Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(12): 1477, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966619

RESUMO

There are many studies that have examined the impact of the Three Gorges Dam (TGD) on changes in meteorological data, and most of them concluded that the TGD significantly reduced precipitation without taking into account the negative trends that had already existed before the impoundment. In this study, the investigation focused on the monthly precipitation data, and the Mann-Kendall (MK) trend analysis was conducted to show that the TGD had little effect on the trends of the precipitation data. Monthly data (1980-2018) from 19 stations upstream and downstream of the TGD and 5 stations located far from the main river were extracted. The analysis and results showed that although the linear long-term (1980-2018) precipitation trend upstream of the TGD was downward, the MK trend analysis showed that the precipitation trends became upward after impoundment. This situation existed even for station data located outside the region. Also, the analysis of monthly trends in different seasons showed that in spring and winter, there was only a very weak downward trend in monthly precipitation, while in summer and autumn, the trends were upward with steeper slopes. Following the upward trends of the monthly precipitation, the TGD generally positively intensified the monthly precipitation trends upstream and downstream of the dam, with the exception of a few months when total precipitation amounts were consistently low. In contrast to the trend analysis, which showed small and insignificant variations in precipitation data, the 12-month SPEI analysis showed a significant deterioration (about 20%) in the wetness index after impoundment both upstream and downstream of the TGD, while this situation did not occur outside the region. Thus, the TGD has extended dry periods both upstream and downstream of the dam over the past two decades.


Assuntos
Monitoramento Ambiental , Rios , Estações do Ano , China
2.
Environ Monit Assess ; 188(9): 522, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27531013

RESUMO

Based on the monitoring data of 78 monitoring stations from 2003 to 2012, five key water quality indexes (biochemical oxygen demand: BOD5, permanganate index: CODMn, dissolved oxygen: DO, ammonium nitrogen: NH3-N, and total phosphorus: TP) were selected to analyze their temporal and spatial characteristics in the highly disturbed Huaihe River Basin via Mann-Kendall trend analysis and boxplot analysis. The temporal and spatial variations of water pollutant concentrations in the Huaihe River Basin were investigated and analyzed to provide a scientific basis for water pollution control, water environment protection, and ecological restoration. The results indicated that the Yinghe River, Quanhe River, Honghe River, Guohe River, and Baohe River were the most seriously polluted rivers, followed by Hongze Lake, Luoma Lake, Yishuhe River, and Nansi Lake. BOD5, CODMn, and NH3-N were the major pollution indexes, for which the monitoring stations reported that more than 40 % of the water quality concentrations exceeded the class IV level. There were 21, 50, 36, and 21 monitoring stations that recorded significantly decreasing trends for BOD5, CODMn, NH3-N, and TP, respectively, and 39 monitoring stations showed a significantly increasing trend for DO. Moreover, the water quality concentrations had a certain concentricity and volatility according to boxplot analysis for the 20 monitoring stations. The majority of monitoring stations recorded a large fluctuation for the monitoring indexes in 2003 and 2004, which indicated that the water quality concentrations were unstable. According to the seasonal variations of the water quality concentrations in the mainstream of Huaihe River, the monthly variation trends of the BOD5, CODMn, DO, NH3-N, and TP concentrations were basically consistent among the seven monitoring stations. The BOD5, CODMn, NH3-N, and TP concentrations were affected by the change of the stream discharge; changes in DO and NH3-N concentrations were influenced by the regional environmental temperature, and the DO and NH3-N concentrations decreased when the water temperature increased.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Lagos/química , Rios/química , Poluentes Químicos da Água/análise , Poluição da Água/análise , Análise da Demanda Biológica de Oxigênio , China , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Estações do Ano , Análise Espaço-Temporal , Qualidade da Água
3.
Mar Pollut Bull ; 203: 116465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723549

RESUMO

Regular testing of coastal waters for fecal coliform bacteria by shellfish sanitation programs could provide data to fill large gaps in existing coastal water quality monitoring, but research is needed to understand the opportunities and limitations of using these data for inference of long-term trends. In this study, we analyzed spatiotemporal trends from multidecadal fecal coliform concentration observations collected by a shellfish sanitation program, and assessed the feasibility of using these monitoring data to infer long-term water quality dynamics. We evaluated trends in fecal coliform concentrations for a 20-year period (1999-2021) using data collected from spatially fixed sampling sites (n = 466) in North Carolina (USA). Findings indicated that shellfish sanitation data can be used for long-term water quality inference under relatively stationary management conditions, and that salinity trends can be used to investigate management-driven bias in fecal coliform observations collected in a particular area.


Assuntos
Monitoramento Ambiental , Estuários , Frutos do Mar , Qualidade da Água , Monitoramento Ambiental/métodos , North Carolina , Animais , Enterobacteriaceae/isolamento & purificação , Microbiologia da Água , Fezes/microbiologia , Fezes/química , Saneamento , Salinidade
4.
Environ Sci Pollut Res Int ; 29(54): 82271-82285, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35750907

RESUMO

The development of urbanization has changed the original land cover and exacerbated the urban heat island effect, seriously affecting the sustainable development of the ecological environment. Research on urban heat island characteristics and land cover changes in five major urban agglomerations in China to provide a reference for preventing thermal environmental risks and urban agglomeration construction planning. This paper estimates the surface urban heat island intensity (SUHII) of the five major urban agglomerations in China from 2003 to 2019 based on Google Earth Engine (GEE) through the urban-rural dichotomy, analyzes their trends through the Sen + M-K trend analysis method, and combines the detrending rate matrix to analyze the impact of land cover type shift on urban heat island change. Research shows that (1) the land cover types of the five major urban agglomerations in China have changed considerably from 2003 to 2019, and all five major urban agglomerations in China experienced varying degrees of urban expansion. (2) The annual average value of SUHII decreases in Beijing-Tianjin-Hebei, Yangtze River Delta, and middle reaches of the urban agglomerations, while the annual average value of SUHII increases in Chengdu-Chongqing and Pearl River Delta urban agglomerations. (3) The spatial composition of land cover types in the five major urban agglomerations in China is highly spatially correlated with urban heat islands, with urban land and bare land urban heat islands being the most pronounced. (4) The land cover type shift has the most significant heat island impact on Beijing-Tianjin-Hebei, Yangtze River Delta, and Chengdu-Chongqing urban agglomerations. (5) The land cover change (LCC) with an increasing trend in SUHII is mainly bare land converted to arable land, and water bodies, grassland, forest land, and arable land converted to urban land.


Assuntos
Temperatura Alta , Urbanização , Cidades , China , Água
5.
J Contam Hydrol ; 243: 103911, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34763242

RESUMO

Irrigation systems play vital roles not only in food production but also in supporting ecosystems. Understanding how the ecosystem has evolved in response to human activities is crucial for sustainable food production, especially for arid and semi-arid regions. In this study, we examined the trends of vegetation growth on a monthly basis in the ancient Yellow River irrigation system in Ningxia, China. We used the leaf area index (LAI) to characterize the vegetation growth from 2007 to 2019. The LAI trends were associated with a series of driving forces, explaining the spatial and temporal change of vegetation growth. With the provision of the Wilks feature importance method, 2-month averaged air temperature and irrigation were identified as the two most important variables for monthly LAI simulation. Future climate projections based on the Regional Climate Model system (RegCM) suggested dryer and longer summers under the RCP 8.5 scenario. These changes will increase the crop water demand during the growing months. In the future, water conflict might be further intensified in May, in which the present irrigation water has already led to a decreased crop growth. Our findings demonstrated that the Mann Kendall monthly trend analysis could provide more helpful information for monitoring the vegetation growth than the trend analysis on a yearly and seasonal basis.


Assuntos
Irrigação Agrícola , Ecossistema , Rios , China , Mudança Climática , Desenvolvimento Vegetal , Plantas , Estações do Ano
6.
Sci Total Environ ; 571: 1392-406, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27450256

RESUMO

Water resources are under pressure from multiple anthropogenic stressors such as changing climate, agriculture and water abstraction. This holds, in particular, for the Mediterranean region, where substantial changes in climate are expected throughout the 21st century. Nonetheless, little attention has been paid to linkages between long-term trends in climate, streamflow and water quality in Mediterranean river basins. In the present study, we perform a comparative analysis of recent trends in hydroclimatic parameters and nitrate pollution in three climatologically different Mediterranean watersheds (i.e., the Adige, Ebro and Sava River Basins). Mann-Kendall trend analyses of annual mean temperature, precipitation and streamflow (period 1971 to 2010) and monthly nitrate concentrations, mass fluxes and flow-adjusted concentrations (period 1996 to 2012) were performed in these river basins. Temperature is shown to have increased the most in the Ebro followed by the Sava, whereas minor increases are observed in the Adige. Precipitation presents, overall, a negative trend in the Ebro and a positive trend in both the Adige and Sava. These climatic trends thus suggest the highest risk of increasing water scarcity for the Ebro and the lowest risk for the Adige. This is confirmed by trend analyses of streamflow time series, which indicate a severe decline in streamflow for the Ebro and a substantial decline in the Sava, as opposed to the Adige showing no prevailing trend. Concerning surface water quality, nitrate pollution appears to have decreased in all study basins. Overall, these findings emphasize progressive reduction of water resources availability in river basins characterized by continental climate (i.e., Ebro and Sava). This study thus underlines the need for adapted river management in the Mediterranean region, particularly considering strong feedbacks between hydroclimatic trends, freshwater ecosystem services and water resources availability for agriculture, water supply and hydropower generation.


Assuntos
Clima , Nitratos/análise , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água , Monitoramento Ambiental , Europa (Continente) , Hidrologia
7.
Sci Total Environ ; 521-522: 388-99, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863317

RESUMO

Anthropogenic pressures have led to problems of nutrient over-enrichment and eutrophication in estuarine and coastal systems on a global scale. Recent improvements in farming practices, specifically a decrease in fertiliser application rates, have reduced nutrient loadings in Ireland. In line with national and European Directives, monitoring of Irish estuarine systems has been conducted for the last 30years, allowing a comparison of the effectiveness of measures undertaken to improve water quality and chemical and biological trends. The Blackwater Estuary, which drains a large agricultural catchment on the south coast of Ireland, has experienced a decrease in calculated nitrogen (N) (17%) and phosphorus (P) (20%) loads in the last decade. Monitored long-term river inputs reflect the reductions while estuarine P concentrations, chlorophyll and dissolved oxygen saturation show concurrent improvement. Consistently high N concentrations suggest a decoupling between N loads and estuarine responses. This highlights the complex interaction between N and P load reductions, and biochemical processes relating to remineralisation and primary production which can alter the effectiveness of the estuarine filter in reducing nutrient transport to the coastal zone. Effective management and reduction of both diffuse and point nutrient sources to surface waters require a consideration of the processes which may alter the effectiveness of measures in estuarine and coastal waters.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Estuários , Agricultura , Clorofila/análise , Eutrofização , Irlanda , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA