Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759628

RESUMO

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Assuntos
Proteínas Quinases Ativadas por AMP , Complexo I de Transporte de Elétrons , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Serina-Treonina Quinases , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais , Feminino
2.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172591

RESUMO

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Assuntos
Histonas , Proteínas Serina-Treonina Quinases , Humanos , Histonas/genética , Histonas/metabolismo , Acetilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Citocinas/metabolismo , Inflamação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31995728

RESUMO

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisossomos/enzimologia , Ubiquitina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adolescente , Adulto , Animais , Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Feminino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglicemiantes/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Adulto Jovem
4.
Development ; 151(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38078543

RESUMO

The kinase PAR-4/LKB1 is a major regulator of intestinal homeostasis, which prevents polyposis in humans. Moreover, its ectopic activation is sufficient to induce polarization and formation of microvilli-like structures in intestinal cell lines. Here, we use Caenorhabditis elegans to examine the role of PAR-4 during intestinal development in vivo. We show that it is not required to establish enterocyte polarity and plays only a minor role in brush border formation. By contrast, par-4 mutants display severe deformations of the intestinal lumen as well as supernumerary intestinal cells, thereby revealing a previously unappreciated function of PAR-4 in preventing intestinal hyperplasia. The presence of supernumerary enterocytes in par-4 mutants is not due to excessive cell proliferation, but rather to the abnormal expression of the intestinal cell fate factors end-1 and elt-2 outside the E lineage. Notably, par-4 mutants also display reduced expression of end-1 and elt-2 inside the E lineage. Our work thereby unveils an essential and dual role of PAR-4, which both restricts intestinal specification to the E lineage and ensures its robust differentiation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular , Endoderma/metabolismo , Hiperplasia/metabolismo , Intestinos , Embrião não Mamífero/metabolismo
5.
Mol Cell ; 76(4): 546-561.e8, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31561952

RESUMO

Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adiposidade , Animais , Sítios de Ligação , Proliferação de Células , Colesterol/biossíntese , Células HEK293 , Células HeLa , Fatores de Transcrição de Choque Térmico/deficiência , Fatores de Transcrição de Choque Térmico/genética , Humanos , Lipogênese , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fosforilação , Conformação Proteica , Estabilidade Proteica , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743625

RESUMO

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Esferoides Celulares , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Esferoides Celulares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proliferação de Células , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
7.
Genes Dev ; 33(3-4): 150-165, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692209

RESUMO

Loss of tumor suppressor liver kinase B1 (LKB1) promotes cancer cell proliferation but also leads to decreased metabolic plasticity in dealing with energy crises. Autophagy is a protective process involving self-cannibalization to maintain cellular energy homeostasis during nutrient deprivation. We developed a mouse model for Lkb1-deficient lung cancer with conditional deletion of essential autophagy gene Atg7 to test whether autophagy compensates for LKB1 loss for tumor cells to survive energy crises. We found that autophagy ablation was synthetically lethal during Lkb1-deficient lung tumorigenesis in both tumor initiation and tumor growth. We further found that autophagy deficiency causes defective intracellular recycling, which limits amino acids to support mitochondrial energy production in starved cancer cells and causes autophagy-deficient cells to be more dependent on fatty acid oxidation (FAO) for energy production, leading to reduced lipid reserve and energy crisis. Our findings strongly suggest that autophagy inhibition could be a strategy for treating LKB1-deficient lung tumors.


Assuntos
Autofagia , Carcinogênese/patologia , Proteínas de Transporte/genética , Metabolismo dos Lipídeos/fisiologia , Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular
8.
Mol Cell ; 69(1): 87-99.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249655

RESUMO

Loss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance. The effect of GDH1 on AMPK is evident in LKB1-deficient lung cancer, where AMPK activation predominantly depends on CamKK2. Targeting GDH1 with R162 attenuated tumor metastasis in patient-derived xenograft model and correlation studies in lung cancer patients further validated the clinical relevance of our finding. Our study provides insight into the molecular mechanism by which GDH1-mediated metabolic reprogramming of glutaminolysis mediates lung cancer metastasis and offers a therapeutic strategy for patients with LKB1-deficient lung cancer.


Assuntos
Anoikis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Glutamato Desidrogenase/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Metástase Neoplásica/patologia , Transplante de Neoplasias , Transplante Heterólogo
9.
Mol Cell ; 69(6): 1017-1027.e6, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526696

RESUMO

The lineage-specific transcription factor (TF) MEF2C is often deregulated in leukemia. However, strategies to target this TF have yet to be identified. Here, we used a domain-focused CRISPR screen to reveal an essential role for LKB1 and its Salt-Inducible Kinase effectors (SIK3, in a partially redundant manner with SIK2) to maintain MEF2C function in acute myeloid leukemia (AML). A key phosphorylation substrate of SIK3 in this context is HDAC4, a repressive cofactor of MEF2C. Consequently, targeting of LKB1 or SIK3 diminishes histone acetylation at MEF2C-bound enhancers and deprives leukemia cells of the output of this essential TF. We also found that MEF2C-dependent leukemias are sensitive to on-target chemical inhibition of SIK activity. This study reveals a chemical strategy to block MEF2C function in AML, highlighting how an oncogenic TF can be disabled by targeting of upstream kinases.


Assuntos
Leucemia Mieloide Aguda/enzimologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Acetilação , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Elementos Facilitadores Genéticos , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Células Hep G2 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células THP-1 , Células U937
10.
J Pathol ; 263(1): 47-60, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38389501

RESUMO

Liver kinase B1 (Lkb1), encoded by serine/threonine kinase (Stk11), is a serine/threonine kinase and tumor suppressor that is strongly implicated in Peutz-Jeghers syndrome (PJS). Numerous studies have shown that mesenchymal-specific Lkb1 is sufficient for the development of PJS-like polyps in mice. However, the cellular origin and components of these Lkb1-associated polyps and underlying mechanisms remain elusive. In this study, we generated tamoxifen-inducible Lkb1flox/flox;Myh11-Cre/ERT2 and Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, performed single-cell RNA sequencing (scRNA-seq) and imaging-based lineage tracing, and aimed to investigate the cellular complexity of gastrointestinal polyps associated with PJS. We found that Lkb1flox/+;Myh11-Cre/ERT2 mice developed gastrointestinal polyps starting at 9 months after tamoxifen treatment. scRNA-seq revealed aberrant stem cell-like characteristics of epithelial cells from polyp tissues of Lkb1flox/+;Myh11-Cre/ERT2 mice. The Lkb1-associated polyps were further characterized by a branching smooth muscle core, abundant extracellular matrix deposition, and high immune cell infiltration. In addition, the Spp1-Cd44 or Spp1-Itga8/Itgb1 axes were identified as important interactions among epithelial, mesenchymal, and immune compartments in Lkb1-associated polyps. These characteristics of gastrointestinal polyps were also demonstrated in another mouse model, tamoxifen-inducible Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, which developed obvious gastrointestinal polyps as early as 2-3 months after tamoxifen treatment. Our findings further confirm the critical role of mesenchymal Lkb1/Stk11 in gastrointestinal polyposis and provide novel insight into the cellular complexity of Lkb1-associated polyp biology. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Proteínas Quinases Ativadas por AMP , Síndrome de Peutz-Jeghers , Animais , Camundongos , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/patologia , Proteínas Serina-Treonina Quinases/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Análise de Sequência de RNA , Serina , Tamoxifeno/farmacologia
11.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38592738

RESUMO

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Assuntos
Proteínas Quinases Ativadas por AMP , Difosfato de Adenosina , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Humanos , Regulação Alostérica , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/química , Ligantes , Fosforilação , Trifosfato de Adenosina/metabolismo , Ativação Enzimática , Ligação Proteica
12.
J Struct Biol ; 216(3): 108108, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944401

RESUMO

Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these energies, specifically a âˆ¼ 4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope fitted with a non-standard SP-Twin lens. We also achieved a âˆ¼ 3.2 Å resolution reconstruction of a 115 kDa asymmetric protein complex, proving Alpine's effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining âˆ¼ 3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, bringing smaller sized particles within the scope of cryo-EM.

13.
J Cell Mol Med ; 28(1): e18028, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985436

RESUMO

Pathological cardiac hypertrophy is a key contributor to heart failure, and the molecular mechanisms underlying honokiol (HNK)-mediated cardioprotection against this condition remain worth further exploring. This study aims to investigate the effect of HNK on angiotensin II (Ang II)-induced myocardial hypertrophy and elucidate the underlying mechanisms. Sprague-Dawley rats were exposed to Ang II infusion, followed by HNK or vehicle treatment for 4 weeks. Our results showed that HNK treatment protected against Ang II-induced myocardial hypertrophy, fibrosis and dysfunction in vivo and inhibited Ang II-induced hypertrophy in neonatal rat ventricular myocytes in vitro. Mechanistically, HNK suppressed the Ang II-induced Nur77 expression at the transcriptional level and promoted ubiquitination-mediated degradation of Nur77, leading to dissociation of the Nur77-LKB1 complex. This facilitated the translocation of LKB1 into the cytoplasm and activated the LKB1-AMPK pathway. Our findings suggest that HNK attenuates pathological remodelling and cardiac dysfunction induced by Ang II by promoting dissociation of the Nur77-LKB1 complex and subsequent activation of AMPK signalling. This study uncovers a novel role of HNK on the LKB1-AMPK pathway to protect against cardiac hypertrophy.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos Alílicos , Angiotensina II , Compostos de Bifenilo , Fenóis , Ratos , Animais , Angiotensina II/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo
14.
Cell Commun Signal ; 22(1): 310, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844908

RESUMO

Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
15.
Circ J ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631864

RESUMO

BACKGROUND: Foam cell formation is an important step for atherosclerosis (AS) progression. We investigated the mechanism by which the long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) regulates foam cell formation during AS progression.Methods and Results: An in vivo AS model was created by feeding ApoE-/-mice a high-fat diet. Oxidized low-density lipoprotein (ox-LDL)-stimulated macrophages were used as a cellular AS model. Interactions between NEAT1, miR-17-5p, itchy E3 ubiquitin protein ligase (ITCH) and liver kinase B1 (LKB1) were analyzed. NEAT1 and ITCH were highly expressed in clinical samples collected from 10 AS patients and in ox-LDL-treated macrophages, whereas expression of both miR-17-5p and LKB1 was low. ITCH knockdown inhibited ox-LDL-induced lipid accumulation and LDL uptake in macrophages. Mechanistically speakingly, ITCH promoted LDL uptake and lipid accumulation in macrophages by mediating LKB1 ubiquitination degradation. NEAT1 knockdown reduced LDL uptake and lipid accumulation in macrophages and AS progression in vivo. NEAT1 promoted ITCH expression in macrophages by acting as a sponge for miR-17-5p. Inhibition of miR-17-5p facilitated ox-LDL-induced increase in LDL uptake and lipid accumulation in macrophages, which was reversed by NEAT1/ITCH knockdown. CONCLUSIONS: NEAT1 accelerated foam cell formation during AS progression through the miR-17-5p/ITCH/LKB1 axis.

16.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644407

RESUMO

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Assuntos
Tecido Adiposo Branco , Compostos Benzidrílicos , Glucosídeos , Proteínas Serina-Treonina Quinases , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Masculino , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Benzidrílicos/farmacologia , Dieta Hiperlipídica , Glucosídeos/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos
17.
Int J Med Sci ; 21(4): 623-632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464825

RESUMO

Oridonin is the main bioactive component of Rabdosia rubescens, and its anticancer activity has been reported in a variety of cancers. However, the molecular mechanism of oridonin in laryngeal carcinoma remains unclear. In the present study, the cytotoxic effect of oridonin on laryngeal carcinoma Hep-2 and TU212 cell lines were initially detected by modified MTT assay. The results showed that oridonin had a dose-dependent anti-proliferative effect on laryngeal carcinoma Hep-2 and TU212 cells. Next, we found that oridonin significantly inhibited the migration and invasion of human laryngeal carcinoma Hep-2 and TU212 cell lines by wound healing assay and transwell assay. Subsequently, the results of quantitative real-time PCR assay and western blotting assay confirmed that oridonin upregulated the expression of E-cadherin while downregulated the expression of N-cadherin in a concentration-dependent manner at mRNA and protein levels. In addition, phosphorylation levels of liver kinase B1 (p-LKB1) and AMP-activated protein kinase (p-AMPK) were also elevated upon oridonin treatment. To further verify the role of LKB1/AMPK signaling pathway in laryngeal carcinoma, overexpression of LKB1 was constructed by plasmid transfection. The data exhibited that overexpression of LKB1 could further reinforce the increase of E-cadherin level and decrease of N-cadherin level mediated by oridonin. Additionally, AMPK inhibitor compound C could reverse anti-metastatic effect of oridonin on laryngeal carcinoma, and antagonise EMT expression. In contrast, AMPK activator AICAR presented the opposite effect. In conclusion, our study revealed that oridonin could remarkably reverse the epithelial-mesenchymal transition of laryngeal carcinoma by positively regulating LKB1/AMPK signaling pathway, which suggested that oridonin may be a potential candidate for the treatment of laryngeal carcinoma in the future.


Assuntos
Carcinoma , Diterpenos do Tipo Caurano , Neoplasias Laríngeas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transição Epitelial-Mesenquimal , Caderinas/genética , Movimento Celular , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia
18.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396629

RESUMO

Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in NSCLC, activates AMP-activated protein kinase (AMPK) which in turn inhibits mammalian target of rapamycin complex 1 (mTORC1) and activates unc-51 like autophagy activating kinase 1 (ULK1) to promote autophagy. Sestrin-2 is a stress-induced protein that enhances LKB1-dependent activation of AMPK, functioning as a tumor suppressor in NSCLC. In previous studies, rosemary (Rosmarinus officinalis) extract (RE) activated the AMPK pathway while inhibiting mTORC1 to suppress proliferation, survival, and migration, leading to the apoptosis of NSCLC cells. In the present study, we investigated the anticancer potential of carnosic acid (CA), a bioactive polyphenolic diterpene compound found in RE. The treatment of H1299 and H460 NSCLC cells with CA resulted in concentration and time-dependent inhibition of cell proliferation assessed with crystal violet staining and 3H-thymidine incorporation, and concentration-dependent inhibition of survival, assessed using a colony formation assay. Additionally, CA induced apoptosis of H1299 cells as indicated by decreased B-cell lymphoma 2 (Bcl-2) levels, increased cleaved caspase-3, -7, poly (ADP-ribose) polymerase (PARP), Bcl-2-associated X protein (BAX) levels, and increased nuclear condensation. These antiproliferative and proapoptotic effects coincided with the upregulation of sestrin-2 and the phosphorylation/activation of LKB1 and AMPK. Downstream of AMPK signaling, CA increased levels of autophagy marker light chain 3 (LC3), an established marker of autophagy; inhibiting autophagy with 3-methyladenine (3MA) blocked the antiproliferative effect of CA. Overall, these data indicate that CA can inhibit NSCLC cell viability and that the underlying mechanism of action of CA involves the induction of autophagy through a Sestrin-2/LKB1/AMPK signaling cascade. Future experiments will use siRNA and small molecule inhibitors to better elucidate the role of these signaling molecules in the mechanism of action of CA as well as tumor xenograft models to assess the anticancer properties of CA in vivo.


Assuntos
Abietanos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Abietanos/farmacologia , Abietanos/uso terapêutico , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Serina-Treonina Quinases/metabolismo , Sestrinas/efeitos dos fármacos , Sestrinas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/metabolismo
19.
Dev Dyn ; 252(8): 1077-1095, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36880501

RESUMO

Neural crest cells (NCCs) are highly motile, multipotent, embryonic cells that delaminate from the dorsal edges of the neural tube. NCCs follow stereotypical long-range migratory pathways to reach target organs during development, where they give rise to multiple derivatives. The identification of reservoirs of neural crest stem cells that persist to adulthood has recently aroused renewed interest in the biology of NCCs. In this context, several recent studies have demonstrated the essential role of the metabolic kinase LKB1 in NCC establishment. This review surveys how LKB1 governs the formation and maintenance of several neural crest derivatives, including facial bones, melanocytes, Schwann cells, and the enteric nervous system. We also detail the underlying molecular mechanisms that involve downstream effectors of LKB1, in particular the contribution of the AMPK-mTOR signaling pathway to both polarity and metabolic processes. Collectively, these recent discoveries open promising perspectives for new therapeutic applications for the treatment of neural crest disorders.


Assuntos
Crista Neural , Células-Tronco Neurais , Crista Neural/metabolismo , Transdução de Sinais , Tubo Neural , Células de Schwann , Movimento Celular/fisiologia , Diferenciação Celular
20.
Dev Biol ; 492: 79-86, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206829

RESUMO

Collective cell migration is essential for embryonic development, tissue regeneration and repair, and has been implicated in pathological conditions such as cancer metastasis. It is, in part, directed by external cues that promote front-to-rear polarity in individual cells. However, our understanding of the pathways that underpin the directional movement of cells in response to external cues remains incomplete. To examine this issue we made use of neural crest cells (NC), which migrate as a collective during development to generate vital structures including bones and cartilage. Using a candidate approach, we found an essential role for Ran-binding protein 1 (RanBP1), a key effector of the nucleocytoplasmic transport pathway, in enabling directed migration of these cells. Our results indicate that RanBP1 is required for establishing front-to-rear polarity, so that NCs are able to chemotax. Moreover, our work suggests that RanBP1 function in chemotaxis involves the polarity kinase LKB1/PAR4. We envisage that regulated nuclear export of LKB1 through Ran/RanBP1 is a key regulatory step required for establishing front-to-rear polarity and thus chemotaxis, during NC collective migration.


Assuntos
Crista Neural , Proteínas Nucleares , Gravidez , Feminino , Humanos , Crista Neural/metabolismo , Proteínas Nucleares/metabolismo , Movimento Celular/fisiologia , Quimiotaxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA