Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Small ; : e2405415, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225371

RESUMO

Solvent additives with a high boiling point (BP) and low vapor pressure (VP) have formed a key handle for improving the performance of organic solar cells (OSCs). However, it is not always clear whether they remain in the active-layer film after deposition, which can negatively affect the reproducibility and stability of OSCs. In this study, an easily removable solvent additive (4-chloro-2-fluoroiodobenzene (CFIB)) with a low BP and high VP is introduced, behaving like volatile solid additives that can be completely removed during the device fabrication process. In-depth studies of CFIB addition into the D18-Cl donor and N3 acceptor validate its dominant non-covalent intermolecular interactions with N3 through effective electrostatic interactions. Such phenomena improve charge dynamics and kinetics by optimizing the morphology, leading to enhanced performance of D18-Cl:N3-based devices with a power conversion efficiency of 18.54%. The CFIB-treated device exhibits exceptional thermal stability (T80 lifetime = 120 h) at 85 °C compared with the CFIB-free device, because of its morphological robustness by evolving no residual CFIB in the film. The CFIB features a combination of advantages of solvent (easy application) and solid (high volatility) additives, demonstrating its great potential use in the commercial mass production of OSCs.

2.
Small ; 20(33): e2311339, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38529739

RESUMO

In this work, it is reported that zirconium oxide (ZrO2) doped organosilica nanodots (OSiNDs: ZrO2) with light- and charge-management properties serve as efficient cathode interlayers for high-efficiency inverted organic solar cells (i-OSCs). ZrO2 doping effectively improves the light harvesting of the active layer, the physical contact between the active layer, as well as the electron collection property by habiting charge recombination loss. Consequently, all devices utilizing the OSiNDs: ZrO2 cathode interlayer exhibit enhanced power conversion efficiency (PCE). Specifically, i-OSCs based on PM6:Y6 and PM6:BTP-eC9 achieve remarkable PCEs of 17.16% and 18.43%, respectively. Furthermore, the PCE of device based on PM6:Y6 maintains over 97.2% of its original value following AM 1.5G illumination (including UV light) at 100 mW cm-2 for 600 min.

3.
Small ; : e2405476, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148187

RESUMO

The advancement of acceptors plays a pivotal role in determining photovoltaic performance. While previous efforts have focused on optimizing acceptor-donor-acceptor1-donor-acceptor (A-DA1-D-A)-typed acceptors by adjusting side chains, end groups, and conjugated extension of the electron-deficient central A1 unit, the systematic exploration of the impact of peripheral aryl substitutions, particularly with different electron groups, on the A1 unit and its influence on device performance is still lacking. In this study, three novel acceptors - QxTh, QxPh, and QxPy - with distinct substitutions on the quinoxaline (Qx) are designed and synthesized. Density functional theory (DFT) analyses reveal that QxPh, featuring a phenyl-substituted Qx, exhibits the smallest molecular binding energies and a tightest π···π stacking distance. Consequently, the PM6:QxPh device demonstrates a better power conversion efficiency (PCE) of 17.1% compared to the blends incorporating QxTh (16.4%) and QxPy (15.7%). This enhancement is primarily attributed to suppressed charge recombination, improved charge extraction, and more favorable molecular stacking and morphology. Importantly, introducing QxPh as a guest acceptor into the PM6:BTP-eC9 binary system yields an outstanding PCE of 19.5%, indicating the substantial potential of QxPh in advancing ternary device performance. The work provides deep insights into the expansion of high-performance organic photovoltaic materials through peripheral aryl substitution strategy.

4.
Chemistry ; 30(17): e202304167, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243781

RESUMO

Although fullerene derivatives such as [6,6]-phenyl-C61/C71-butyric acid methyl ester (PC61BM/PC71BM) have dominated the the photoactive acceptor materials in bulk heterojunction organic solar cells (OSCs) for decades, they have several drawbacks such as weak absorption, limited structural tunability, prone to aggregation, and high costs of production. Constructing non-fullerene small molecules with three-dimensional (3D) molecular geometry is one of the strategies to replace fullerenes in OSCs. In this study, a 3D molecule, contorted hexa-cata-hexabenzocoronene tetra perylenediimide (HBC-4-PDI), was designed and synthesized. HBC-4-PDI shows a wide and strong light absorption in the whole UV-vis region as well as suitable energy levels as an acceptor for OSCs. More importantly, the 3D construction effectively reduced the self-aggregation of c-HBC, leading to an appropriate scale phase separation of the blend film morphology in OSCs. A preliminary power conversion efficiency of 2.70 % with a champion open-circuit voltage of 1.06 V was obtained in OSCs with HBC-4-PDI as the acceptor, which was the highest among the previously reported OSCs based on c-HBC derivatives. The results indicated that HBC-4-PDI may serve as a good non-fullerene acceptor for OSCs.

5.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125030

RESUMO

Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction structure where a polymer donor is blended with an electron acceptor. Their performance is highly affected by the design of donor-acceptor conjugated polymers and the choice of suitable acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been combined with various donors to provide wide bandgap donor polymers, which have received a great deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable matching to provide devices with relevant power conversion efficiency (PCE). Moreover, different benzotriazole-based polymers are gaining more and more interest because they are considered promising acceptors in OSCs. Since the development of a suitable method to choose generally a donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic chemical scientists to understand all the progress achieved with benzotriazole-based polymers used as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to the PCE.

6.
Angew Chem Int Ed Engl ; 63(22): e202403139, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38530206

RESUMO

Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS-OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high-performance small molecular acceptors are very brittle. In this regard, we select thienylene-alkane-thienylene (TAT) as the conjugate-break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY-m-TAT-based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate-break linker. Most importantly, FDY-m-TAT-based IS-OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack-onset strain [COS]=18.23 %), significantly surpassing Y6-based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate-break linkers have immense potential in developing highly efficient and mechanically robust OSCs.

7.
Angew Chem Int Ed Engl ; 63(40): e202406272, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739535

RESUMO

Asymmetric wide-band gap fullerene-free acceptors (FFAs) play a crucial role in organic solar cells (OSCs). Here, we designed and synthesized a simple asymmetric coumarin-anthracene conjugate named CA-CN with optical band gap of 2.1 eV in a single-step condensation reaction. Single crystal X-ray structure analysis confirms various multiple intermolecular non-covalent interactions. The molecular orbital energy levels of CA-CN estimated from cyclic voltammetry were found to be suitable for its use as an acceptor for OSCs. Binary OSCs fabricated using CA-CN as acceptor and PTB7-Th as the donor achieve a power conversion efficiency (PCE) of 11.13 %. We further demonstrate that the insertion of 20 wt % of CA-CN as a third component in ternary OSCs with PTB7-Th : DICTF as the host material achieved an impressive PCE of 14.91 %, an improvement of ~43 % compared to the PTB7-Th : DICTF binary device (10.38 %). Importantly, the ternary blend enhances the absorption coverage from 400 to 800 nm and improves the morphology of the active layer. The findings highlight the efficacy of an asymmetric design approach for FFAs, which paves the way for developing high-efficiency OSCs at low cost.

8.
Angew Chem Int Ed Engl ; : e202415332, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245786

RESUMO

This study puts forth a novel terminal group design to develop medium-bandgap Y-series acceptors beyond conventional side-chain engineering. We focused on the strategical integration of an electron-donating methoxy group and an electron-withdrawing halogen atom at benzene-fused terminal groups. This combination precisely modulated the dipole moment and electron density of terminal groups, effectively attenuating intramolecular charge transfer effect, and widening the bandgap of acceptors. The incorporation of these terminal groups yielded two asymmetric acceptors, named BTP-2FClO and BTP-2FBrO, both of which exhibited open-circuit voltage (VOC) as high as 0.96 V in binary devices, representing the highest VOCs among the asymmetric Y-series small molecule acceptors. More importantly, both BTP-2FClO and BTP-2FBrO exhibit modest aggregation behaviors and molecular crystallinity, making them suitable as a third component to mitigate excess aggregation of the PM6: BTP-eC9 blend and optimize the devices' morphology. As a result, the optimized BTP-2FClO-based ternary organic solar cells (OSCs) achieved a remarkable power conversion efficiency (PCE) of 19.34%, positioning it among the highest-performing OSCs. Our study highlights the molecular design importance on manipulating dipole moments and electron density in developing medium-bandgap acceptors, and offers a highly efficient third component for high-performance ternary OSCs.

9.
J Comput Chem ; 44(27): 2130-2148, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452478

RESUMO

As emphasized in a recent review article (Chem. Rev. 2022, 122, 14180), organic solar cell (OSC) photoconversion efficiency has been rapidly evolving with results increasingly comparable to those of traditional inorganic solar cells. Historically, OSC performance improvement focused first on the morphology of P3HT: PC 61 BM solar cells then went through different stages to shift lately interest towards nonfullerene acceptors (NFAs) as a replacement of PC 61 BM acceptor (ACC) molecule. Here, we use density-functional theory (DFT) and time-dependent DFT to investigate four novel NFAs of A-D-A (acceptor-donor-acceptor) form derived from the recently synthesized IDIC-4Cl (Dyes Pigm. 2019, 166, 196). Our level of theory is carefully evaluated for IDIC-4Cl and then applied to the four novel NFAs in order to understand how chemical modifications lead to physical changes in cyclic voltammetry (CV) frontier molecular orbital energies and absorption spectra in solution. Finally we design and apply a new type of Scharber plot for NFAs based upon some simple but we think reasonable assumptions. Unlike the original Scharber plots where a larger DON band gap favors a larger PCE, our modified Scharber plot reflects the fact that a smaller ACC band gap may favor PCE by filling in gaps in the DON acceptor spectrum. We predict that only the candidate molecule with the least good acceptor A, with the highest frontier molecular orbital energies, and one of the larger CV lowest unoccupied molecular orbital (LUMO) - highest unoccupied molecular orbital (HOMO) gaps, will yield a PM6:ACC PCE exceeding that of the parent IDIC-4Cl ACC. This candidate also shows the largest oscillator strength for the primary 1 (HOMO, LUMO) charge- transfer transition and the largest degree of delocalization of charge transfer of any of the ACC molecules investigated here.

10.
Small ; : e2307441, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054784

RESUMO

The electrode buffer layer is crucial for high-performance and stable OSCs, optimizing charge transport and energy level alignment at the interface between the polymer active layer and electrode. Recently, SnO2 has emerged as a promising material for the cathode buffer layer due to its desirable properties, such as high electron mobility, transparency, and stability. Typically, SnO2 nanoparticle layers require a postannealing treatment above 150°C in an air environment to remove the surfactant ligands and obtain high-quality thin films. However, this poses challenges for flexible electronics as flexible substrates can't tolerate temperatures exceeding 100°C. This study presents solution-processable and annealing-free SnO2 nanoparticles by employing y-ray irradiation to disrupt the bonding between surfactant ligands and SnO2 nanoparticles. The SnO2 layer treated with y-ray irradiation is used as an electron transport layer in OSCs based on PTB7-Th:IEICO-4F. Compared to the conventional SnO2 nanoparticles that required high-temperature annealing, the y-SnO2 nanoparticle-based devices exhibit an 11% comparable efficiency without postannealing at a high temperature. Additionally, y-ray treatment has been observed to eliminate the light-soaking effect of SnO2 . By eliminating the high-temperature postannealing and light-soaking effect, y-SnO2 nanoparticles offer a promising, cost-effective solution for future flexible solar cells fabricated using roll-to-roll mass processing.

11.
Small ; : e2309169, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072767

RESUMO

The conjugate expansion of nonfullerene acceptors is considered to be a promising approach for improving organic photovoltaic performance because of its function in tuning morphological structure and molecular stacking behavior. In this work, two nonfullerene acceptors are designed and synthesized using a 2D π-conjugate expansion strategy, thus enabling the construction of highly-efficient organic solar cells (OSCs). Compared with YB2B (incorporating dibromophenanthrene on the quinoxaline-fused core), YB2T (incorporating dibromobenzodithiophene on the quinoxaline-fused core) has red-shifted spectral absorption and better charge transport properties. Moreover, the more orderly and tightly intermolecular stacking of YB2T provides the possibility of forming a more suitable phase separation morphology in blend films. Through characterization and analysis, the YB2T-based blend film is found to have higher exciton dissociation efficiency and less charge recombination. Consequently, the power conversion efficiency (PCE) of 17.05% is achieved in YB2T-based binary OSCs, while YB2B-based devices only reached 10.94%. This study demonstrates the significance of the aromatic-ring substitution strategy for regulating the electronic structure and aggregation behavior of 2D nonfullerene acceptors, facilitating the development of devices with superior photovoltaic performance.

12.
Nanotechnology ; 34(31)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37137300

RESUMO

In this work, a novel soluble and air-stable electron acceptor containing perylenediimide moiety named ANTPABA-PDI was designed and synthesized with band gap 1.78eV and that was used as non-fullerene acceptor material. ANTPABA-PDI possess not only good solubility but also much lower LUMO (lowest unoccupied molecular orbital) energy level. Furthermore, its excellent electron acceptor capability also supported by density functional theory calculation which validates the experimental observations. Inverted organic solar cell has been fabricated using ANTPABA-PDI along with P3HT as standard donor material in ambient atmosphere. The device, after characterization in open air, exhibited a power conversion efficiency of 1.70%. This is the first ever PDI based organic solar cell that has been fabricated completely in ambient atmosphere. The characterizations of the device have also been performed in ambient atmosphere. This kind of stable organic material can easily be used in fabricating organic solar cell and therefore it can be used as the best alternative as non-fullerene acceptor materials.

13.
Nanotechnology ; 34(28)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37059082

RESUMO

Organic solar cell (OSC) has drawn considerable interest in recent decades owing to their advantages of light weight, flexible, large area and potentially low-cost. Employing an appropriate hole-transporting layer (HTL) into an OSC device has been proved as an efficient method to obtain high efficiency OSC due to the enhancement of the hole transporting and extraction of the device. In this work, aqueous solution-processed MoO3(s-MoO3) thin films were employed as HTLs to construct non-fullerene PM6:Y6 OSCs. The s-MoO3thin film was prepared by using an aqueous solution process from an isopolymolybdate [NH4]6Mo7O24.4H2O precursor followed by thermal annealing treatment to convert the precursor to MoO3. The s-MoO3HTL based PM6:Y6 device demonstrates a power conversion efficiency of 15.75%, which is 38% improved than that of the device with thermally evaporated-MoO3as HTL and 8% improved than that of the device with PEDOT:PSS as HTL. The enhancement of the device performance could be attributed to the enhanced hole mobility and better band matching of the s-MoO3HTL. Moreover, the s-MoO3HTL based PM6:Y6 device exhibited higher device stability than those of the reference devices. Our finding indicates that this s-MoO3film has great potential as efficient HTL for high performance non fullerene OSCs.

14.
Proc Natl Acad Sci U S A ; 117(35): 21147-21154, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817532

RESUMO

Semitransparent organic photovoltaic cells (ST-OPVs) are emerging as a solution for solar energy harvesting on building facades, rooftops, and windows. However, the trade-off between power-conversion efficiency (PCE) and the average photopic transmission (APT) in color-neutral devices limits their utility as attractive, power-generating windows. A color-neutral ST-OPV is demonstrated by using a transparent indium tin oxide (ITO) anode along with a narrow energy gap nonfullerene acceptor near-infrared (NIR) absorbing cell and outcoupling (OC) coatings on the exit surface. The device exhibits PCE = 8.1 ± 0.3% and APT = 43.3 ± 1.2% that combine to achieve a light-utilization efficiency of LUE = 3.5 ± 0.1%. Commission Internationale d'eclairage chromaticity coordinates of (0.38, 0.39), a color-rendering index of 86, and a correlated color temperature of 4,143 K are obtained for simulated AM1.5 illumination transmitted through the cell. Using an ultrathin metal anode in place of ITO, we demonstrate a slightly green-tinted ST-OPV with PCE = 10.8 ± 0.5% and APT = 45.7 ± 2.1% yielding LUE = 5.0 ± 0.3% These results indicate that ST-OPVs can combine both efficiency and color neutrality in a single device.

15.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834201

RESUMO

Y6 derivatives with asymmetric terminal groups have attracted considerable attention in recent years. However, the effects of the asymmetric modification of terminal groups on the photovoltaic performance of Y6 derivatives are not well understood yet. Therefore, we designed a series of Y6-based acceptors with asymmetric terminal groups by endowing them with various electron-withdrawing abilities and different conjugated rings to conduct systematic research. The electron-withdrawing ability of the Y6-D1 terminal group (substituted by IC-2F and IC-2NO2 terminals) is strongest, followed by Y6 (substituted by two same IC-2F terminals), Y6-D2 (substituted by IC-2F and 2-(4-oxo-4,5-dihydro-6H-cyclopenta[b]thiophen-6-ylidene)malononitrile terminals), Y6-D4 (substituted by IC-2F and indene ring), and Y6-D3 (substituted by IC-2F and thiazole ring). Computed results show that A-A stacking is the main molecular packing mode of Y6 and four other asymmetric Y6 derivatives. The ratios of A-A stacking face-on configuration of Y6-D1, Y6-D2, Y6-D3, Y6-D4, and Y6 are 51.6%, 55.0%, 43.5%, 59.3%, and 62.4%, respectively. Except for Y6-D1 substituted by the IC-2F and IC-2NO2 (the strongest electron-withdrawing capacity) terminal groups, the other three asymmetric molecules are mainly electron-transporting and can therefore act as acceptors. The open-circuit voltages of organic solar cells (OSCs) based on Y6-D2, Y6-D3, and Y6-D4, except for Y6-D1, may be higher than those of OSCs based on the Y6 acceptor because of their higher energy levels of lowest unoccupied molecular orbital (LUMO). PM6/Y6-D3 and PM6/Y6-D4 have better light absorption properties than PM6/Y6 due to their higher total oscillator strength. These results indicate that Y6-D3 and Y6-D4 can be employed as good acceptors.


Assuntos
Bandagens , Elétrons , Transporte de Elétrons , Tiazóis , Tiofenos
16.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239952

RESUMO

The applications of non-fullerene acceptor Y6 with a new type of A1-DA2D-A1 framework and its derivatives have increased the power conversion efficiency (PCE) of organic solar cells (OSCs) up to 19%. Researchers have made various modifications of the donor unit, central/terminal acceptor unit, and side alkyl chains of Y6 to study the influences on the photovoltaic properties of OSCs based on them. However, up to now, the effect of changes of terminal acceptor parts of Y6 on the photovoltaic properties is not very clear. In the present work, we have designed four new acceptors-Y6-NO2, Y6-IN, Y6-ERHD, and Y6-CAO-with different terminal groups, which possess diverse electron-withdrawing ability. Computed results show that with the enhanced electron-withdrawing ability of the terminal group, the fundamental gaps become lower; thus, the wavelengths of the main absorption peaks of UV-Vis spectra red-shifts and total oscillator strength increase. Simultaneously, the electron mobility of Y6-NO2, Y6-IN, and Y6-CAO is about six, four, and four times faster than that of Y6, respectively. Overall, Y6-NO2 could be a potential NFA because of its longer intramolecular charge-transfer distance, stronger dipole moment, higher averaged ESP, enhanced spectrum, and faster electron mobility. This work provides a guideline for the future research on modification of Y6.

17.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110860

RESUMO

Organic solar cells (OSCs) made of electron-acceptor and electron-donor materials have significantly developed in the last decade, demonstrating their enormous potential in cutting-edge optoelectronic applications. Consequently, we designed seven novel non-fused ring electron acceptors (NFREAs) (BTIC-U1 to BTIC-U7) using synthesized electron-deficient diketone units and reported end-capped acceptors, a viable route for augmented optoelectronic properties. The DFT and TDDFT approaches were used to measure the power conversion efficiency (PCE), open circuit voltage (Voc), reorganization energies (λh, λe), fill factor (FF), light harvesting efficiency (LHE) and to evaluate the potential usage of proposed compounds in solar cell applications. The findings confirmed that the photovoltaic, photophysical, and electronic properties of the designed molecules BTIC-U1 to BTIC-U7 are superior to those of reference BTIC-R. The TDM analysis demonstrates a smooth flow of charge from the core to the acceptor groups. Charge transfer analysis of the BTIC-U1:PTB7-Th blend revealed orbital superposition and successful charge transfer from HOMO (PTB7-Th) to LUMO (BTIC-U1). The BTIC-U5 and BTIC-U7 outperformed the reference BTIC-R and other developed molecules in terms of PCE (23.29% and 21.18%), FF (0.901 and 0.894), normalized Voc (48.674 and 44.597), and Voc (1.261 eV and 1.155 eV). The proposed compounds enclose high electron and hole transfer mobilities, making them the ideal candidate for use with PTB7-Th film. As a result, future SM-OSC design should prioritize using these constructed molecules, which exhibit excellent optoelectronic properties, as superior scaffolds.

18.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838527

RESUMO

A linear-shaped small organic molecule (E)-4-(5-(3,5-dimethoxy-styryl)thiophen-2-yl)-7-(5″-hexyl-[2,2':5',2″-terthiophen]-5-yl)benzo[c][1,2,5]thiadiazole (MBTR) comprising a benzothiadiazole (BTD) acceptor linked with the terminal donors bithiophene and dimethoxy vinylbenzene through a π-bridge thiophene was synthesized and analyzed. The MBTR efficiently tuned the thermal, absorption, and emission characteristics to enhance the molecular packing and aggregation behaviors in the solid state. The obtained optical bandgap of 1.86 eV and low-lying highest occupied molecular orbital (HOMO) level of -5.42 eV efficiently lowered the energy losses in the fabricated devices, thereby achieving enhanced photovoltaic performances. The optimized MBTR:PC71BM (1:2.5 w/w%) fullerene-based devices showed a maximum power conversion efficiency (PCE) of 7.05%, with an open-circuit voltage (VOC) of 0.943 V, short-circuit current density (JSC) of 12.63 mA/cm2, and fill factor (FF) of 59.2%. With the addition of 3% 1,8-diiodooctane (DIO), the PCE improved to 8.76% with a high VOC of 1.02 V, JSC of 13.78 mA/cm2, and FF of 62.3%, which are associated with improved charge transport at the donor/acceptor interfaces owing to the fibrous active layer morphology and favorable phase separation. These results demonstrate that the introduction of suitable donor/acceptor groups in molecular design and device engineering is an effective approach to enhancing the photovoltaic performances of organic solar cells.


Assuntos
Fulerenos , Doadores de Tecidos , Humanos , Bandagens , Engenharia , Fadiga , Tiofenos
19.
Angew Chem Int Ed Engl ; 62(46): e202311559, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37792667

RESUMO

Organic photovoltaics (OPV) are one of the most effective ways to harvest renewable solar energy, with the power conversion efficiency (PCE) of the devices soaring above 19 % when processed with halogenated solvents. The superior photocurrent of OPV over other emerging photovoltaics offers more opportunities to further improve the efficiency. Tailoring the absorption band of photoactive materials is an effective way to further enhance OPV photocurrent. However, the field has mostly been focusing on improving the near-infrared region photo-response, with the absorption shoulders in short-wavelength region (SWR) usually being neglected. Herein, by developing a series of non-fullerene acceptors (NFAs) with varied side-group conjugations, we observe an enhanced SWR absorption band with increased side-group conjugation length. The underpinning factors of how molecular structures and geometries improve SWR absorption are clearly elucidated through theoretical modelling and crystallography. Moreover, a clear relationship between the enhanced SWR absorption and reduced singlet-triplet energy gap is established, both of which are favorable for the OPV performance and can be tailored by rational structure design of NFAs. Finally, the rationally designed NFA, BO-TTBr, affords a decent PCE of 18.5 % when processed with a non-halogenated green solvent.

20.
Nanotechnology ; 33(16)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34963107

RESUMO

Bulk heterojunction is one key concept leading to breakthrough in organic photovoltaics. The active layer is expectantly formed of distinct morphologies that carry out their respective roles in photovoltaic performance. The morphology-performance relationship however remains stymied, because unequivocal morphology at the nanoscale is not available. We used scattering-type scanning near-field optical microscopy operating with a visible light source (visibles-SNOM) to disclose the nanomorphology of P3HT:PCBM and pBCN:PCBM blends. Donor and acceptor domain as well as intermixed phase were identified and their intertwined distributions were mapped. We proposed energy landscapes of the BHJ active layer to shed light on the roles played by these morphologies in charge separation, transport and recombination. This study shows that visibles-SNOM is capable of profiling the morphological backdrop pertaining to the operation of high performance organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA