitors of ICMT. The BFC prepared by this method can be produced quickly on large scale and is stable when stored at -20 °C as a solid, in solution, or on the resin.


Assuntos
Biotina/química , Cisteína/química , Proteínas Metiltransferases/metabolismo , Cisteína/síntese química , Ensaios de Triagem em Larga Escala , Cinética , Proteínas Metiltransferases/química , Técnicas de Síntese em Fase Sólida , Especificidade por Substrato , Compostos de Tritil/química
15.
J Orthop Surg Res ; 18(1): 229, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36944987

RESUMO

BACKGROUND: This study aimed to investigate the potential mechanism of YAP1 in the senescence and degeneration of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT). METHODS: According to the Pfirrmann grade evaluation classification, 30 human endplate cartilage tissues were divided into the lumbar vertebra fracture (LVF) group and lumbar disc herniation (LDH) group. Then, quantitative reverse transcription polymerase chain reaction, western blot, flow cytometry, hematoxylin-eosin staining, and senescence-associated ß-galactosidase staining were performed. The difference in extracellular matrix expression between LVF and LDH endplate cartilage was detected. Second, the effect of ICMT on endplate chondrocytes degeneration was observed. Finally, the key regulatory role of YAP1 in ICMT-induced endplate cartilage degeneration was further verified. RESULTS: In degraded human endplate cartilage and tension-induced degraded endplate chondrocytes, the expression of YAP1, COL-2A, and Sox9 was decreased. Conversely, the expression of p53 and p21 was increased. By regulating YAP1 in vivo and in vitro, we can achieve alleviation of ICMT-induced senescence of endplate chondrocytes and effective treatment of disc degeneration. CONCLUSIONS: ICMT could induce senescence and degeneration of endplate chondrocytes, and ICMT-induced senescence and degeneration of endplate chondrocytes could be alleviated by regulating YAP1 expression.


Assuntos
Condrócitos , Degeneração do Disco Intervertebral , Humanos , Condrócitos/metabolismo , Cartilagem , Estresse Mecânico , Degeneração do Disco Intervertebral/metabolismo , Matriz Extracelular/metabolismo
16.
Front Pharmacol ; 13: 972825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339587

RESUMO

Licoricidin, a type of isoflavonoid, is extracted from the root of Glycyrrhiza glabra. It has been widely proven that licoricidin possesses multiple biological activities, including anti-cancer effects and a powerful antimicrobial effect against Helicobacter pylori (H. pylori). However, the exact mechanism of licoricidin against gastric cancer remains unclear. In this study, we comprehensively explored the effects of licoricidin on MGC-803 gastric cancer cells in vitro and in vivo and further elucidated its mechanism of action. Our results revealed that licoricidin exhibited multiple anti-gastric cancer activities, including suppressing proliferation, inducing apoptosis, arresting the cell cycle in G0/G1 phase, and inhibiting the migration and invasion abilities of MGC-803 gastric cancer cells. In addition to this, a total of 5861 proteins were identified by quantitative proteomics research strategy of TMT labeling, of which 19 differential proteins (two upregulated and 17 downregulated) were screened out. Combining bioinformatics analyses and the reported roles in cancer progression of the 19 proteins, we speculated that isoprenyl carboxyl methyltransferase (ICMT) was the most likely target of licoricidin. Western blot assays and IHC assays subsequently proved that licoricidin significantly downregulated the expression of ICMT, both in MGC-803 cells and in xenograft tumors. Moreover, licoricidin effectively reduced the level of active Ras-GTP and blocked the phosphorylation of Raf and Erk, which may be involved in its anti-gastric cancer effects. In summary, we first demonstrated that licoricidin exerted favorable anti-gastric cancer activities via the ICMT/Ras pathway, which suggests that licoricidin, as a natural product, could be a novel candidate for the management of gastric cancer.

17.
Cancer Chemother Pharmacol ; 89(3): 401-411, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35171349

RESUMO

PURPOSE: The poor outcomes in glioblastoma necessitate new therapeutic target. Isoprenylcysteine carboxyl methyltransferase (ICMT), a unique enzyme of the final step of prenylation that modifies activities of oncogenic proteins, represents a promising target for many cancers. METHODS: Expression pattern, function and downstream pathway of ICMT in glioblastoma were analyzed using immunohistochemistry, ELISA, cellular assays and immunoblotting method. Combinatory effect was analyzed using Chou-Talalay approach. RESULTS: Upregulation of ICMT expression is a common phenomenon in glioblastoma patients regardless of clinicopathological characteristics. Gain-of-function and loss-of-function analysis support the role of ICMT in glioblastoma growth and survival but not migration. Importantly, pharmacological inhibitors of ICMT are effectively against glioblastoma cells while sparing normal neuron cells, and furthermore that they act synergistically with chemotherapeutic drugs. Consistently, ICMT inhibitor UCM-1336 significantly inhibits glioblastoma growth without causing toxicity in mice. Mechanistic studies demonstrate that Ras/Raf/Mek/Erk rather than Ras/PI3K/Akt/mTOR is the downstream pathway of ICMT-mediated glioblastoma growth. CONCLUSIONS: Our findings provide the proof-of-concept of pharmacologically targeting ICMT in the treatment of glioblastoma via deactivation of Ras/Raf/Mek/Erk.


Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Metiltransferases/análise , Proteínas Metiltransferases/metabolismo
18.
Bone ; 154: 116185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537436

RESUMO

Circular RNAs (circRNAs) participate in the progression of many diseases, but knowledge on the role of circRNAs in intervertebral disc degeneration (IDD) is limited. In this study, we discovered the characteristics of a new circRNA (circ_0022382) in human endplate chondrocytes. Currently, real-time quantitative polymerase chain reaction (RT-qPCR) showed that the relative expression level of circ_0022382 was significantly lower under intermittent cyclic tension stimulation than in the control group. circ_0022382, miR-4726-5p and Transforming growth factor 3 (TGF-ß3) were evaluated by RT-qPCR, Western Blot and immunofluorescence assay. Additionally, the role and mechanism of circ_0022382 in vivo were also consistent in the rat model. Furthermore, Intermittent cyclic mechanical tension can cause degeneration of endplate chondrocytes. The tension-sensitive circRNA_0022382 was decreased, and we found that circRNA_0022382 promoted morphology of endplate chondrocytes by sponge-binding miR-4726-5p down-regulation of target gene the TGF-ß3 expression, thereby alleviating IDD. In a rat model of acupuncture, intervertebral disc injection of circ_0022382 relieved the progression of IDD in vivo. In conclusion, the circ_0022382/miR-4726-5p/TGF-ß3 axis plays a key role in the anabolism and catabolism of the endplate chondrocyte extracellular matrix (ECM). It is suggested that circ_0022382 may provide a new approach for the prevention and treatment of IDD.


Assuntos
Degeneração do Disco Intervertebral , MicroRNAs , Adsorção , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Ratos , Fator de Crescimento Transformador beta3/genética
19.
Basic Clin Pharmacol Toxicol ; 131(4): 217-223, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35790078

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by premature ageing and early death at a mean age of 14.7 years. At the molecular level, HGPS is caused by a de novo heterozygous mutation in LMNA, the gene encoding A-type lamins (mainly lamin A and C) and nuclear proteins, which have important cellular functions related to structure of the nuclear envelope. The LMNA mutation leads to the synthesis of a truncated prelamin A protein (called progerin), which cannot undergo normal processing to mature lamin A. In normal cells, prelamin A processing involves four posttranslational processing steps catalysed by four different enzymes. In HGPS cells, progerin accumulates as a farnesylated and methylated intermediate in the nuclear envelope where it is toxic and causes nuclear shape abnormalities and senescence. Numerous efforts have been made to target and reduce the toxicity of progerin, eliminate its synthesis and enhance its degradation, but as of today, only the use of farnesyltransferase inhibitors is approved for clinical use in HGPS patients. Here, we review the main current strategies that are being evaluated for treating HGPS, and we focus on efforts to target the posttranslational processing of progerin.


Assuntos
Progéria , Adolescente , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/uso terapêutico , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas Nucleares/genética , Progéria/tratamento farmacológico , Progéria/genética , Progéria/metabolismo , Processamento de Proteína Pós-Traducional
20.
Transl Androl Urol ; 10(11): 4219-4230, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34984187

RESUMO

BACKGROUND: Bladder cancer is one of the most common malignant tumors among humans and has a high mortality. Clinically, lidocaine is the most commonly used local anesthetic, which can inhibit the proliferation of bladder cancer cells; however, its downstream specific molecular mechanisms are unclear. METHODS: The SwissTarget and TargetNet databases were used to analyze the target of lidocaine. The online public cancer transcriptome database UALCAN was used to analyze the up-regulated genes in The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) data collection, and the intersection of the 2 was used to obtain the core target. The only target, isoprenylcysteine carboxylmethyltransferase (ICMT), was obtained by combining the correlation between the target and the clinical information of bladder cancer and the Kaplan-Meier (K-M) survival curve. Then, UMUC3 and T24 cells were selected as research vectors in vitro. Cell proliferation, cell cycle, and apoptosis were detected by cell counting kit-8, colony formation, flow cytometry, and western blotting. RESULTS: Network pharmacology analysis showed that ICMT might be one of the targets of lidocaine, and the expression level of ICMT was closely related to the clinical phenotype of bladder cancer. Lidocaine treatment (4 and 8 mM) significantly inhibited the proliferation of UMUC3 and T24 cells, promoted apoptosis, and significantly inhibited the mass and volume of xenograft tumors. In vitro experiments showed that ICMT promoted the proliferation of UMUC3 and T24 cells. Lidocaine inhibited the expression of ICMT in UMUC3 and T24 cells in a concentration and time-dependent manner, and inhibited cell proliferation by down-regulating ICMT expression. CONCLUSIONS: Lidocaine exerts anti-tumor effect by down-regulating the expression of ICMT in bladder cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA