Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 77(4): 810-824.e8, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31901447

RESUMO

Lipid droplets (LDs) provide a reservoir for triacylglycerol storage and are a central hub for fatty acid trafficking and signaling in cells. Lipolysis promotes mitochondrial biogenesis and oxidative metabolism via a SIRT1/PGC-1α/PPARα-dependent pathway through an unknown mechanism. Herein, we identify that monounsaturated fatty acids (MUFAs) allosterically activate SIRT1 toward select peptide-substrates such as PGC-1α. MUFAs enhance PGC-1α/PPARα signaling and promote oxidative metabolism in cells and animal models in a SIRT1-dependent manner. Moreover, we characterize the LD protein perilipin 5 (PLIN5), which is known to enhance mitochondrial biogenesis and function, to be a fatty-acid-binding protein that preferentially binds LD-derived monounsaturated fatty acids and traffics them to the nucleus following cAMP/PKA-mediated lipolytic stimulation. Thus, these studies identify the first-known endogenous allosteric modulators of SIRT1 and characterize a LD-nuclear signaling axis that underlies the known metabolic benefits of MUFAs and PLIN5.


Assuntos
Ácidos Graxos Monoinsaturados/metabolismo , Gotículas Lipídicas/química , Perilipina-5/metabolismo , Sirtuína 1/metabolismo , Regulação Alostérica , Animais , Transporte Biológico , Linhagem Celular , Células Cultivadas , Dieta , Ácidos Graxos/metabolismo , Lipase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Azeite de Oliva , Perilipina-5/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transcrição Gênica
2.
J Biol Chem ; : 107810, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322016

RESUMO

Prenylcysteine oxidases (PCYOXs) metabolize prenylated cysteines produced by protein degradation. They utilize oxygen as co-substrate to produce free cysteine, an aldehyde, and hydrogen peroxide through the unusual oxidation of a thioether bond. In this study, we explore the evolution, structure, and mechanism of the two mammalian PCYOXs. A gene duplication event in jawed vertebrates originated these two paralogs. Both enzymes are active on farnesyl- and geranylgeranylcysteine, but inactive on molecules with shorter prenyl groups. Kinetics experiments outline a mechanism where flavin reduction and re-oxidation occur rapidly without any detectable intermediates, with the overall reaction rate limited by product release. The experimentally determined three-dimensional structure of PCYOX1 reveals long and wide tunnels leading from the surface to the flavin. They allow the isoprene substrate to curl up within the protein and position its reactive cysteine group close to the flavin. A hydrophobic patch on the surface mediates membrane association, enabling direct substrate and product exchange with the lipid bilayer. Leveraging established knowledge on flavoenzyme inhibition, we designed sub-micromolar PCYOX inhibitors. Additionally, we discovered that PCYOXs bind and slowly degrade salisirab, an anti-RAS compound. This activity suggests potential and previously unknown roles of PCYOXs in drug metabolism.

3.
J Biol Chem ; 300(1): 105488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000657

RESUMO

Cellular therapies are currently employed to treat a variety of disease processes. For T cell-based therapies, success often relies on the metabolic fitness of the T cell product, where cells with enhanced metabolic capacity demonstrate improved in vivo efficacy. AMP-activated protein kinase (AMPK) is a cellular energy sensor which combines environmental signals with cellular energy status to enforce efficient and flexible metabolic programming. We hypothesized that increasing AMPK activity in human T cells would augment their oxidative capacity, creating an ideal product for adoptive cellular therapies. Lentiviral transduction of the regulatory AMPKγ2 subunit stably enhanced intrinsic AMPK signaling and promoted mitochondrial respiration with increased basal oxygen consumption rates, higher maximal oxygen consumption rate, and augmented spare respiratory capacity. These changes were accompanied by increased proliferation and inflammatory cytokine production, particularly within restricted glucose environments. Introduction of AMPKγ2 into bulk CD4 T cells decreased RNA expression of canonical Th2 genes, including the cytokines interleukin (IL)-4 and IL-5, while introduction of AMPKγ2 into individual Th subsets universally favored proinflammatory cytokine production and a downregulation of IL-4 production in Th2 cells. When AMPKγ2 was overexpressed in regulatory T cells, both in vitro proliferation and suppressive capacity increased. Together, these data suggest that augmenting intrinsic AMPK signaling via overexpression of AMPKγ2 can improve the expansion and functional potential of human T cells for use in a variety of adoptive cellular therapies.


Assuntos
Proteínas Quinases Ativadas por AMP , Expressão Gênica , Transdução de Sinais , Linfócitos T , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Mitocôndrias/metabolismo , Células Th2/metabolismo , Expressão Gênica/genética , Linfócitos T/citologia , Linfócitos T/enzimologia , Linfócitos T/imunologia , Células T de Memória/enzimologia , Glucose/metabolismo , Linfócitos T CD4-Positivos/enzimologia , Células Cultivadas
4.
J Biol Chem ; 299(7): 104908, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307919

RESUMO

Whereas it is known that p53 broadly regulates cell metabolism, the specific activities that mediate this regulation remain partially understood. Here, we identified carnitine o-octanoyltransferase (CROT) as a p53 transactivation target that is upregulated by cellular stresses in a p53-dependent manner. CROT is a peroxisomal enzyme catalyzing very long-chain fatty acids conversion to medium chain fatty acids that can be absorbed by mitochondria during ß-oxidation. p53 induces CROT transcription through binding to consensus response elements in the 5'-UTR of CROT mRNA. Overexpression of WT but not enzymatically inactive mutant CROT promotes mitochondrial oxidative respiration, while downregulation of CROT inhibits mitochondrial oxidative respiration. Nutrient depletion induces p53-dependent CROT expression that facilitates cell growth and survival; in contrast, cells deficient in CROT have blunted cell growth and reduced survival during nutrient depletion. Together, these data are consistent with a model where p53-regulated CROT expression allows cells to be more efficiently utilizing stored very long-chain fatty acids to survive nutrient depletion stresses.


Assuntos
Carnitina Aciltransferases , Sobrevivência Celular , Nutrientes , Proteína Supressora de Tumor p53 , Regiões 5' não Traduzidas/genética , Carnitina/metabolismo , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Processos de Crescimento Celular , Respiração Celular , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Mutação , Nutrientes/deficiência , Nutrientes/metabolismo , Oxirredução , Peroxissomos/enzimologia , Elementos de Resposta/genética , Estresse Fisiológico , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
5.
J Cell Physiol ; 239(8): e31285, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860464

RESUMO

The mechanistic relationships between the progression of growth chondrocyte differentiation, matrix mineralization, oxidative metabolism, and mitochondria content and structure were examined in the ATDC5 murine chondroprogenitor cell line. The progression of chondrocyte differentiation was associated with a statistically significant (p ≤ 0.05) ~2-fold increase in oxidative phosphorylation. However, as matrix mineralization progressed, oxidative metabolism decreased. In the absence of mineralization, cartilage extracellular matrix mRNA expression for Col2a1, Aggrecan, and Col10a1 were statistically (p ≤ 0.05) ~2-3-fold greater than observed in mineralizing cultures. In contrast, BSP and Phex that are associated with promoting matrix mineralization showed statistically (p ≤ 0.05) higher ~2-4 expression, while FGF23 phosphate regulatory factor was significantly lower (~50%) in mineralizing cultures. Cultures induced to differentiate under both nonmineralizing and mineralizing media conditions showed statistically greater basal oxidative metabolism and ATP production. Maximal respiration and spare oxidative capacity were significantly elevated (p ≤ 0.05) in differentiated nonmineralizing cultures compared to those that mineralized. Increased oxidative metabolism was associated with both an increase in mitochondria volume per cell and mitochondria fusion, while mineralization diminished mitochondrial volume and appeared to be associated with fission. Undifferentiated and mineralized cells showed increased mitochondrial co-localization with the actin cytoskeletal. Examination of proteins associated with mitochondria fission and apoptosis and mitophagy, respectively, showed levels of immunological expression consistent with the increasing fission and apoptosis in mineralizing cultures. These results suggest that chondrocyte differentiation is associated with intracellular structural reorganization, promoting increased mitochondria content and fusion that enables increased oxidative metabolism. Mineralization, however, does not need energy derived from oxidative metabolism; rather, during mineralization, mitochondria appear to undergo fission and mitophagy. In summary, these studies show that as chondrocytes underwent hypertrophic differentiation, they increased oxidative metabolism, but as mineralization proceeds, metabolism decreased. Mitochondria structure also underwent a structural reorganization that was further supportive of their oxidative capacity as the chondrocytes progressed through their differentiation. Thus, the mitochondria first underwent fusion to support increased oxidative metabolism, then underwent fission during mineralization, facilitating their programed death.


Assuntos
Diferenciação Celular , Condrócitos , Matriz Extracelular , Mitocôndrias , Animais , Camundongos , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Mitocôndrias/metabolismo , Matriz Extracelular/metabolismo , Linhagem Celular , Calcificação Fisiológica , Fosforilação Oxidativa , Condrogênese/fisiologia , Dinâmica Mitocondrial/fisiologia , Trifosfato de Adenosina/metabolismo
6.
Am J Physiol Endocrinol Metab ; 326(1): E14-E28, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938177

RESUMO

Regular exercise elicits adaptations in glucose and lipid metabolism that allow the body to meet energy demands of subsequent exercise bouts more effectively and mitigate metabolic diseases including fatty liver. Energy discharged during the acute exercise bouts that comprise exercise training may be a catalyst for liver adaptations. During acute exercise, liver glycogenolysis and gluconeogenesis are accelerated to supply glucose to working muscle. Lower liver energy state imposed by gluconeogenesis and related pathways activates AMP-activated protein kinase (AMPK), which conserves ATP partly by promoting lipid oxidation. This study tested the hypothesis that AMPK is necessary for liver glucose and lipid adaptations to training. Liver-specific AMPKα1α2 knockout (AMPKα1α2fl/fl+AlbCre) mice and littermate controls (AMPKα1α2fl/fl) completed sedentary and exercise training protocols. Liver nutrient fluxes were quantified at rest or during acute exercise following training. Liver metabolites and molecular regulators of metabolism were assessed. Training increased liver glycogen in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. The inability to increase glycogen led to lower glycogenolysis, glucose production, and circulating glucose during acute exercise in trained AMPKα1α2fl/fl+AlbCre mice. Deletion of AMPKα1α2 attenuated training-induced declines in liver diacylglycerides. In particular, training lowered the concentration of unsaturated and elongated fatty acids comprising diacylglycerides in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. Training increased liver triacylglycerides and the desaturation and elongation of fatty acids in triacylglycerides of AMPKα1α2fl/fl+AlbCre mice. These lipid responses were independent of differences in tricarboxylic acid cycle fluxes. In conclusion, AMPK is required for liver training adaptations that are critical to glucose and lipid metabolism.NEW & NOTEWORTHY This study shows that the energy sensor and transducer, AMP-activated protein kinase (AMPK), is necessary for an exercise training-induced: 1) increase in liver glycogen that is necessary for accelerated glycogenolysis during exercise, 2) decrease in liver glycerolipids independent of tricarboxylic acid (TCA) cycle flux, and 3) decline in the desaturation and elongation of fatty acids comprising liver diacylglycerides. The mechanisms defined in these studies have implications for use of regular exercise or AMPK-activators in patients with fatty liver.


Assuntos
Proteínas Quinases Ativadas por AMP , Fígado Gorduroso , Humanos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Hepático , Fígado/metabolismo , Glucose/metabolismo , Fígado Gorduroso/metabolismo , Ácidos Graxos/metabolismo
7.
Metabolomics ; 20(3): 55, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762651

RESUMO

INTRODUCTION: The world is experiencing exponential growth in communication, especially wireless communication. Wireless connectivity has recently become a part of everyone's daily life. Recent developments in low-cost, low-power, and miniature devices contribute to a significant rise in radiofrequency-electromagnetic field (RF-EM) radiation exposure in our environment, raising concern over its effect on biological systems. The inconsistent and conflicting research results make it difficult to draw definite conclusions about how RF-EM radiation affects living things. OBJECTIVES: This study identified two micro-environments based on their level of exposure to cellular RF-EM radiation, one with significantly less exposure and another with very high exposure to RF-EM radiation. Emphasis is given to studying the metabolites in the urine samples of humans naturally exposed to these two different microenvironments to understand short-term metabolic dysregulations. METHODS: Untargeted 1H NMR spectroscopy was employed for metabolomics analyses to identify dysregulated metabolites. A total of 60 subjects were recruited with 5 ml urine samples each. These subjects were divided into two groups: one highly exposed to RF-EM (n = 30) and the other consisting of low-exposure populations (n = 30). RESULTS: The study found that the twenty-nine metabolites were dysregulated. Among them, 19 were downregulated, and 10 were upregulated. In particular, Glyoxylate and dicarboxylate and the TCA cycle metabolism pathway have been perturbed. The dysregulated metabolites were validated using the ROC curve analysis. CONCLUSION: Untargeted urine metabolomics was conducted to identify dysregulated metabolites linked to RF-EM radiation exposure. Preliminary findings suggest a connection between oxidative stress and gut microbiota imbalance. However, further research is needed to validate these biomarkers and understand the effects of RF-EM radiation on human health. Further research is needed with a diverse population.


Assuntos
Metaboloma , Metabolômica , Ondas de Rádio , Humanos , Masculino , Adulto , Metabolômica/métodos , Feminino , Ondas de Rádio/efeitos adversos , Metaboloma/efeitos da radiação , Pessoa de Meia-Idade , Campos Eletromagnéticos/efeitos adversos , Adulto Jovem
8.
FASEB J ; 37(7): e23025, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309599

RESUMO

We previously reported that cyclin D3-null mice display a shift toward the slow, oxidative phenotype in skeletal muscle, improved exercise endurance, and increased energy expenditure. Here, we explored the role of cyclin D3 in the physiologic response of skeletal muscle to external stimuli and in a model of muscle degenerative disease. We show that cyclin D3-null mice exhibit a further transition from glycolytic to oxidative muscle fiber type in response to voluntary exercise and an improved response to fasting. Since fast glycolytic fibers are known to be more susceptible to degeneration in Duchenne muscular dystrophy (DMD), we examined the effects of cyclin D3 inactivation on skeletal muscle phenotype in the mdx mouse model of DMD. Compared with control mdx mice, cyclin D3-deficient mdx mice display a higher proportion of slower and more oxidative myofibers, reduced muscle degenerative/regenerative processes, and reduced myofiber size variability, indicating an attenuation of dystrophic histopathology. Furthermore, mdx muscles lacking cyclin D3 exhibit reduced fatigability during repeated electrical stimulations. Notably, cyclin D3-null mdx mice show enhanced performance during recurrent trials of endurance treadmill exercise, and post-exercise muscle damage results decreased while the regenerative capacity is boosted. In addition, muscles from exercised cyclin D3-deficient mdx mice display increased oxidative capacity and increased mRNA expression of genes involved in the regulation of oxidative metabolism and the response to oxidative stress. Altogether, our findings indicate that depletion of cyclin D3 confers benefits to dystrophic muscle, suggesting that cyclin D3 inhibition may represent a promising therapeutic strategy against DMD.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Camundongos Endogâmicos mdx , Ciclina D3 , Músculo Esquelético , Metabolismo Energético , Modelos Animais de Doenças , Camundongos Knockout
9.
Biotechnol Bioeng ; 121(10): 3068-3075, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38659198

RESUMO

Chinese hamster ovary (CHO) cells are widely used to manufacture biopharmaceuticals, most of all monoclonal antibodies (mAbs). Some CHO cell lines exhibit production instability, where the productivity of the cells decreases as a function of time in culture. To counter this, we designed a passaging strategy that, rather than maximizing the time spent in log-growth phase, mimics the first 7 days of a fed-batch production process. Cultures passaged using this method had lower net growth rates and were more oxidative throughout 6 weeks of passaging. Fed-batch cultures inoculated by cells passaged using this method had increased net growth rates, oxidative metabolism, and volumetric productivity compared to cells passaged using a conventional strategy. Cells from unstable cell lines passaged by this new method produced 80%-160% more mAbs per unit volume than cells passaged by a conventional method. This new method, named Super7, provides the ability to mitigate the impact of production instability in CHO-K1 cell lines without a need for further cell line creation, genetic engineering, or medium development.


Assuntos
Anticorpos Monoclonais , Técnicas de Cultura Celular por Lotes , Cricetulus , Células CHO , Animais , Técnicas de Cultura Celular por Lotes/métodos , Anticorpos Monoclonais/biossíntese , Cricetinae , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proliferação de Células
10.
Anal Bioanal Chem ; 416(10): 2541-2551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451277

RESUMO

In this study, an online electrochemistry coupling high-performance liquid chromatography-mass spectrometry (EC-HPLC-MS) technology has been developed for simulating metabolic reactions and rapid analysis of metabolites of flavone, quercetin, and rutin, which are not only widely present compounds with pharmacological activity in nature, but also have structural similarity and variability. The simulated metabolic processes of the substrates (phase I and phase II metabolism) were implemented on the surface of glassy carbon electrode (GCE) by using different electrochemical methods. After online chromatographic separation, the products were transmitted to a mass spectrometer for detection, in order to speculate relevant reaction pathways and structural information of the reaction product. The main metabolites, including methylation, hydroxylation, hydrolysis, and conjugation reaction products, had been successfully identified through the designed in situ hyphenated technique. Furthermore, compared with metabolites produced by in vitro incubation of rat liver microsomes, it was found that the products of electrochemical simulated metabolism were more abundant with diverse metabolic pathways. The results indicated that the proposed method exhibited advantages in the sample pretreatment process and detection cycle without compromising the reliability and accuracy of the results.


Assuntos
Flavonoides , Espectrometria de Massa com Cromatografia Líquida , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica , Flavonoides/metabolismo , Microssomos Hepáticos/metabolismo , Oxirredução , Reprodutibilidade dos Testes
11.
Biomed Eng Online ; 23(1): 91, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252062

RESUMO

BACKGROUND: Sarcopenia is a muscle disorder causing a progressive reduction of muscle mass and strength, but the mechanism of its manifestation is still partially unknown. The three main parameters to assess are: muscle strength, muscle volume or quality and low physical performance. There is not a definitive approach to assess the musculoskeletal condition of frail population and often the available tests to be performed in those clinical bedridden patients is reduced because of physical impairments. In this paper, we propose a novel instrumental multi-domain and non-invasive approach during a well-defined protocol of measurements for overcoming these limitations. A group of 28 bedridden elder people, subjected to surgery after hip fracture, was asked to perform voluntary isometric contractions at the 80% of their maximum voluntary contraction with the non-injured leg. The sensor employed before and/or during the exercise were: ultrasound to determine the muscle architecture (vastus lateralis); force acquisition with a load cell placed on the chair, giving an indication of the muscle strength; surface electromyography (EMG) for monitoring muscular electrical activity; time-domain (TD) near-infrared spectroscopy (NIRS) for evaluating muscle oxidative metabolism. RESULTS: A personalized "report card" for each subject was created. It includes: the force diagram (both instantaneous and cumulative, expected and measured); the EMG-force diagram for a comparison between EMG derived median frequency and measured force; two graphs related to the hemodynamic parameters for muscle oxidative metabolism evaluation, i.e., oxy-, deoxy-, total-hemoglobin and tissue oxygen saturation for the whole exercise period. A table with the absolute values of the previous hemodynamic parameters during the rest and the ultrasound related parameters are also included. CONCLUSIONS: In this work, we present the union of protocols, multi-domain sensors and parameters for the evaluation of the musculoskeletal condition. The novelties are the use of sensors of different nature, i.e., force, electrical and optical, together with a new way to visualize and combine the results, by means of a concise, exhaustive and personalized medical report card for each patient. This assessment, totally non-invasive, is focused on a bedridden population, but can be extended to the monitoring of rehabilitation progresses or of the training of athletes.


Assuntos
Eletromiografia , Humanos , Idoso , Masculino , Feminino , Medicina de Precisão , Idoso de 80 Anos ou mais , Idoso Fragilizado , Espectroscopia de Luz Próxima ao Infravermelho , Força Muscular , Músculo Esquelético/diagnóstico por imagem , Contração Isométrica , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
12.
Cell Mol Life Sci ; 80(12): 362, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37979052

RESUMO

A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Masculino , Feminino , Peixe-Zebra/genética , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças
13.
Xenobiotica ; 54(6): 304-315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38794972

RESUMO

In vitro studies using rat, mouse, and human microsomes and hepatocytes on the bacterial ß-glucuronidase inhibitor 1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)-3-(4-ethoxyphenyl)-1-(2-hydroxyethyl)thiourea) (Inh 1) revealed extensive metabolism in all species.The intrinsic clearances of Inh 1 in human, mouse, and rat hepatic microsomes were 30.9, 67.8, and 201 µL/min/mg, respectively. For intact hepatocytes intrinsic clearances of 21.6, 96.0, and 129 µL/min/106 cells were seen for human, mouse and rat, respectively.The metabolism of Inh 1 involved an uncommon desulphurisation reaction in addition to oxidation, deethylation, and conjugation reactions at multiple sites. Six metabolites were detected in microsomal incubations in human and rat, and seven for the mouse. With hepatocytes, 18 metabolites were characterised, 9 for human, and 11 for mouse and rat.Following IV administration to mice (3 mg/kg), plasma concentrations of Inh 1 exhibited a monophasic decline with a terminal elimination half-life of 0.91 h and low systemic clearance (11.8% of liver blood flow). After PO dosing to mice (3 mg/kg), peak observed Inh 1 concentrations of 495 ng/mL were measured 0.5 h post dose, declining to under 10 ng/mL at 8 h post dose. The absolute oral bioavailability of Inh 1 in the mouse was ca. 26%.


Assuntos
Glucuronidase , Hepatócitos , Microssomos Hepáticos , Animais , Humanos , Camundongos , Ratos , Glucuronidase/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Masculino , Microbioma Gastrointestinal , Glicoproteínas
14.
Eur J Appl Physiol ; 124(7): 2069-2079, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38400931

RESUMO

PURPOSE: Different strategies for near-infrared spectroscopy (NIRS)-derived muscle oxidative capacity assessment have been reported. This study compared and evaluated (I) approaches for averaging trials; (II) NIRS signals and blood volume correction equations; (III) the assessment of vastus lateralis (VL) and tibialis anterior (TA) muscles in two fitness levels groups. METHODS: Thirty-six participants [18 chronically trained (CT: 14 males, 4 females) and 18 untrained (UT: 10 males, 8 females)] participated in this study. Two trials of twenty transient arterial occlusions were performed for NIRS-derived muscle oxidative capacity assessment. Muscle oxygen consumption ( V ˙ O2m) was estimated from deoxygenated hemoglobin (HHb), corrected for blood volume changes following Ryan (HHbR) and Beever (HHbB) equations, and from oxygen saturation (StO2) in VL and TA. RESULTS: Superimposing or averaging V ˙ O2m or averaging the rate constants (k) from the two trials resulted in equivalent k values [two one-sided tests (TOST) procedure with 5% equivalence margin-P < 0.001]. Whereas HHbR (2.35 ± 0.61 min-1) and HHbB (2.34 ± 0.58 min-1) derived k were equivalent (P < 0.001), StO2 derived k (2.81 ± 0.92 min-1) was greater (P < 0.001) than both. k values were greater in CT vs UT in both muscles (VL: + 0.68 min-1, P = 0.002; TA: + 0.43 min-1, P = 0.01). CONCLUSION: Different approaches for averaging trials lead to similar k. HHb and StO2 signals provided different k, although different blood volume corrections did not impact k. Group differences in k were detected in both muscles.


Assuntos
Músculo Esquelético , Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Consumo de Oxigênio/fisiologia , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Adulto , Oxigênio/metabolismo , Oxigênio/sangue , Hemoglobinas/metabolismo
15.
Reprod Domest Anim ; 59(7): e14664, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010850

RESUMO

In several mammalian species, the measurement of mitochondrial oxygen consumption (MITOX) under different metabolic conditions has demonstrated a positive correlation with sperm motility and may be a sensitive indicator of mitochondrial health. In general, the maintenance of sperm motility and many key sperm functions and fertilizing events are heavily energy-dependent processes, and some species-specific substrate preferences exist. Although canine sperm have been known to undergo capacitation and maintain motility with supplementation of a wide range of energy substrates, the relationship between mitochondrial function, and the maintenance of oxidative metabolism and sperm motility remain unclear. The objective of this study was to explore the metabolic flexibility of canine sperm, and to investigate the relationship between mitochondrial function, and maintenance of motility under differing nutrient conditions. We explored substrate preferences and the bioenergetics underlying maintenance of canine sperm motility by monitoring mitochondrial oxidative function and sperm kinematics in the presence of mitochondrial effector drug treatments: FCCP, antimycin (ANTI), and oligomycin (OLIGO). We hypothesized that canine sperm possess the ability to use compensatory pathways and utilize diverse nutrient sources in the maintenance of motility. Oxygen consumption (change in pO2, oxygen partial pressure) and sperm kinematics (CASA) were measured concurrently (t0-t30) to assess the relationship between oxidative metabolism and maintenance of sperm motility in dogs. Four media were tested: containing glucose, lactate, and pyruvate (GLP), containing glucose (G), fructose (F), or lactate and pyruvate (LP). In the absence of pharmacological inhibition of the electron transport chain, energetic substrate had no effect on sperm kinematics in fertile dogs. Following mitochondrial disruption by ANTI and OLIGO, mitochondrial oxygen consumption was negatively correlated with several sperm motility parameters in GLP, G, F, and LP media. In every media, FCCP treatment quickly induced significantly higher oxygen consumption than in untreated sperm, and spare respiratory capacity, the maximal inducible oxidative metabolism, was high. With respiratory control ratios RCR >1 there was no indication of bioenergetic dysfunction in any media type, indicating that sperm mitochondria of fertile dogs have a high capacity for substrate oxidation and ATP turnover regardless of substrate. Our results suggest MITOX assessment is a valuable tool for assessing mitochondrial functionality, and that canine sperm employ flexible energy management systems which may be exploited to improve sperm handling and storage.


Assuntos
Mitocôndrias , Consumo de Oxigênio , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Cães , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Metabolismo Energético , Antimicina A/farmacologia , Antimicina A/análogos & derivados , Fertilidade/fisiologia
16.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610488

RESUMO

Near-infrared spectroscopy (NIRS) during repeated limb occlusions is a noninvasive tool for assessing muscle oxidative capacity. However, the method's reliability and validity remain under investigation. This study aimed to determine the reliability of the NIRS-derived mitochondrial power of the musculus vastus lateralis and its correlation with whole-body (cycling) aerobic power (V̇O2 peak). Eleven healthy active men (28 ± 10 y) twice (2 days apart) underwent repeated arterial occlusions to induce changes in muscle oxygen delivery after 15 s of electrical muscle stimulation. The muscle oxygen consumption (mV̇O2) recovery time and rate (k) constants were calculated from the NIRS O2Hb signal. We assessed the reliability (coefficient of variation and intraclass coefficient of correlation [ICC]) and equivalency (t-test) between visits. The results showed high reproducibility for the mV̇O2 recovery time constant (ICC = 0.859) and moderate reproducibility for the k value (ICC = 0.674), with no significant differences between visits (p > 0.05). NIRS-derived k did not correlate with the V̇O2 peak relative to body mass (r = 0.441, p = 0.17) or the absolute V̇O2 peak (r = 0.366, p = 0.26). In conclusion, NIRS provides a reproducible estimate of muscle mitochondrial power, which, however, was not correlated with whole-body aerobic capacity in the current study, suggesting that even if somewhat overlapping, not the same set of factors underpin these distinct indices of aerobic capacity at the different (peripheral and whole-body systemic) levels.


Assuntos
Músculo Quadríceps , Espectroscopia de Luz Próxima ao Infravermelho , Masculino , Humanos , Reprodutibilidade dos Testes , Ciclismo , Estimulação Elétrica
17.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279217

RESUMO

This comprehensive review explores the critical role of fatty acid (FA) metabolism in cardiac diseases, particularly heart failure (HF), and the implications for therapeutic strategies. The heart's reliance on ATP, primarily sourced from mitochondrial oxidative metabolism, underscores the significance of metabolic flexibility, with fatty acid oxidation (FAO) being a dominant source. In HF, metabolic shifts occur with an altered FA uptake and FAO, impacting mitochondrial function and contributing to disease progression. Conditions like obesity and diabetes also lead to metabolic disturbances, resulting in cardiomyopathy marked by an over-reliance on FAO, mitochondrial dysfunction, and lipotoxicity. Therapeutic approaches targeting FA metabolism in cardiac diseases have evolved, focusing on inhibiting or stimulating FAO to optimize cardiac energetics. Strategies include using CPT1A inhibitors, using PPARα agonists, and enhancing mitochondrial biogenesis and function. However, the effectiveness varies, reflecting the complexity of metabolic remodeling in HF. Hence, treatment strategies should be individualized, considering that cardiac energy metabolism is intricate and tightly regulated. The therapeutic aim is to optimize overall metabolic function, recognizing the pivotal role of FAs and the need for further research to develop effective therapies, with promising new approaches targeting mitochondrial oxidative metabolism and FAO that improve cardiac function.


Assuntos
Insuficiência Cardíaca , Miocárdio , Humanos , Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo
18.
Molecules ; 29(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125109

RESUMO

Dipines are a type of important antihypertensive drug as L-calcium channel blockers, whose core skeleton is the 1,4-dihydropyridine structure. Since the dihydropyridine ring is a key structural factor for biological activity, the thermodynamics of the aromatization dihydropyridine ring is a significant feature parameter for understanding the mechanism and pathways of dipine metabolism in vivo. Herein, 4-substituted-phenyl-2,6-dimethyl-3,5-diethyl-formate-1,4-dihydropyridines are refined as the structurally closest dipine models to investigate the thermodynamic potential of dipine oxidative metabolism. In this work, the thermodynamic cards of dipine models' aromatization on 21 potential elementary steps in acetonitrile have been established. Based on the thermodynamic cards, the thermodynamic properties of dipine models and related intermediates acting as electrons, hydrides, hydrogen atoms, protons, and two hydrogen ions (atoms) donors are discussed. Moreover, the thermodynamic cards are applied to evaluate the redox properties, and judge or reveal the possible oxidative mechanism of dipine models.


Assuntos
Oxirredução , Termodinâmica , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Estrutura Molecular , Modelos Moleculares
19.
Bull Environ Contam Toxicol ; 112(5): 66, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643435

RESUMO

In this study, the toxicogenomic effects of five cytostatics (tamoxifen, methotrexate, capecitabine, cyclophosphamide, and ifosfamide) on fathead minnow (Pimephales promelas) larvae were evaluated. Post-fertilization eggs were exposed to increasing concentrations of the drugs for six days. The expression levels of two genetic biomarkers for toxicity and four thyroid hormone-related gene pathways were measured. Interestingly, the results showed that all concentrations of the five cytostatics affect the transcription levels of both toxicity biomarker genes. Additionally, the thyroid hormone-related genes had different expression levels than the control, with the most significant changes observed in those larvae exposed to cyclophosphamide and ifosfamide. While a previous study found no effects on fish morphology, this study suggests that the five cytostatics modify subtle molecular responses of P. promelas, highlighting the importance of assessing multibiological level endpoints throughout the lifecycle of animals to understand the full portrait of potential effects of cytostatics and other contaminants.


Assuntos
Cyprinidae , Citostáticos , Animais , Larva , Ifosfamida , Toxicogenética , Cyprinidae/genética , Ciclofosfamida , Hormônios Tireóideos
20.
Exp Physiol ; 108(3): 503-517, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648072

RESUMO

NEW FINDINGS: What is the central question of this study? What are the physiological mechanisms underlying muscle fatigue and the increase in the O2 cost per unit of work during high-intensity exercise? What is the main finding and its importance? Muscle fatigue happens before, and does not explain, the V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slow component ( V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ ), but they share the same origin. Muscle activation heterogeneity is associated with muscle fatigue and V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ . Knowing this may improve training prescriptions for healthy people leading to improved public health outcomes. ABSTRACT: This study aimed to explain the V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slow component ( V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ ) and muscle fatigue during cycling at different intensities. The muscle fatigue of 16 participants was determined through maximal isokinetic effort lasting 3 s during constant work rate bouts of moderate (MOD), heavy (HVY) and very heavy intensity (VHI) exercise. Breath-by-breath V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ , near-infrared spectroscopy signals and EMG activity were analysed (thigh muscles). V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ was higher during VHI exercise (∼70% vs. ∼28% of V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ reserve in HVY). The deoxygenated haemoglobin final value during VHI exercise was higher than during HVY and MOD exercise (∼90% of HHb physiological normalization, vs. ∼82% HVY and ∼45% MOD). The muscle fatigue was greater after VHI exercise (∼22% vs. HVY ∼5%). There was no muscle fatigue after MOD exercise. The greatest magnitude of muscle fatigue occurred within 2 min (VHI ∼17%; HVY ∼9%), after which it stabilized. No significant relationship between V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ and muscle force production was observed. The τ of muscle V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ was significantly related (R2  = 0.47) with torque decrease for VHI. Type I and II muscle fibre recruitment mainly in the rectus femoris moderately explained the muscle fatigue (R2  = 0.30 and 0.31, respectively) and the V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ (R2  = 0.39 and 0.27, respectively). The V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ is also partially explained by blood lactate accumulation (R2  = 0.42). In conclusion muscle fatigue and O2 cost seem to share the same physiological cause linked with a decrease in the muscle V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ and a change in lactate accumulation. Muscle fatigue and V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ are associated with muscle activation heterogeneity and metabolism of different muscles activated during cycling.


Assuntos
Músculo Esquelético , Oxigênio , Humanos , Oxigênio/metabolismo , Músculo Esquelético/fisiologia , Fadiga Muscular/fisiologia , Metabolismo Energético , Lactatos/metabolismo , Consumo de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA