Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 114(5): 1164-1177, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891808

RESUMO

Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.


Assuntos
Herbivoria , Micorrizas , Animais , Herbivoria/fisiologia , Insetos/fisiologia , Plantas/metabolismo , Rizosfera
2.
J Sci Food Agric ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291387

RESUMO

BACKGROUND: Jinmudan (JMD) is a high-aroma variety widely cultivated in China. The current study primarily focuses on the key volatile metabolites in JMD black and oolong teas, and investigates the impact of processing technologies on the aroma quality of JMD tea. However, few studies have explored the suitability of JMD for producing a certain type of tea or the characteristic quality differences among various JMD teas using multivariate statistical analysis methods. RESULTS: The principal volatile metabolites contributing to the floral quality of JMD tea are linalool, geraniol, indole and phenethyl alcohol. In JMD black tea (BT), the key volatile metabolites include methyl salicylate, geraniol, (E)-ß-ocimene and phenethyl alcohol. In JMD oolong tea (OT), the key volatile metabolites include indole, linalyl valerate and phenethyl alcohol. In JMD yellow tea (YT), the key volatile metabolites include methyl salicylate, geraniol and terpinolene. In JMD white tea (WT), the key volatile metabolites include methyl salicylate, geraniol and terpinolene. In JMD green tea (GT), the key volatile metabolites include (E)-ß-ocimene, indole and geraniol. Comparative analysis and KEGG pathway enrichment analysis revealed that flavonoid biosynthesis is the primary metabolic pathway responsible for the taste differences among various tea types. GT exhibited higher levels of phloretin, dihydromyricetin and galangin. The contents of vitexin, tricetin in YT were relatively higher. The contents of aromadendrin and naringenin in BT were higher, while OT contained higher levels of kaempferol. Additionally, WT showed higher contents of 3-O-acetylpinobanksin and 3,5,7-pinobanksin. CONCLUSION: This study explained the reasons for the quality differences of different JMD tea and provided a reliable theoretical basis for the adaptability of JMD tea. © 2024 Society of Chemical Industry.

3.
J Sci Food Agric ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39247959

RESUMO

BACKGROUND: Soybean meal yogurt was prepared from soybean meal using papain and Bifidobacterium animalis subsp. lactis. A non-targeted metabolomics approach was employed to analyze the relevance of papain to the differences in volatile and non-volatile metabolites of soybean meal yogurt. RESULTS: The results showed that the main up-regulated metabolites and metabolic pathways after enzymatic digestion were dominated by amino acids and their derivatives. Conversely, the main down-regulated metabolites and pathways were predominantly associated with flavonoid metabolism. Amino acids and their derivatives, as well as flavonoids, were found to be highly correlated with the formation of sweet, umami, astringent, and bitterness. The addition of papain enriched the content of aromatic compounds in soybean meal yogurt. Aromatic components such as 2-heptanone, naphthalene, and p-xylene increased in concentration. Synthetic peptide of aspartate and serine, gramine, geissospermine, N-desmethyl vinblastine, and 3,7-dihydroxyflavone were the major non-volatile differential metabolites distinguishing the soybean meal yogurt. CONCLUSION: This study provided a comprehensive analysis of the metabolic traits of products co-fermented by papain and Bifidobacterium animalis subsp. lactis, offering insights for the application of papain in fermented goods. © 2024 Society of Chemical Industry.

4.
J Sci Food Agric ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230063

RESUMO

BACKGROUND: Michelia macclurei Dandy is a traditional Chinese medicinal plant, but little is understood about the bioactive compositions and biological potential of its different parts, limiting their applications. This study aims to identify the bioactive compositions and analyze differences in accumulation patterns from different parts of Michelia macclurei (heartwood, sapwood, bark, root, leaf, and fruit) using metabolomics. It also seeks to explore their biological potential and analyze the relationship between the bioactive compositions and biological potential. RESULTS: A total of 63 volatile metabolites (VMs) were identified by gas chromatography-mass spectrometry (GC-MS) in six parts, and the VMs in each part were dominated by sesquiterpenes and their derivatives (71.40-88.32%). Six parts of Michelia macclurei contained structurally diverse non-volatile metabolites (NVMs) with a total of 207 bioactive compounds, including 92 alkaloids, 30 flavonoids, 19 lignans, and 18 organic acids, utilizing ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Multivariate statistical analysis showed that the accumulation patterns of bioactive compositions differed significantly among the different parts, and the 25 VMs and 72 NVMs could be considered potential markers for distinguishing the different parts of Michelia macclurei. The excellent antioxidant and enzyme inhibitory capacity of extracts of all six parts was indicated by in vitro bioactivity assays. Pearson's correlation analysis showed that the bioactive compositions in the six parts were significantly correlated with antioxidant and enzyme inhibitory activities. CONCLUSION: This study offers helpful information on the distribution of bioactive compositions in different parts of Michelia macclurei and confirms the excellent antioxidant, and enzyme inhibitory potential of its extracts, which could provide scientific evidence for its potential applications in the pharmaceutical industry, cosmetics, and functional foods. © 2024 Society of Chemical Industry.

5.
Foods ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790728

RESUMO

Celery seeds contain various bioactive compounds and are commonly used as a spice and nutritional supplement in people's daily lives. The quality of celery seeds sold on the market varies, and their regions of production are unclear. This study evaluated the metabolites of Chinese celery seeds from three production regions using HS-SPME-GC-MS, HS-GC-IMS, and UPLC-ESI-MS/MS. The results indicate that GC-IMS analysis obtained a metabolic profile different from that detected using GC-MS. Terpenoids, polyphenols, coumarins, and phthalides are the main bioactive compounds in celery seeds. The production region significantly affects the metabolic characteristics of celery seeds. Based on GC-MS data, GC-IMS data, and LC-MS data, the variation analysis screened 6, 12, and 8 metabolites as potential characteristic metabolites in celery seeds related to the production region, respectively. According to the aromatic characteristics of the characteristic metabolites, seeds from the HCQ region and HZC region have a strong herbal, woody, celery, and turpentine aroma. The concentration of secondary metabolites was highest in the seeds from the HCQ region followed by the HZC region, and it was the lowest in the JJC region. Altogether, this study investigates how geographical origins influence the metabolomic profile of celery seeds. The results can be used to guide the planting and harvesting of celery seeds in suitable regions.

6.
Toxins (Basel) ; 16(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057954

RESUMO

Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus , Trichoderma , Compostos Orgânicos Voláteis , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos dos fármacos , Aflatoxinas/biossíntese , Trichoderma/metabolismo , Trichoderma/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico/farmacologia , Antibiose , Modelos Biológicos
7.
Food Chem ; 447: 138935, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461724

RESUMO

Excess consumption of sweetened beverages is associated with a global rise in metabolic diseases. Tamarind and partially-hydrolyzed agave syrup have potential for developing healthier beverages. Our objective was to develop a functional beverage using these ingredients (PH-AS-B). We also evaluate shelf-life stability (physicochemical, microbiological, and antioxidant properties) and health effects in C57BL/6 mice compared with tamarind beverages sweetened with glucose or fructose. Optimal tamarind extraction conditions were a 1:10 ratio (g pulp/mL water) and boiling for 30 min, and the resulting beverage had a shelf life of two months at 4 °C. Non-volatile metabolites were identified using HPLC/MS. PH-AS-B was associated with decreased blood cholesterol (5%) and triglyceride (20-35%) concentrations in healthy mice as well as lower lipid (82%) concentrations and evidence of protein oxidation (42%) in the liver, compared with glucose- and fructose-sweetened tamarind beverages. In conclusion, PH-AS-B was stable and associated with beneficial metabolic properties in healthy mice.


Assuntos
Agave , Xarope de Milho Rico em Frutose , Tamarindus , Camundongos , Animais , Agave/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Bebidas , Edulcorantes/metabolismo , Frutose/metabolismo
8.
Food Chem ; 452: 139616, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759436

RESUMO

To investigate the effects of inoculating with three strains of lactic acid bacteria on prune wine quality during malolactic fermentation, this study determined its antioxidant activity, phenolic compounds, organic acids, and volatile/non-volatile metabolites. The results showed that inoculation with Lactobacillus paracasei SMN-LBK improved the antioxidant activity and phenolic compounds of prune wine. 73 VOCs were detected in prune wine by HS-SPME-GC-MS, and VOC content increased by 4.3% and 9.1% in MLFS and MLFB, respectively. Lactobacillus delbrueckii subsp. Bulgaricus showed better potential for winemaking, and citral and 5-nonanol, were detected in the MLF samples. 39 shared differential metabolites were screened and their metabolic pathways were investigated based on nontargeted metabolomics. Differences in amino acid and flavonoid content between strains reflected their specificity in flavonoid biosynthesis and amino acid biosynthesis. These findings will provide useful information for the biochemical study and processing of prune wine.


Assuntos
Fermentação , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vinho/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/metabolismo , Fenóis/química , Fenóis/análise , Antioxidantes/metabolismo , Antioxidantes/química , Lactobacillales/metabolismo
9.
Food Res Int ; 186: 114305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729687

RESUMO

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Assuntos
Equidae , Fermentação , Cabras , Kefir , Leite , Animais , Kefir/microbiologia , Bovinos , Leite/microbiologia , Leite/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Paladar , Camelus , Microbiologia de Alimentos , Lactobacillus/metabolismo , Microbiota , Acetobacter/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análise
10.
Front Plant Sci ; 15: 1339424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525150

RESUMO

The population of Caragana tibetica, situated on the edge of the typical grassland-to-desert transition in the Mu Us Sandy Land, plays a vital ecological role in maintaining stability within the regional fragile ecosystem. Despite the consistent growth of C. tibetica following animal grazing, the biological mechanisms underlying its compensatory growth in response to livestock consumption remain unclear. Analyzing 48 metabolomic profiles from C. tibetica, our study reveals that the grazing process induces significant changes in the metabolic pathways of C. tibetica branches. Differential metabolites show correlations with soluble protein content, catalase, peroxidase, superoxide dismutase, malondialdehyde, and proline levels. Moreover, machine learning models built on these differential metabolites accurately predict the intensity of C. tibetica grazing (with an accuracy of 83.3%). The content of various metabolites, indicative of plant stress responses, including Enterolactone, Narceine, and Folcepri, exhibits significant variations in response to varying grazing intensities (P<0.05). Our investigation reveals that elevated grazing intensity intensifies the stress response in C. tibetica, triggering heightened antioxidative defenses and stress-induced biochemical activities. Distinctive metabolites play a pivotal role in responding to stress, facilitating the plant's adaptation to environmental challenges and fostering regeneration.

11.
Food Chem ; 439: 138154, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071844

RESUMO

Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.


Assuntos
Camellia sinensis , Chá , Chá/química , Temperatura , Camellia sinensis/química , Flavonoides/análise , Metabolômica/métodos
12.
Food Chem ; 457: 140067, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959681

RESUMO

Round green tea (RGT) presents unique properties and is widely distributed in China, and during processing, it undergoes dynamic changes in non-volatile metabolites (NVMs), which are poorly understood. Utilizing UHPLC-Q-Exactive/MS analysis, this study comprehensively characterized 216 NVMs during RGT processing and identified fixation and pan-frying as key processes influencing NVMs. Additionally, 23 key differential NVMs were screened, with amino acid and flavonoid metabolism highlighted as key metabolic pathways for RGT taste and color quality. The impact of pan-frying degree on shape, color, and taste was also explored. Moderate pan-frying led to optimal results, including a tight and round shape, green and bright color, mellow and umami taste, and reduced astringent and bitter taste NVMs, including epigallocatechin gallate, procyanidin B2, myricetin 3-O-galactoside, quinic acid, strictinin, phenylalanine, and theobromine. This study addresses the NVM research gap in RGT processing, thus providing a technical foundation for the precision-oriented processing of high-quality tea.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Camellia sinensis/química , Camellia sinensis/metabolismo , Chá/química , Cromatografia Líquida de Alta Pressão , Humanos , Culinária , China , Flavonoides/metabolismo , Flavonoides/análise , Flavonoides/química
13.
Food Chem X ; 23: 101649, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39139484

RESUMO

This study investigated the effect of anaerobic treatment on the non-volatile components and angiotensin-converting enzyme (ACE) inhibitory activity in purple-colored leaf tea. Results showed that after 8 h of anaerobic treatment, the γ-aminobutyric acid (GABA) content significantly increased from 0.02 mg/g to 1.72 mg/g (p < 0.05), while lactic acid content gradually rose from non-detectable levels to 3.56 mg/g. Notably, certain flavonols like quercetin and myricetin exhibited significant increments, whereas the total anthocyanins (1.01 mg/g) and epigallocatechin-3-(3''-O-methyl) gallate (13.47 mg/g) contents remained almost unchanged. Furthermore, the ACE inhibition rate of purple-colored leaf tea increased significantly from 42.16% to 49.20% (p < 0.05) at a concentration of 2 mg/mL. Moreover, galloylated catechins showed stronger ACE inhibitory activity than non-galloylated catechins in both in vitro ACE inhibitory activity and molecular docking analysis. These findings might contribute to the development of special purple-colored leaf tea products with potential therapy for hypertension.

14.
Food Chem ; 458: 140226, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943961

RESUMO

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Chá/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Manipulação de Alimentos , Catequina/metabolismo , Catequina/química , Catequina/análise , Controle de Qualidade
15.
Foods ; 13(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672945

RESUMO

Yellowhorn (Xanthoceras sorbifolium Bunge) is a unique oilseed tree in China with high edible and medicinal value. However, the application potential of yellowhorn has not been adequately explored. In this study, widely targeted metabolomics (HPLC-MS/MS and GC-MS) and network pharmacology were applied to investigate the nutritional potential of yellowhorn leaves and flowers. The widely targeted metabolomics results suggested that the yellowhorn leaf contains 948 non-volatile metabolites and 638 volatile metabolites, while the yellowhorn flower contains 976 and 636, respectively. A non-volatile metabolite analysis revealed that yellowhorn leaves and flowers contain a variety of functional components beneficial to the human body, such as terpenoids, flavonoids, alkaloids, lignans and coumarins, phenolic acids, amino acids, and nucleotides. An analysis of volatile metabolites indicated that the combined action of various volatile compounds, such as 2-furanmethanol, ß-icon, and 2-methyl-3-furanthiol, provides the special flavor of yellowhorn leaves and flowers. A network pharmacology analysis showed that various components in the flowers and leaves of yellowhorn have a wide range of biological activities. This study deepens our understanding of the non-volatile and volatile metabolites in yellowhorn and provides a theoretical basis and data support for the whole resource application of yellowhorn.

16.
Food Chem X ; 22: 101382, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665634

RESUMO

In this study, a fortified Daqu (FF Daqu) was prepared using high cellulase-producing Bacillus subtilis, and the effects of in situ fortification on the physicochemical properties, flavor, active microbial community and metabolism of Daqu were analyzed. The saccharification power, liquefaction power, and cellulase activity of the FF Daqu were significantly increased compared with that of the traditional Daqu (CT Daqu). The overall differences in flavor components and their contents were not significant, but the higher alcohols were lower in FF Daqu. The relative abundance of dominant active species in FF Daqu was 85.08% of the total active microbiota higher than 63.42% in CT Daqu, and the biomarkers were Paecilomyces variotii and Aspergillus cristatus, respectively. The enzymes related to starch and sucrose metabolic pathways were up-regulated and expressed in FF Daqu. In the laboratory level simulation of baijiu brewing, the yield of baijiu was increased by 3.36% using FF Daqu.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39178608

RESUMO

Piper colubrinum Link. is an underexplored crop regarding its metabolites and therapeutic attributes. Current study aimed to identify the possible volatile and non-volatile metabolites of P. colubrinum fruit and studied its metabolite diversity with medicinally valued Piper species viz. P. nigrum L., P. longum L. and P. chaba Hunter. The volatile constituents of P. colubrinum essential oil by GC-MS revealed the presence of sesquiterpenes as the major contribution. The sesquiterpenes α-muurolol (12.5 %) and ß-caryophyllene (11.3 %) were the predominant volatile components. Few aliphatic compounds like n-heptadecane and trace amounts of monoterpenes (α- and ß-pinene and α-terpineol) were also identified from this crop. The fatty acid profiling by GC-MS revealed mainly oleic acid (41.3 %) followed by palmitic and linoleic acids. HPLC analysis demonstrated that the major pungent alkaloid piperine was found to be trace (0.04 %) in P. colubrinum. The LC-QTOF-MS/MS profiling of the chloroform extract of the P. colubrinum revealed the presence of non-volatile constituents including phenolic and alkaloid compounds. Ferulic acid, rosmarinic acid, salicylic acid, kaempferol-5-glucoside, 5-methoxysalicylic acid, apigenin-7-galactoside, kaempferide-3-glucoside, luteolin, kaempferol, apigenin and scutellarein-4'-methyl ether were the phenolic compounds whereas piperlonguminine was the alkaloid compound identified. Finally, the biochemical parameters of this crop were compared with that of P. nigrum, P. longum and P. chaba and average linkage cluster dendrogram revealed that P. colubrinum was biochemically distinct from other three Piper species.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Piper , Cromatografia Gasosa-Espectrometria de Massas/métodos , Piper/química , Piper/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Óleos Voláteis/análise , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Metaboloma
18.
Food Chem ; 407: 135201, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525807

RESUMO

The purpose of this research was to explore the potential of Bifidobacterium infantis fermentation to modify the composition and physiological properties of barley juices. B. infantis JFM12 showed a potent capability to decrease the total sugar contents from 0.39 ± 0.01 mg/mL to 0.35 ± 0.01 mg/mL within 24 h of fermentation. The volatile metabolite profiles were enriched after B. infantis JFM12 fermentation, leading to the changes of 13 aldehydes, 11 ketones, 10 acids, 7 alcohols, and 6 esters. A total of 98 key non-volatile metabolites were identified in the barley juice between before and after B. infantis JFM12 fermentation, including 80 non-volatile metabolites that were remarkably increased and 18 non-volatile metabolites that were remarkably reduced. Furthermore, the antioxidant activities and lipase inhibitory activities of fermented barley juice were higher than those of unfermented barley juice. Overall, B. infantis JFM12 was beneficial in increasing the quality of barley juice.


Assuntos
Hordeum , Fermentação , Hordeum/química , Bifidobacterium longum subspecies infantis , Alimentos , Álcoois
19.
Front Nutr ; 10: 1234807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645629

RESUMO

Introduction: In recent years, scented black tea has attracted much attention due to its pleasant floral aroma and mellow flavor, but little research has been carried out on its flavor metabolic profile. Methods: In this study, the flavor metabolic profiles of unscented, Chloranthus spicatus scented, and Osmanthus fragrans (Thunb.) Lour. scented Congou black teas were investigated using full-spectrum metabolomics analysis method, the first time that the flavor profiles of scented black tea were characterized in detail. Results and Discussion: The results revealed that a total of 3,128 metabolites were detected in the three teas. Based on the criteria of variable importance in the project >1 and fold change ≥2 or ≤ 0.5, 761 non-volatile metabolites and 509 volatile metabolites were filtered as differential metabolites. Many differential non-volatile metabolites belonged to flavonoids, phenolic acids, and terpenoids. Floral, fruity and herbaceous volatile metabolites were significantly up-regulated in Chloranthus spicatus scented Congou black tea while sweet and fruity volatile metabolites were significantly down-regulated in Osmanthus fragrans (Thunb.) Lour. scented Congou black tea. The results contribute to a better understanding of the scenting techniques on the flavor quality of scented black teas and provide some information on the flavor chemistry theory of scented black teas.

20.
Food Res Int ; 174(Pt 1): 113615, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986470

RESUMO

Long-term storage of Liupao tea (LPT) is usually believed to enhance its quality and commercial value. The non-volatile metabolites variations and the fungal succession play a key role for organoleptic qualities during the storage procedure. To gain in-depth understanding the impact of storage time on the quality of LPT, two different brands of LPT with different storage time, including Maosheng LPTs (MS) with 0, 5, 10 and 15 years and Tianyu LPTs (TY) with 0, 3, 5, 8 and 10 years, were resorted to investigate the changes of non-volatile metabolites and fungi as well as their correlation by multi-omics. A total of 154 and 119 differential metabolites were identified in these two different brands of MS and TY, respectively, with the aid of high-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. In both categories of LPTs, the transformation of differential metabolites in the various stages referred to the formation of alkaloids, increase of organic acids, biosynthesis of terpenoids as well as glycosylation and methylation of flavonoids. Thereinto, glycosylation and methylation of flavonoids were the critical stages for distinguishing MS and TY, which were discovered in MS and TY stored for about 10 and 8 years, respectively. Moreover, the results of high-throughput sequencing showed that the key fungal genera in the storage of LPTs consisted of Eurotium, Aspergillus, Blastobotrys, Talaromyces, Thermomyces and Trichomonascus. It was confirmed on the basis of multivariate analysis that the specific fungal genera promoted the transformation of metabolites, affecting the tea quality to some extent. Therefore, this study provided a theoretical basis for the process optimization of LPT storage.


Assuntos
Micobioma , Chá , Cromatografia Líquida , Chá/química , Espectrometria de Massas em Tandem , Flavonoides/química , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA