Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2312224120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38051768

RESUMO

To master the activation law and mechanism of surface lattice oxygen for the oxygen evolution reaction (OER) is critical for the development of efficient water electrolysis. Herein, we propose a strategy for triggering lattice-oxygen oxidation and enabling non-concerted proton-electron transfers during OER conditions by substituting Al in La0.3Sr0.7CoO3-δ. According to our experimental data and density functional theory calculations, the substitution of Al can have a dual effect of promoting surface reconstruction into active Co oxyhydroxides and activating deprotonation on the reconstructed oxyhydroxide, inducing negatively charged oxygen as an active site. This leads to a significant improvement in the OER activity. Additionally, Al dopants facilitate the preoxidation of active cobalt metal, which introduces great structural flexibility due to elevated O 2p levels. As OER progresses, the accumulation of oxygen vacancies and lattice-oxygen oxidation on the catalyst surface leads to the termination of Al3+ leaching, thereby preventing further reconstruction. We have demonstrated a promising approach to achieving tunable electrochemical reconstruction by optimizing the electronic structure and gained a fundamental understanding of the activation mechanism of surface oxygen sites.

2.
Small ; : e2402004, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686672

RESUMO

The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.

3.
Small ; 20(12): e2307377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940628

RESUMO

P2-Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2-O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one-step synthesis of Cr, Mg co-doped P2-NaNMCM, resulting in a bi-functional improvement effect. P2-NaNMCM-0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X-ray diffraction analysis shows that the "pillar effect" of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2-O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X-ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium-ion batteries, promising high operating voltage and energy density.

4.
Small ; 20(4): e2306160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715337

RESUMO

The energy density of Ni-rich cathodes is expected to be further unlocked by increasing the cut-off voltage to above 4.3 V, which nevertheless come with significantly increased irreversible phase transition and abundant side reactions. In this study, the perovskite oxides enhanced radial-aligned LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathodes are reported, in which the coherent-growth La2 [LiTM]O4 clusters are evenly riveted into the crystals and the stable Lax Ca1- x [TM]O3- x protective layer is concurrently formed on the surface. The reciprocal interactions greatly reduce the lattice strain during de-/lithiation. Meantime, the abundant oxygen vacancies of the coating layer are proved to reversibly capture (state of charge) and re-release (state of discharge) the oxygen radicals, fully avoiding their correlative side reactions. The resultant NCM811 displays negligible O2 and CO2 emissions when charging to 4.5 V as well as a thinner CEI film, therefore delivering a large capacity of 225 mAh g-1 at 0.1C in coin-type half-cells and a high retention of 88.3% after 1000 cycles at 1C in pouch-type full-cells within 2.7-4.5 V. The development of high-voltage Ni-rich cathodes exhibits a highly effective pathway to further increase their energy density.

5.
Small ; 20(23): e2310040, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150619

RESUMO

Constructing composite catalysts with refined geometric control and optimal electronic structure provides a promising route to enhance electrocatalytic performance toward the oxygen evolution reaction (OER). Herein, a composite catalyst is prepared with multiple components using chemical vapour deposition method to transform crystalline NiFe2O4 into crystalline NiFe2O4@amorphous S-NiFe2O4 with core-shell structure (C-NiFe2O4@A-S-NiFe2O4), and Fe-NiOOH nanoparticles are subsequently in situ generated on its surface during the process of electrocatalytic OER. The C-NiFe2O4@A-S-NiFe2O4 catalyst exhibits a low overpotential of 275 mV while possessing an excellent stability for 500 h at 10 mA cm-2. The anion exchange membrane water electrolyzer with C-NiFe2O4@A-S-NiFe2O4 anode catalyst obtains a current density of 4270 mA cm- 2 at 2.0 V. Further, in situ Raman spectroscopy result demonstrates that in situ generated Fe-NiOOH nanoparticles are revealed to act as the catalytic active phase for catalyzing the OER. Besides, introducing A-S-NiFe2O4 in C-NiFe2O4@A-S-NiFe2O4 facilitates the formation of Fe-NiOOH nanoparticles with high-valency Ni, thus increasing the proportion of lattice oxygen-participated OER. This work not only provides an alternative strategy for the design of high-performance catalysts, but also lays a foundation for the exploration of catalytic mechanisms.

6.
Small ; 20(10): e2303927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875651

RESUMO

The crystalline/amorphous heterophase nanostructures are promising functional materials for biomedicals, catalysis, energy conversion, and storage. Despite great progress is achieved, facile synthesis of crystalline metal/amorphous multinary metal oxides nanohybrids remains challenging, and their electrocatalytic oxygen evolution reaction (OER) performance along with the catalytic mechanism are not systematically investigated. Herein, two kinds of ultrafine crystalline metal domains coupled with amorphous Ni-Fe-Mo oxides heterophase nanohybrids, including Ni/Ni0.5-a Fe0.5 Mo1.5 Ox and Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox , are fabricated through controllable reduction of amorphous Ni0.5 Fe0.5 Mo1.5 Ox precursors by simply tuning the amount of used reductant. Due to the suited component in metal domains, the special structure with dense crystalline/amorphous interfaces, and strong electronic coupling of their components, the resultant Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids show greatly enhanced OER activity with a low overpotential (278 mV) to reach 10 mA cm-2 current density and ultrahigh turnover frequency (38160 h-1 ), outperforming Ni/Ni0.5-a Fe0.5 Mo1.5 Ox , Ni0.5 Fe0.5 Mo1.5 Ox precursors, commercial IrO2 , and most of recently reported OER catalysts. Also, such Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids manifest good catalytic stability. As revealed by a series of spectroscopy and electrochemical analyses, their OER mechanism follows the lattice-oxygen-mediated (LOM) pathway. This work may shed light on the design of advanced heterophase nanohybrids, and promote their applications in water splitting, metal-air batteries, or other clean energy fields.

7.
Small ; : e2405080, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073300

RESUMO

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

8.
Small ; 20(26): e2309091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247184

RESUMO

Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58Fe0.38P0.07O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.

9.
Small ; 20(31): e2312148, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38438906

RESUMO

Iron-based perovskite air electrodes for protonic ceramic cells (PCCs) offer broad application prospects owing to their reasonable thermomechanical compatibility and steam tolerance. However, their insufficient electrocatalytic activity has considerably limited further development. Herein, oxygen-vacancy-rich BaFe0.6Ce0.2Sc0.2O3-δ (BFCS) perovskite is rationally designed by a facile Sc-substitution strategy for BaFe0.6Ce0.4O3-δ (BFC) as efficient and stable air electrode for PCCs. The BFCS electrode with an optimized Fe 3d-eg orbital occupancy and more oxygen vacancies exhibits a polarization resistance of ≈ 0.175 Ω cm2 at 600 °C, ≈ 1/3 of the BFC electrode (≈0.64 Ω cm2). Simultaneously, BFCS shows favorable proton uptake with a low proton defect formation enthalpy (- 81 kJ mol-1). By combining soft X-ray absorption spectroscopy and electrical conductivity relaxation studies, it is revealed that the enhancement of Fe4+-O2- interactions in BFCS promotes the activation and mobility of lattice oxygen, triggering the activity of BFCS in both oxygen reduction and evolution reactions (ORR/OER). The single cell achieves encouraging output performance in both fuel cell (1.55 W cm-2) and electrolysis cell (-2.96 A cm-2 at 1.3 V) modes at 700 °C. These results highlight the importance of activating lattice oxygen in air electrodes of PCCs.

10.
Molecules ; 29(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792116

RESUMO

Noble metals have become a research hotspot for the oxidation of light alkanes due to their low ignition temperature and easy activation of C-H; however, sintering and a high price limit their industrial applications. The preparation of effective and low-noble-metal catalysts still presents profound challenges. Herein, we describe how a Ru@CoMn2O4 spinel catalyst was synthesized via Ru in situ doping to promote the activity of propane oxidation. Ru@CoMn2O4 exhibited much higher catalytic activity than CoMn2O4, achieving 90% propane conversion at 217 °C. H2-TPR, O2-TPD, and XPS were used to evaluate the catalyst adsorption/lattice oxygen activity and the adsorption and catalytic oxidation capacity of propane. It could be concluded that Ru promoted synergistic interactions between cobalt and manganese, leading to electron transfer from the highly electronegative Ru to Co2+ and Mn3+. Compared with CoMn2O4, 0.1% Ru@CoMn2O4, with a higher quantity of lattice oxygen and oxygen mobility, possessed a stronger capability of reducibility, which was the main reason for the significant increase in the activity of Ru@CoMn2O4. In addition, intermediates of the reaction between adsorbed propane and lattice oxygen on the catalyst were monitored by in situ DRIFTS. This work highlights a new strategy for the design of a low-noble-metal catalyst for the efficient oxidation of propane.

11.
J Environ Sci (China) ; 142: 43-56, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527895

RESUMO

Alkali metal potassium was beneficial to the electronic regulation and structural stability of transition metal oxides. Herein, K ions were introduced into manganese oxides by different methods to improve the degradation efficiency of toluene. The results of activity experiments indicated that KMnO4-HT (HT: Hydrothermal method) exhibited outstanding low-temperature catalytic activity, and 90% conversion of toluene can be achieved at 243°C, which was 41°C and 43°C lower than that of KNO3-HT and Mn-HT, respectively. The largest specific surface area was observed on KMnO4-HT, facilitating the adsorption of toluene. The formation of cryptomelane structure over KMnO4-HT could contribute to higher content of Mn3+ and lattice oxygen (Olatt), excellent low-temperature reducibility, and high oxygen mobility, which could increase the catalytic performance. Furthermore, two distinct degradation pathways were inferred. Pathway Ⅰ (KMnO4-HT): toluene → benzyl → benzoic acid → carbonate → CO2 and H2O; Pathway ⅠⅠ (Mn-HT): toluene → benzyl alcohol → benzoic acid → phenol → maleic anhydride → CO2 and H2O. Fewer intermediates were detected on KMnO4-HT, indicating its stronger oxidation capacity of toluene, which was originated from the doping of K+ and the interaction between KOMn. More intermediates were observed on Mn-HT, which can be attributed to the weaker oxidation ability of pure Mn. The results indicated that the doping of K+ can improve the catalytic oxidation capacity of toluene, resulting in promoted degradation of intermediates during the oxidation of toluene.


Assuntos
Compostos de Manganês , Manganês , Tolueno , Manganês/química , Oxigênio/química , Dióxido de Carbono , Óxidos/química , Oxirredução , Catálise , Ácido Benzoico
12.
Angew Chem Int Ed Engl ; 63(9): e202313185, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38059914

RESUMO

Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide-based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO4 2- , PO3 2- , SeO4 2- , etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl-type oxide NiO to form a tetraoxo-tetrahedral coordination structure (S-O4 ) inside the NiO (S-NiO -I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S-O4 and Ni-S stable structure in S-NiO-I. Combining mass spectroscopy characterization, it could be confirmed that the S-O4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.

13.
Angew Chem Int Ed Engl ; : e202409876, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923765

RESUMO

Lattice-oxygen activation has emerged as a popular strategy for optimizing the performance and selectivity of oxide-based thermocatalysis and electrolysis. However, the significance of lattice oxygen in oxide photocatalysts has been ignored, particularly in gas-solid reactions. Here, using methane oxidation over a Ru1@ZnO single-atom photocatalyst as the prototypical reaction and via 18O isotope labelling techniques, we found that lattice oxygen can directly participate in gas-solid reactions. Lattice oxygen played a dominant role in the photocatalytic reaction, as determined by estimating the kinetic constants in the initial stage. Furthermore, we discovered that dynamic diffusion between O2 and lattice oxygen proceeded even in the absence of targeted reactants. Finally, single-atom Ru can facilitate the activation of adsorbed O2 and the subsequent regeneration of consumed lattice oxygen, thus ensuring high catalyst activity and stability. The results provide guidance for next-generation oxide photocatalysts with improved activities and selectivities.

14.
Angew Chem Int Ed Engl ; 63(33): e202405839, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38801294

RESUMO

Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen-oxygen bond. High-valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre-catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn-Teller (J-T) distortion induced structural instability, we incorporate high-spin Mn3+ ( t 2 g 3 e g 1 ${{t}_{2g}^{3}{e}_{g}^{1}}$ ) dopant into Co4N. Mn dopants enable a surface structural transformation from Co4N to CoOOH, and finally to CoO2, as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn-doped Co4N triggers the lattice oxygen activation, as evidenced experimentally by pH-dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18O-labelled catalysts. In general, this work not only offers the introducing J-T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.

15.
Angew Chem Int Ed Engl ; 63(29): e202405620, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709194

RESUMO

Manganese-based layered oxides are currently of significant interest as cathode materials for sodium-ion batteries due to their low toxicity and high specific capacity. However, the practical applications are impeded by sluggish intrinsic Na+ migration and poor structure stability as a result of Jahn-Teller distortion and complicated phase transition. In this study, a high-entropy strategy is proposed to enhance the high-voltage capacity and cycling stability. The designed P2-Na0.67Mn0.6Cu0.08Ni0.09Fe0.18Ti0.05O2 achieves a deeply desodiation and delivers charging capacity of 158.1 mAh g-1 corresponding to 0.61 Na with a high initial Coulombic efficiency of 98.2 %. The charge compensation is attributed to the cationic and anionic redox reactions conjunctively. Moreover, the crystal structure is effectively stabilized, leading to a slight variation of lattice parameters. This research carries implications for the expedited development of low-cost, high-energy-density cathode materials for sodium-ion batteries.

16.
Angew Chem Int Ed Engl ; 63(35): e202404330, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38878199

RESUMO

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a×3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

17.
Angew Chem Int Ed Engl ; 63(20): e202402171, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38494450

RESUMO

Design the electrocatalysts without noble metal is still a challenge for oxygen evolution reaction (OER) in acid media. Herein, we reported the manganese (Mn) doping method to decrease the concentration of oxygen vacancy (VO) and form the Mn-O structure adjacent octahedral sites in spinel NiCo2O4-δ (NiMn1.5Co3O4-δ), which highly enhanced the activity and stability of spinel NiCo2O4-δ with a low overpotential (η) of 280 mV at j=10 mA cm-2 and long-term stability of 80 h in acid media. The isotopic labelling experiment based on differential electrochemical mass spectrometry (DEMS) clearly demonstrated the lattice oxygen in NiMn1.5Co3O4-δ is more stable due to strong Mn-O bond and shows synergetic adsorbate evolution mechanism (SAEM) for acid OER. Density functional theory (DFT) calculations reveal highly increased oxygen vacancy formation energy (EVO) of NiCo2O4-δ after Mn doping. More importantly, the highly hydrogen bonding between Mn-O and *OOH adsorbed on adjacent Co octahedral sites promote the formation of *OO from *OOH due to the greatly enhanced charge density of O in Mn substituted sites.

18.
Angew Chem Int Ed Engl ; 63(19): e202402053, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38494439

RESUMO

Direct synthesis of dimethyl carbonate (DMC) from CO2 plays an important role in carbon neutrality, but its efficiency is still far from the practical application, due to the limited understanding of the reaction mechanism and rational design of efficient catalyst. Herein, abundant electron-enriched lattice oxygen species were introduced into CeO2 catalyst by constructing the point defects and crystal-terminated phases in the crystal reconstruction process. Benefitting from the acid-base properties modulated by the electron-enriched lattice oxygen, the optimized CeO2 catalyst exhibited a much higher DMC yield of 22.2 mmol g-1 than the reported metal-oxide-based catalysts at the similar conditions. Mechanistic investigations illustrated that the electron-enriched lattice oxygen can provide abundant sites for CO2 adsorption and activation, and was advantageous of the formation of the weakly adsorbed active methoxy species. These were facilitating to the coupling of methoxy and CO2 for the key *CH3OCOO intermediate formation. More importantly, the weakened adsorption of *CH3OCOO on the electron-enriched lattice oxygen can switch the rate-determining-step (RDS) of DMC synthesis from *CH3OCOO formation to *CH3OCOO dissociation, and lower the corresponding activation barriers, thus giving rise to a high performance. This work provides insights into the underlying reaction mechanism for DMC synthesis from CO2 and methanol and the design of highly efficient catalysts.

19.
Small ; 19(44): e2303249, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37386788

RESUMO

Oxygen evolution reaction (OER) plays key roles in electrochemical energy conversion devices. Recent advances have demonstrated that OER catalysts through lattice oxygen-mediated mechanism (LOM) can bypass the scaling relation-induced limitations on those catalysts through adsorbate evolution mechanism (AEM). Among various catalysts, IrOx , the most promising OER catalyst, suffers from low activities for its AEM pathway. Here, it is demonstrated that a pre-electrochemical acidic etching treatments on the hybrids of IrOx and Y2 O3 (IrOx /Y2 O3 ) switch the AEM-dominated OER pathway to LOM-dominated one in alkali electrolyte, delivering a high performance with a low overpotential of 223 mV at 10 mA cm-2 and a long-term stability. Mechanism investigations suggest that the pre-electrochemical etching treatments create more oxygen vacancies in catalysts due to the dissolution of yttrium and then provide highly active surface lattice oxygen for participating OER, thereby enabling the LOM-dominated pathway and resulting in a significantly increased OER activity in basic electrolyte.

20.
Small ; 19(38): e2300878, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211714

RESUMO

Triggering reversible lattice oxygen redox (LOR) in oxide cathodes is a paradigmatic approach to overcome the capacity ceiling determined by orthodox transition-metal (TM) redox. However, the LOR reactions in P2-structured Na-layered oxides are commonly accompanied by irreversible nonlattice oxygen redox (non-LOR) and large local structural rearrangements, bringing about capacity/voltage fading and constantly evolving charge/discharge voltage curves. Herein, a novel Na0.615 Mg0.154 Ti0.154 Mn0.615 ◻0.077 O2 (◻ = TM vacancies) cathode with both NaOMg and NaO◻ local configurations is deliberately designed. Intriguingly, the activating of oxygen redox at middle-voltage region (2.5-4.1 V) via NaO◻ configuration helps in maintaining the high-voltage plateau from LOR (≈4.38 V) and stable charge/discharge voltage curves even after 100 cycles. Hard X-ray absorption spectroscopy (hXAS), solid-state NMR, and electron paramagnetic resonance studies demonstrate that both the involvement of non-LOR at high-voltage and the structural distortions originating from Jahn-Teller distorted Mn3+ O6 at low-voltage are effectively restrained in Na0.615 Mg0.154 Ti0.154 Mn0.615 ◻0.077 O2 . Resultantly, the P2 phase is well retained in a wide electrochemical window of 1.5-4.5 V (vs Na+ /Na), resulting in an extraordinary capacity retention of 95.2% after 100 cycles. This work defines an effective approach to upgrade the lifespan of Na-ion battery with reversible high-voltage capacity provided by LOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA