Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257633

RESUMO

Electrooculography (EOG) serves as a widely employed technique for tracking saccadic eye movements in a diverse array of applications. These encompass the identification of various medical conditions and the development of interfaces facilitating human-computer interaction. Nonetheless, EOG signals are often met with skepticism due to the presence of multiple sources of noise interference. These sources include electroencephalography, electromyography linked to facial and extraocular muscle activity, electrical noise, signal artifacts, skin-electrode drifts, impedance fluctuations over time, and a host of associated challenges. Traditional methods of addressing these issues, such as bandpass filtering, have been frequently utilized to overcome these challenges but have the associated drawback of altering the inherent characteristics of EOG signals, encompassing their shape, magnitude, peak velocity, and duration, all of which are pivotal parameters in research studies. In prior work, several model-based adaptive denoising strategies have been introduced, incorporating mechanical and electrical model-based state estimators. However, these approaches are really complex and rely on brain and neural control models that have difficulty processing EOG signals in real time. In this present investigation, we introduce a real-time denoising method grounded in a constant velocity model, adopting a physics-based model-oriented approach. This approach is underpinned by the assumption that there exists a consistent rate of change in the cornea-retinal potential during saccadic movements. Empirical findings reveal that this approach remarkably preserves EOG saccade signals, resulting in a substantial enhancement of up to 29% in signal preservation during the denoising process when compared to alternative techniques, such as bandpass filters, constant acceleration models, and model-based fusion methods.


Assuntos
Aceleração , Movimentos Sacádicos , Humanos , Eletroculografia , Algoritmos , Encéfalo
2.
Sensors (Basel) ; 24(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204932

RESUMO

The engine in-cylinder pressure is a very important parameter for the optimization of internal combustion engines. This paper proposes an alternative recursive Kalman filter-based engine cylinder pressure reconstruction approach using sensor-fused engine speed. In the proposed approach, the fused engine speed is first obtained using the centralized sensor fusion technique, which synthesizes the information from the engine vibration sensor and engine flywheel angular speed sensor. Afterwards, with the fused speed, the engine cylinder pressure signal can be reconstructed by inverse filtering of the engine structural vibration signal. The cylinder pressure reconstruction results of the proposed approach are validated by two combustion indicators, which are pressure peak Pmax and peak location Ploc. Meanwhile, the reconstruction results are compared with the results obtained by the cylinder pressure reconstruction approach using the calculated engine speed. The results of sensor fusion can indicate that the fused speed is smoother when the vibration signal is trusted more. Furthermore, the cylinder pressure reconstruction results can display the relationship between the sensor-fused speed and the cylinder pressure reconstruction accuracy, and with more belief in the vibration signal, the reconstructed results will become better.

3.
J Biomed Inform ; 137: 104275, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572279

RESUMO

Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS), but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung-ventilator system (LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms into interpretable parameter values that characterize the data rather than quantifying physiological processes. Accurate, model-based inference on human-ventilator data indicates model flexibility and utility over a variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static characterizations of the data that are 50%-70% more accurate than breath-wise single-compartment model estimates. They also retain sufficient information to distinguish between the types of breath they represent. However, the fidelity and interpretability of model characterizations are tied to parameter definitions and model resolution. These additional factors must be considered in conjunction with the objectives of specific applications, such as identifying and tracking the development of human VILI.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/etiologia , Ventiladores Mecânicos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Pulmão
4.
Sensors (Basel) ; 23(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177772

RESUMO

We consider tracking a moving target in a wireless communication system that is based on the radio signal. Considering a bounded workspace with many unknown obstacles, we handle tracking a non-cooperative transmitter using multiple signal receivers. Here, a non-cooperative transmitter is a transmitter whose signal emission time is not known in advance. We consider a time difference of arrival (TDOA) location problem, which locates the transmitter by processing the signal measurement time at multiple receivers. In tracking a non-cooperative transmitter, non-line-of-sight (NLOS) errors occur if obstacles block the LOS line connecting the receiver and the moving transmitter. Our article addresses how to track a moving transmitter while decreasing the NLOS error in TDOA-only measurements. We propose an algorithm to localize a transmitter while decreasing the NLOS error in TDOA measurements. For tracking a moving transmitter in real time, we integrate the proposed localization algorithm and the interacting multiple model Kalman filter (IMM KF). As far as we know, our article is novel in tracking a moving transmitter based on TDOA-only measurements in an unknown mixed LOS/NLOS workspace. We show that the proposed filter considerably decreases the NLOS errors in TDOA-only measurements while running fast. Therefore, the proposed tracking scheme is suitable for tracking a moving transmitter in real time. Through MATLAB simulations, we show that the proposed filter outperforms other state-of-the-art TDOA filters, considering both time efficiency and tracking accuracy.

5.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433524

RESUMO

In this paper, a new filter referred to as the alpha sliding innovation filter (ASIF) is presented. The sliding innovation filter (SIF) is a newly developed estimation strategy that uses innovation or measurement error as a switching hyperplane. It is a sub-optimal filter that provides a robust and stable estimate. In this paper, the SIF is reformulated by including a forgetting factor, which significantly improves estimation performance. The proposed ASIF is applied to several systems including a first-order thermometer, a second-order spring-mass-damper, and a third-order electrohydrostatic actuator (EHA) that was built for experimentation. The proposed ASIF provides an improvement in estimation accuracy while maintaining robustness to modeling uncertainties and disturbances.

6.
Sensors (Basel) ; 22(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36146411

RESUMO

The article presents the use of barometric sensors to precisely determine the altitude of a flying object. The sensors are arranged in a hexahedral spatial arrangement with appropriately spaced air inlets. Thanks to the solution used, the range of measurement uncertainty can be reduced, resulting in a lower probability of error during measurement by improving the accuracy of estimation. The paper also describes the use of pressure sensors in complex Tracking Vertical Velocity and Height systems, integrating different types of sensors to highlight the importance of this single parameter. The solution can find application in computational systems using different types of data in Kalman filters. The impact of pressure measurements in a geometric system with different spatial orientations of sensors is also presented. In order to compensate for local pressure differences, e.g., in the form of side wind gusts, an additional reference sensor was used, making the developed solution relevant for applications such as industrial ones.


Assuntos
Altitude , Vento
7.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770538

RESUMO

In order to improve behavioral analysis systems in urban environments, this paper proposes, using data extracted from video surveillance cameras, a tracking method through two approaches. The first approach consists in comparing the position of people between two images of a video and to perform tracking by proximity. The second method using Kalman filters is based on the anticipation of the position of an individual in the upcoming image. The use of this method proves to be more efficient as it allows continuing a detection even when people cross each other or when they pass behind obstacles. The use of Kalman filters in this domain provides a new approach to obtain reliable tracking and information on speed and trajectory variations. The proposed method is innovative in the way the tracking is performed and the results are exploited. Experiments were conducted in a real situation and showed that the use of some elements of the first method could be reused to integrate a notion of distance in the method based on the Kalman filter and thus improve the latter both in tracking and in detecting of abnormal behavior. This article deals with the functioning of the two methods as well as the results obtained with the same scenarios. The experimentation concludes through concrete results that the Kalman filter method is more efficient than the proximity method alone. A sample result is available online for two of the seven videos used in this article (accessed on 19 July 2021).


Assuntos
Algoritmos , Humanos
8.
Sensors (Basel) ; 21(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640839

RESUMO

DC-DC converters are widely used in a large number of power conversion applications. As in many other systems, they are designed to automatically prevent dangerous failures or control them when they arise; this is called functional safety. Therefore, random hardware failures such as sensor faults have to be detected and handled properly. This proper handling means achieving or maintaining a safe state according to ISO 26262. However, to achieve or maintain a safe state, a fault has to be detected first. Sensor faults within DC-DC converters are generally detected with hardware-redundant sensors, despite all their drawbacks. Within this article, this redundancy is addressed using observer-based techniques utilizing Extended Kalman Filters (EKFs). Moreover, the paper proposes a fault detection and isolation scheme to guarantee functional safety. For this, a cross-EKF structure is implemented to work in cross-parallel to the real sensors and to replace the sensors in case of a fault. This ensures the continuity of the service in case of sensor faults. This idea is based on the concept of the virtual sensor which replaces the sensor in case of fault. Moreover, the concept of the virtual sensor is broader. In fact, if a system is observable, the observer offers a better performance than the sensor. In this context, this paper gives a contribution in this area. The effectiveness of this approach is tested with measurements on a buck converter prototype.


Assuntos
Algoritmos , Falha de Equipamento , Análise de Falha de Equipamento
9.
Sensors (Basel) ; 21(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916432

RESUMO

The orientation of a magneto and inertial measurement unit (MIMU) is estimated by means of sensor fusion algorithms (SFAs) thus enabling human motion tracking. However, despite several SFAs implementations proposed over the last decades, there is still a lack of consensus about the best performing SFAs and their accuracy. As suggested by recent literature, the filter parameters play a central role in determining the orientation errors. The aim of this work is to analyze the accuracy of ten SFAs while running under the best possible conditions (i.e., their parameter values are set using the orientation reference) in nine experimental scenarios including three rotation rates and three commercial products. The main finding is that parameter values must be specific for each SFA according to the experimental scenario to avoid errors comparable to those obtained when the default parameter values are used. Overall, when optimally tuned, no statistically significant differences are observed among the different SFAs in all tested experimental scenarios and the absolute errors are included between 3.8 deg and 7.1 deg. Increasing the rotation rate generally leads to a significant performance worsening. Errors are also influenced by the MIMU commercial model. SFA MATLAB implementations have been made available online.

10.
Sensors (Basel) ; 21(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379311

RESUMO

The ultra-short baseline underwater positioning is one of the most widely applied methods in underwater positioning and navigation due to its simplicity, efficiency, low cost, and accuracy. However, there exists environmental noise, which has negative impacts on the positioning accuracy during the ultra-short baseline (USBL) positioning process, which results in a large positioning error. The positioning result may lead to wrong decision-making in the latter processing. So, it is necessary to consider the error sources, and take effective measurements to minimize the negative impact of the noise. In our work, we propose a USBL positioning system with Kalman filtering to improve the positioning accuracy. In this system, we first explore a new kind of element array to accurately capture the acoustic signals from the object. We then organically combine the Kalman filters with the array elements to filter the acoustic signals, using the minimum mean-square error rule to obtain accurate acoustic signals. We got the high-precision phase difference information based on the non-equidistant quaternary original array and the phase difference acquisition mechanism. Finally, on account of the obtained accurate phase difference information and position calculation, we determined the coordinates of the underwater target. Comprehensive evaluation results demonstrate that our proposed USBL positioning method based on the Kalman filter algorithm can effectively enhance the positioning accuracy.

11.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322587

RESUMO

In this paper, we introduce a real-time parallel-serial algorithm for autonomous robot positioning for GPS-denied, dark environments, such as caves and mine galleries. To achieve a good complexity-accuracy trade-off, we fuse data from light detection and ranging (LiDAR) and an inertial measurement unit (IMU). The proposed algorithm's main novelty is that, unlike in most algorithms, we apply an extended Kalman filter (EKF) to each LiDAR scan point and calculate the location relative to a triangular mesh. We also introduce three implementations of the algorithm: serial, parallel, and parallel-serial. The first implementation verifies the correctness of our innovative approach, but is too slow for real-time execution. The second approach implements a well-known parallel data fusion approach, but is still too slow for our application. The third and final implementation of the presented algorithm along with the state-of-the-art GPU data structures achieves real-time performance. According to our experimental findings, our algorithm outperforms the reference Gaussian mixture model (GMM) localization algorithm in terms of accuracy by a factor of two.

12.
Sensors (Basel) ; 19(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817333

RESUMO

Fusion of the Global Positioning System (GPS) and Inertial Navigation System (INS) for navigation of ground vehicles is an extensively researched topic for military and civilian applications. Micro-electro-mechanical-systems-based inertial measurement units (MEMS-IMU) are being widely used in numerous commercial applications due to their low cost; however, they are characterized by relatively poor accuracy when compared with more expensive counterparts. With a sudden boom in research and development of autonomous navigation technology for consumer vehicles, the need to enhance estimation accuracy and reliability has become critical, while aiming to deliver a cost-effective solution. Optimal fusion of commercially available, low-cost MEMS-IMU and the GPS may provide one such solution. Different variants of the Kalman filter have been proposed and implemented for integration of the GPS and the INS. This paper proposes a framework for the fusion of adaptive Kalman filters, based on Sage-Husa and strong tracking filtering algorithms, implemented on MEMS-IMU and the GPS for the case of a ground vehicle. The error models of the inertial sensors have also been implemented to achieve reliable and accurate estimations. Simulations have been carried out on actual navigation data from a test vehicle. Measurements were obtained using commercially available GPS receiver and MEMS-IMU. The solution was shown to enhance navigation accuracy when compared to conventional Kalman filter.

13.
Sensors (Basel) ; 18(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29534513

RESUMO

As indoor mobile navigation suffers from low positioning accuracy and accumulation error, we carried out research into an integrated location system for a robot based on Kinect and an Inertial Measurement Unit (IMU). In this paper, the close-range stereo images are used to calculate the attitude information and the translation amount of the adjacent positions of the robot by means of the absolute orientation algorithm, for improving the calculation accuracy of the robot's movement. Relying on the Kinect visual measurement and the strap-down IMU devices, we also use Kalman filtering to obtain the errors of the position and attitude outputs, in order to seek the optimal estimation and correct the errors. Experimental results show that the proposed method is able to improve the positioning accuracy and stability of the indoor mobile robot.

14.
Sensors (Basel) ; 18(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329243

RESUMO

Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

15.
Sensors (Basel) ; 18(4)2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29690539

RESUMO

An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms.

16.
Biol Cybern ; 111(5-6): 335-346, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28766051

RESUMO

State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.


Assuntos
Eletromiografia , Contração Isométrica/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Algoritmos , Voluntários Saudáveis , Humanos , Masculino , Modelos Teóricos , Fatores de Tempo
17.
Sensors (Basel) ; 17(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206187

RESUMO

Over the last decade, smart sensors have grown in complexity and can now handle multiple measurement sources. This work establishes a methodology to achieve better estimates of physical values by processing raw measurements within a sensor using multi-physical models and Kalman filters for data fusion. A driving constraint being production cost and power consumption, this methodology focuses on algorithmic complexity while meeting real-time constraints and improving both precision and reliability despite low power processors limitations. Consequently, processing time available for other tasks is maximized. The known problem of estimating a 2D orientation using an inertial measurement unit with automatic gyroscope bias compensation will be used to illustrate the proposed methodology applied to a low power STM32L053 microcontroller. This application shows promising results with a processing time of 1.18 ms at 32 MHz with a 3.8% CPU usage due to the computation at a 26 Hz measurement and estimation rate.

18.
Sensors (Basel) ; 16(1)2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26797619

RESUMO

Foot-mounted inertial sensors can be used for indoor pedestrian navigation. In this paper, to improve the accuracy of pedestrian location, we propose a method using a distance sensor (LIDAR) in addition to an inertial measurement unit (IMU). The distance sensor is a time of flight range finder with 30 m measurement range (at 33.33 Hz). Using a distance sensor, walls on corridors are automatically detected. The detected walls are used to correct the heading of the pedestrian path. Through experiments, it is shown that the accuracy of the heading is significantly improved using the proposed algorithm. Furthermore, the system is shown to work robustly in indoor environments with many doors and passing people.


Assuntos
Acelerometria/instrumentação , Pé/fisiologia , Monitorização Ambulatorial/instrumentação , Pedestres , Navegação Espacial/fisiologia , Algoritmos , Humanos , Sapatos , Caminhada/fisiologia
19.
Sensors (Basel) ; 16(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598169

RESUMO

This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method.

20.
Sensors (Basel) ; 15(7): 15888-902, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26151205

RESUMO

There are many inertial sensor-based foot pose estimation algorithms. In this paper, we present a methodology to improve the accuracy of foot pose estimation using two low-cost distance sensors (VL6180) in addition to an inertial sensor unit. The distance sensor is a time-of-flight range finder and can measure distance up to 20 cm. A Kalman filter with 21 states is proposed to estimate both the calibration parameter (relative pose of distance sensors with respect to the inertial sensor unit) and foot pose. Once the calibration parameter is obtained, a Kalman filter with nine states can be used to estimate foot pose. Through four activities (walking, dancing step, ball kicking, jumping), it is shown that the proposed algorithm significantly improves the vertical position estimation.


Assuntos
Pé/fisiologia , Monitorização Ambulatorial/instrumentação , Postura/fisiologia , Caminhada/fisiologia , Algoritmos , Desenho de Equipamento , Humanos , Sapatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA