Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cancer Cell Int ; 22(1): 212, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698138

RESUMO

Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4), a transcription factor of NFAT family, which is activated by Ca2+/calcineurin signaling. Recently, it is reported that aberrantly activated NFATc4 participated and modulated in the initiation, proliferation, invasion, and metastasis of various cancers (including cancers of the lung, breast, ovary, cervix, skin, liver, pancreas, as well as glioma, primary myelofibrosis and acute myelocytic leukemia). In this review, we cover the latest knowledge on NFATc4 expression pattern, post-translational modification, epigenetic regulation, transcriptional activity regulation and its downstream targets. Furthermore, we perform database analysis to reveal the prognostic value of NFATc4 in various cancers and discuss the current unexplored areas of NFATc4 research. All in all, the result from these studies strongly suggest that NFATc4 has the potential as a molecular therapeutic target in multiple human cancer types.

2.
J Cell Sci ; 130(18): 3083-3093, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760926

RESUMO

Ca2+ signaling plays a key role during human myoblast differentiation. Among Ca2+-sensitive pathways, calcineurin is essential for myoblast differentiation and muscle regeneration. Nuclear factor of activated T-cell (NFAT) transcription factors are the major calcineurin targets. We investigated the expression and the role of each NFAT gene during human primary myoblast differentiation. We found that three NFAT isoforms are present, NFATc1, NFATc3 and NFATc4. Importantly, while their mRNA expression increases during differentiation, NFATc1 is more highly expressed in myotubes, whilst NFATc4 is specifically maintained in reserve cells. NFATc3 is present in both cell types, although no specific role during myoblast differentiation was observed. Knockdown of either NFATc1 or NFATc4 affects the differentiation process similarly, by decreasing the expression of late differentiation markers, but impairs myotube formation differently. Whereas NFATc1 knockdown strongly reduced the number and the surface area of myotubes, NFATc4 knockdown increased the surface area of myotubes and reduced the pool of reserve cells. We conclude that NFAT genes have specific roles in myotube formation and in the maintenance of the reserve cell pool during human postnatal myogenesis.


Assuntos
Diferenciação Celular , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/genética , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fatores de Transcrição NFATC/genética , Fator de Transcrição PAX7/metabolismo , Fenótipo , RNA Interferente Pequeno/metabolismo
4.
Mol Biol Rep ; 46(6): 6197-6204, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486013

RESUMO

Post-traumatic stress disorder (PTSD) is a mental disease associated with the exposure of traumatic stress, and results in the structural and functional changes of hippocampus. Calcineurin (CaN), a calcium/calmodulin-regulated protein phosphatase ubiquitously expressed in brain, has a very important role in the fear extinction, neuronal structure and neuronal excitability. With CaN activation, its down target nuclear factor of activated T cells (NFATs) dephosphorylated and then translocated from the cytoplasm to the nucleus to affect neuronal function, resulting in the function changes of brain structure such as hippocampus. Increasing evidence has suggested that CaN/NFATs signaling are involved in the regulation of mental disorders like Alzheimer's disease, depression, while little is known about its effects on the molecular mechanisms on PTSD. This study seek to know the relationship between PTSD and CaN/NFATc4 pathway, and to detect whether CaN/NFATc4 pathway are involved in the hippocampus dysfunctions in a single-prolonged stress (SPS)-based rat model of PTSD. Our results have showed that after 4 days exposed to SPS, the protein expression of CaN up-regulated and the NFATc4 dephosphorylated and imported into the nucleus; while at the 7 and 14 day exposed to SPS, with the down-regulation of CaN, the expression of phosphorylate-NFATc4 increased. Our results show that CaN/NFATc4 pathway were involved in the development of PTSD model, which suggested that the changes of CaN/NFATc4 pathway may be one of the pathological molecular mechanism in the dysfunction of hippocampus in PTSD.


Assuntos
Calcineurina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico , Animais , Comportamento Animal , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imuno-Histoquímica , Aprendizagem em Labirinto , Fosforilação , Ratos , Transtornos de Estresse Pós-Traumáticos/psicologia
5.
J Neurochem ; 147(1): 40-57, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29920676

RESUMO

Neuritin is a neurotrophic factor that is activated by neural activity and neurotrophins. Its major function is to promote neurite growth and branching; however, the underlying mechanisms are not fully understood. To address this issue, this study investigated the effects of neuritin on neurite and spine growth and intracellular Ca2+ concentration in rat cerebellar granule neurons (CGNs). Incubation of CGNs for 24 h with neuritin increased neurite length and spine density; this effect was mimicked by insulin and abolished by inhibiting insulin receptor (IR) or mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) activity. Calcium imaging and western blot analysis revealed that neuritin enhanced the increase in intracellular Ca2+ level induced by high K+ , and stimulated the cell surface expression of CaV 1.2 and CaV 1.3 α subunits of the L-type calcium channel, which was suppressed by inhibition of IR or mitogen-activated protein kinase kinase/ERK. Treatment with inhibitors of L-type calcium channels, calmodulin, and calcineurin (CaN) abrogated the effects of neuritin on neurite length and spine density. A similar result was obtained by silencing nuclear factor of activated T cells c4, which is known to be activated by neuritin in CGNs. These results indicate that IR and ERK signaling as well as the Ca2+ /CaN/nuclear factor of activated T cells c4 axis mediate the effects of neuritin on neurite and spine growth in CGNs. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14195.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cerebelo/citologia , Espinhas Dendríticas/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuropeptídeos/farmacologia , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Grânulos Citoplasmáticos/efeitos dos fármacos , Feminino , Proteínas Ligadas por GPI/farmacologia , Inativação Gênica , Humanos , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/antagonistas & inibidores
6.
Acta Pharmacol Sin ; 39(9): 1414-1420, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29595190

RESUMO

Neuritin is a member of the neurotrophic factor family, which is activated by neural activity and neurotrophins, and promotes neurite growth and branching. It has shown to play an important role in neuronal plasticity and regeneration. It is also involved in other biological processes such as angiogenesis, tumorigenesis and immunomodulation. Thus far, however, the primary mechanisms of neuritin, including whether or not it acts through a receptor or which downstream signals might be activated following binding, are not fully understood. Recent evidence suggests that neuritin may be a potential therapeutic target in several neurodegenerative diseases. This review focuses on the recent advances in studies regarding the newly identified functions of neuritin and the signaling pathways related to these functions. We also discuss current hot topics and difficulties in neuritin research.


Assuntos
Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Ligadas por GPI/fisiologia , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/fisiopatologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia
7.
J Cell Mol Med ; 21(8): 1492-1502, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28296029

RESUMO

Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2 O2 -induced injury and hypoxia/reoxygenation-induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang-II)-induced cardiac hypertrophy. Following 14 days of Ang-II infusion with osmotic mini-pumps, a comparable hypertension was generated in both of CD38 knockout and wild-type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild-type mice compared with CD38 knockout mice. Consistently, RNAi-induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang-II-stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang-II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+ -NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.


Assuntos
ADP-Ribosil Ciclase 1/genética , Angiotensina II/farmacologia , Cardiomegalia/genética , Glicoproteínas de Membrana/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/deficiência , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cálcio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuínas/genética , Sirtuínas/metabolismo
8.
J Neurosci ; 34(25): 8630-45, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24948817

RESUMO

Correlative evidence suggests that GABAergic signaling plays an important role in the regulation of activity-dependent hippocampal neurogenesis and emotional behavior in adult mice. However, whether these are causally linked at the molecular level remains elusive. Nuclear factor of activated T cell (NFAT) proteins are activity-dependent transcription factors that respond to environmental stimuli in different cell types, including hippocampal newborn neurons. Here, we identify NFATc4 as a key activity-dependent transcriptional regulator of GABA signaling in hippocampal progenitor cells via an unbiased high-throughput genome-wide study. Next, we demonstrate that GABAA receptor (GABAAR) signaling modulates hippocampal neurogenesis through NFATc4 activity, which in turn regulates GABRA2 and GABRA4 subunit expression via binding to specific promoter responsive elements, as assessed by ChIP and luciferase assays. Furthermore, we show that selective pharmacological enhancement of GABAAR activity promotes hippocampal neurogenesis via the calcineurin/NFATc4 axis. Importantly, the NFATc4-dependent increase in hippocampal neurogenesis after GABAAR stimulation is required for the suppression of the anxiety response in mice. Together, these data provide a novel molecular insight into the regulation of the anxiety response in mice, suggesting that the GABAAR/NFATc4 axis is a druggable target for the therapy of emotional disorders.


Assuntos
Ansiedade/metabolismo , Ansiedade/prevenção & controle , Fatores de Transcrição NFATC/metabolismo , Neurogênese/fisiologia , Receptores de GABA-A/fisiologia , Transdução de Sinais/fisiologia , Animais , Ansiedade/patologia , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Cytokine ; 70(2): 81-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25132256

RESUMO

AIM: Astragalus membranaceus is a Chinese medicinal herb and has been shown to improve hapten-induced experimental colitis. One of its major components is polysaccharides. We investigated the effect of Astragalus polysaccharides (APS) on expression of TNF-α, IL-1ß and NFATc4 in a rat model of experimental colitis. METHODS: The experimental colitis model was induced by TNBS. Forty five rats were divided into five groups (n=9): Normal control group, receiving ethanol vehicle with no TNBS during induction and IP saline injection during treatment; TNBS colitis model group (TNBS+IP saline), receiving only IP saline vehicle treatment; APS low dose group (TNBS+L-APS), receiving APS 100mg/kg; APS high dose group (TNBS+H-APS), receiving APS 200mg/kg; and positive control group (TNBS+Dexm), receiving dexamethasone 0.3mg/kg. The clinical features, macroscopic and microscopic scores were assessed. The expressions of TNF-α, IL-1ß and NFATc4 were measured by real-time PCR and ELISA assays. RESULTS: Compared to normal control rats, TNBS+IP saline had significant weight loss, increased macroscopic and microscopic scores, higher disease activity index (DAI) up-regulation of TNF-α, IL-1ß and NFATc4 mRNA expression and up-regulation of TNF-α and IL-1ß protein expression. Compared to TNBS+IP saline, treatment with APS or dexamethasone significantly reduced DAI, partially but significantly prevented TNBS colitis-induced weight loss and improved both macroscopic and microscopic scores; high dose APS or dexamethasone significantly down-regulated TNF-α and IL-1ß expressions (both mRNA and protein) and up-regulated NFATc4 mRNA and protein expression. The effect of high dose APS and dexamethasone is comparable. CONCLUSIONS: APS significantly improved experimental TNBS-induced colitis in rats through regulation of TNF-α, IL-1ß and NFATc4 expression.


Assuntos
Astragalus propinquus/química , Colite/genética , Interleucina-1beta/genética , Fatores de Transcrição NFATC/genética , Proteínas do Tecido Nervoso/genética , Polissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/genética , Animais , Peso Corporal/efeitos dos fármacos , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/metabolismo , Masculino , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/metabolismo
11.
Adv Sci (Weinh) ; 11(29): e2308769, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810124

RESUMO

Cardiac hypertrophy is a key factor driving heart failure (HF), yet its pathogenesis remains incompletely elucidated. Mettl1-catalyzed RNA N7-methylguanosine (m7G) modification has been implicated in ischemic cardiac injury and fibrosis. This study aims to elucidate the role of Mettl1 and the mechanism underlying non-ischemic cardiac hypertrophy and HF. It is found that Mettl1 is upregulated in human failing hearts and hypertrophic murine hearts following transverse aortic constriction (TAC) and Angiotensin II (Ang II) infusion. YY1 acts as a transcriptional factor for Mettl1 during cardiac hypertrophy. Mettl1 knockout alleviates cardiac hypertrophy and dysfunction upon pressure overload from TAC or Ang II stimulation. Conversely, cardiac-specific overexpression of Mettl1 results in cardiac remodeling. Mechanically, Mettl1 increases SRSF9 expression by inducing m7G modification of SRSF9 mRNA, facilitating alternative splicing and stabilization of NFATc4, thereby promoting cardiac hypertrophy. Moreover, the knockdown of SRSF9 protects against TAC- or Mettl1-induced cardiac hypertrophic phenotypes in vivo and in vitro. The study identifies Mettl1 as a crucial regulator of cardiac hypertrophy, providing a novel therapeutic target for HF.


Assuntos
Cardiomegalia , Modelos Animais de Doenças , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Camundongos , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Masculino , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Mol Neurobiol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639863

RESUMO

Retinal ganglion cells (RGCs), neurons transmitting visual information via the optic nerve, fail to regenerate their axons after injury. The progressive loss of RGC function underlies the pathophysiology of glaucoma and other optic neuropathies, often leading to irreversible blindness. Therefore, there is an urgent need to identify the regulators of RGC survival and the regenerative program. In this study, we investigated the role of the family of transcription factors known as nuclear factor of activated T cells (NFAT), which are expressed in the retina; however, their role in RGC survival after injury is unknown. Using the optic nerve crush (ONC) model, widely employed to study optic neuropathies and central nervous system axon injury, we found that NFATc4 is specifically but transiently up-regulated in response to mechanical injury. In the injured retina, NFATc4 immunolocalized primarily to the ganglionic cell layer. Utilizing NFATc4-/- and NFATc3-/- mice, we demonstrated that NFATc4, but not NFATc3, knockout increased RGC survival, improved retina function, and delayed axonal degeneration. Microarray screening data, along with decreased immunostaining of cleaved caspase-3, revealed that NFATc4 knockout was protective against ONC-induced degeneration by suppressing pro-apoptotic signaling. Finally, we used lentiviral-mediated NFATc4 delivery to the retina of NFATc4-/- mice and reversed the pro-survival effect of NFATc4 knockout, conclusively linking the enhanced survival of injured RGCs to NFATc4-dependent mechanisms. In summary, this study is the first to demonstrate that NFATc4 knockout may confer transient RGC neuroprotection and decelerate axonal degeneration after injury, providing a potent therapeutic strategy for optic neuropathies.

13.
J Clin Pharmacol ; 64(6): 719-727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38327217

RESUMO

The determination of the appropriate initial dose for tacrolimus is crucial in achieving the target concentration promptly and avoiding adverse effects and poor prognosis. However, the trial-and-error approach is still common practice. This study aimed to establish a prediction model for an initial dosing algorithm of tacrolimus in patients receiving a lung transplant. A total of 210 lung transplant recipients were enrolled, and 26 single nucleotide polymorphisms (SNP) from 18 genes that could potentially affect tacrolimus pharmacokinetics were genotyped. Associations between SNPs and tacrolimus concentration/dose ratio were analyzed. SNPs that remained significant in pharmacogenomic analysis were further combined with clinical factors to construct a prediction model for tacrolimus initial dose. The dose needed to reach steady state tacrolimus concentrations and achieve the target range was used to validate model prediction efficiency. Our final model consisted of 7 predictors-CYP3A5 rs776746, SLCO1B3 rs4149117, SLC2A2 rs1499821, NFATc4 rs1955915, alanine aminotransferase, direct bilirubin, and hematocrit-and explained 41.4% variance in the tacrolimus concentration/dose ratio. It achieved an area under the receiver operating characteristic curve of 0.804 (95% confidence interval, 0.746-0.861). The Hosmer-Lemeshow test yielded a nonsignificant P value of .790, suggesting good fit of the model. The predicted dose exhibited good correlation with the observed dose in the early postoperative period (r = 0.748, P less than .001). Our study provided a genotype-guided prediction model for tacrolimus initial dose, which may help to guide individualized dosing of tacrolimus in the lung transplant population in clinical practice.


Assuntos
Genótipo , Imunossupressores , Transplante de Pulmão , Polimorfismo de Nucleotídeo Único , Tacrolimo , Humanos , Tacrolimo/farmacocinética , Tacrolimo/administração & dosagem , Masculino , Feminino , Imunossupressores/farmacocinética , Imunossupressores/administração & dosagem , Imunossupressores/sangue , Pessoa de Meia-Idade , Adulto , Citocromo P-450 CYP3A/genética , Relação Dose-Resposta a Droga
14.
Indian J Dermatol ; 68(2): 156-160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275813

RESUMO

Nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4) has been implicated in keratinocyte development and several types of cancer. A well-defined role for NFATC4 in cutaneous squamous cell carcinoma (CSCC) has not yet been established. In this study, NFATC4 gene function in CSCC development was examined. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to measure the mRNA expression of NFATC4 in CSCC tissues and controls. A431 and Colo16 cell proliferation, invasion, and apoptosis were measured by CCK-8 assay, transwell invasion, and flow cytometry, respectively, after an NFATC4 expression lentivirus infection. Animal models were applied to validate the function of the NFATC4 gene. (1) CSCC tissues showed a significant decrease in NFATC4 expression compared to controls. (2) Overexpression of NFATc4 suppresses A431 and Colo16 cell proliferation and invasion but promotes cell apoptosis. (3) Mouse models overexpressing NFATC4 showed reduced tumourigenesis. It was suggested that NFATC4 might be a tumour suppressor gene in CSCC.

15.
Cureus ; 15(8): e43715, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37724220

RESUMO

This case report describes the dramatic clinical response of refractory chronic complex regional pain syndrome to combined immunomodulatory treatment. Ketamine and rapamycin markedly minimized pain historically associated with suicidal behavior, increased baseline activity, and allowed for a reduction in palliative polypharmacy. The piecewise mechanism of action is unclear given multiple postulated targets, such as microglia, astroglia, T-regulatory cells, B-regulatory cells, or neurons. Relevant laboratory and genetic information may allow the application of this treatment to other affected individuals.

16.
Acta Neuropathol Commun ; 11(1): 125, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525259

RESUMO

Glioblastoma (GBM) is the most frequent malignant brain tumor, the relapse of which is unavoidable following standard treatment. However, the effective treatment for recurrent GBM is lacking, necessitating the understanding of key mechanisms driving tumor recurrence and the identification of new targets for intervention. Here, we integrated single-cell RNA-sequencing data spanning 36 patient-matched primary and recurrent GBM (pGBM and rGBM) specimens, with 6 longitudinal GBM spatial transcriptomics to explore molecular alterations at recurrence, with each cell type characterized in parallel. Genes involved in extracellular matrix (ECM) organization are preferentially enriched in rGBM cells, and MAFK is highlighted as a potential regulator. Notably, we uncover a unique subpopulation of GBM cells that is much less detected in pGBM and highly expresses ECM and mesenchyme related genes, suggesting it may contribute to the molecular transition of rGBM. Further regulatory network analysis reveals that transcription factors, such as NFATC4 and activator protein 1 members, may function as hub regulators. All non-tumor cells alter their specific sets of genes as well and certain subgroups of myeloid cells appear to be physically associated with the mesenchyme-like GBM subpopulation. Altogether, our study provides new insights into the molecular understanding of GBM relapse and candidate targets for rGBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Perfilação da Expressão Gênica , Neoplasias Encefálicas/patologia , Fatores de Transcrição/genética , Análise de Célula Única
17.
Neuropharmacology ; 219: 109250, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088985

RESUMO

MicroRNAs (or miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression. Recently, we reported that the nuclear factor of activated T cells 4 (NFATc4) signaling might contribute to sustained prophylactic effects of new antidepressant (R)-ketamine in lipopolysaccharide (LPS)-treated inflammation model of depression. In this study, we examined the role of miRNAs (miR-149 and miR-7688-5p) which can regulate NFATc4 in the prefrontal cortex (PFC) of male mice after administration of LPS (1.0 mg/kg). There was a positive correlation between the expression of Nfatc4 and the expression of miR-149 in the PFC. There was also a negative correlation between gene expression of Nfatc4 and gene expression of miR-7688-5p in the PFC. Gut microbiota analysis showed that pretreatment with (R)-ketamine (10 mg/kg) could restore altered composition of gut microbiota in LPS-treated mice. A network analysis showed that gut microbiota may regulate gene expression of Nfatc4 and miR-149 (or miR-7688-5p) in the PFC. Finally, inhibition of miR-149 by antagomiR-149 blocked LPS-induced depression-like behavior by attenuating LPS-induced expression of NFATc4 in the PFC. These findings suggest that the regulation of NFATc4 signaling by miR-149 might play a role in persistent prophylactic effects of (R)-ketamine, and that gut microbiota may regulate the gene expression of miRNAs in the PFC through gut-microbiota-brain axis.


Assuntos
Ketamina , MicroRNAs , Animais , Antagomirs/metabolismo , Antagomirs/farmacologia , Antidepressivos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ketamina/metabolismo , Ketamina/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Córtex Pré-Frontal
18.
Toxicol Lett ; 350: 10-21, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192554

RESUMO

BACKGROUND: Hepatocyte senescence is a core event that mediates the occurrence and development of alcoholic liver disease. Nuclear factor of activated T-cells 4 (NFATc4) is a key driver of nonalcoholic steatohepatitis. However, little was known about the implication of NFATc4 for alcoholic liver disease. This study was aimed to investigate the role of NFATc4 in hepatocyte senescence and further elucidate the underlying mechanism. METHODS: Real-time PCR, Western blot, immunofluorescence staining, and enzyme-linked immunosorbent assay were performed to explore the role of NFATc4 in hepatocyte senescence. RESULTS: NFATc4 was induced in ethanol-incubated hepatocytes. NFATc4 knockdown recovered cell viability and reduced the release of aspartate transaminase, alanine transaminase, and lactic dehydrogenase from ethanol-incubated hepatocytes. NFATc4 knockdown protected mice from alcoholic liver injury and inflammation. NFATc4 knockdown counteracted ethanol-induced hepatocyte senescence, evidenced by decreased senescence-associated ß-galactosidase positivity and reduced p16, p21, HMGA1, and γH2AX, which was validated in in vivo studies. Peroxisome proliferator-activated receptor (PPAR)γ was inhibited by NFATc4 in ethanol-treated hepatocytes. PPARγ deficiency abrogated the inhibitory effects of NFATc4 knockdown on hepatocyte senescence, oxidative stress, and hepatic steatosis in mice with alcoholic liver disease. CONCLUSIONS: This work discovered that ethanol enhanced NFATc4 expression, which further triggered hepatocyte senescence via repression of PPARγ.


Assuntos
Senescência Celular/efeitos dos fármacos , Etanol/efeitos adversos , Etanol/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/fisiopatologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/farmacologia , Animais , Células Cultivadas/efeitos dos fármacos , Humanos , Hepatopatias Alcoólicas/metabolismo , Camundongos , Modelos Animais
19.
Toxicology ; 461: 152923, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34474091

RESUMO

Receptor-interacting protein kinase (RIPK) 3-dependent necroptosis plays a critical role in alcoholic liver disease. RIPK3 also facilitates steatosis, oxidative stress, and inflammation. Pterostilbene (PTS) has favorable hepatoprotective activities. The present study was aimed to reveal the therapeutic effects of PTS on ethanol-induced hepatocyte necroptosis and further illustrate possible molecular mechanisms. Human hepatocytes LO2 were incubated with 100 mM ethanol for 24 h to mimic alcoholic hepatocyte injury. Results showed that PTS at 20 µM reduced damage-associated molecular patterns (DAMPs) release, including IL-1α and high-mobility group box 1 (HMGB1), and blocked necroptotic signaling, evidenced by decreased RIPK1 and RIPK3 expression. Trypan blue staining visually showed that PTS reduced nonviable hepatocytes after ethanol exposure, which was counteracted by adenovirus-mediated ectopic overexpression of RIPK3 but not RIPK1. Besides, PTS inhibited ethanol-induced hepatocyte steatosis via restricting lipogenesis and enhancing lipolysis, decreased oxidative stress via rescuing mitochondrial membrane potential, reducing oxidative system, and enhancing antioxidant system, and relieved inflammation evidenced by decreased expression of proinflammatory factors. Notably, RIPK3 overexpression diminished these protective effects of PTS. Subsequent work indicated that PTS suppressed the expression and nuclear translocation of nuclear factor of activated T-cells 4 (NFATc4), an acetylated protein, in ethanol-exposed hepatocytes, while NFATc4 overexpression impaired the negative regulation of PTS on RIPK3 and DAMPs release. Further, PTS rescued sirtuin 2 (SIRT2) expression, and SIRT2 knockdown abrogated the inhibitory effects of PTS on nuclear translocation and acetylation status of NFATc4 in ethanol-incubated hepatocytes. In conclusion, PTS attenuated RIPK3-dependent hepatocyte necroptosis after ethanol exposure via SIRT2-mediated NFATc4 deacetylation.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepatopatias Alcoólicas/tratamento farmacológico , Necroptose/efeitos dos fármacos , Estilbenos/farmacologia , Antioxidantes/metabolismo , Células Cultivadas , Etanol/toxicidade , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Humanos , Hepatopatias Alcoólicas/fisiopatologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
20.
Front Genet ; 11: 573124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329712

RESUMO

Despite that immune responses play important roles in acute myeloid leukemia (AML), immunotherapy is still not widely used in AML due to lack of an ideal target. Therefore, we identified key immune genes and cellular components in AML by an integrated bioinformatics analysis, trying to find potential targets for AML. Eighty-six differentially expressed immune genes (DEIGs) were identified from 751 differentially expressed genes (DEGs) between AML patients with fair prognosis and poor prognosis from the TCGA database. Among them, nine prognostic immune genes, including NCR2, NPDC1, KIR2DL4, KLC3, TWIST1, SNORD3B-1, NFATC4, XCR1, and LEFTY1, were identified by univariate Cox regression analysis. A multivariable prediction model was established based on prognostic immune genes. Kaplan-Meier survival curve analysis indicated that patients in the high-risk group had a shorter survival rate and higher mortality than those in the low-risk group (P < 0.001), indicating good effectiveness of the model. Furthermore, nuclear factors of activated T cells-4 (NFATC4) was recognized as the key immune gene identified by co-expression of differentially expressed transcription factors (DETFs) and prognostic immune genes. ATP-binding cassette transporters (ABC transporters) were the downstream KEGG pathway of NFATC4, identified by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). To explore the immune responses NFATC4 was involved in, an immune gene set of T cell co-stimulation was identified by single-cell GSEA (ssGSEA) and Pearson correlation analysis, positively associated with NFATC4 in AML (R = 0.323, P < 0.001, positive). In order to find out the immune cell types affected by NFATC4, the CIBERSORT algorithm and Pearson correlation analysis were applied, and it was revealed that regulatory T cells (Tregs) have the highest correlation with NFATC4 (R = 0.526, P < 0.001, positive) in AML from 22 subsets of tumor-infiltrating immune cells. The results of this study were supported by multi-omics database validation. In all, our study indicated that NFATC4 was the key immune gene in AML poor prognosis through recruiting Tregs, suggesting that NFATC4 might serve as a new therapy target for AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA