Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
Immunity ; 49(1): 56-65.e4, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958799

RESUMO

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.


Assuntos
Inflamassomos/metabolismo , Inflamação/fisiopatologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/deficiência , Caspase 1/metabolismo , Linhagem Celular , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/deficiência , Quinina/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140185

RESUMO

A high extracellular adenosine triphosphate (ATP) concentration rapidly and reversibly exposes phosphatidylserine (PtdSer) in T cells by binding to the P2X7 receptor, which ultimately leads to necrosis. Using mouse T cell transformants expressing P2X7, we herein performed CRISPR/Cas9 screening for the molecules responsible for P2X7-mediated PtdSer exposure. In addition to Eros, which is required for the localization of P2X7 to the plasma membrane, this screening identified Xk and Vps13a as essential components for this process. Xk is present at the plasma membrane, and its paralogue, Xkr8, functions as a phospholipid scramblase. Vps13a is a lipid transporter in the cytoplasm. Blue-native polyacrylamide gel electrophoresis indicated that Xk and Vps13a interacted at the membrane. A null mutation in Xk or Vps13a blocked P2X7-mediated PtdSer exposure, the internalization of phosphatidylcholine, and cytolysis. Xk and Vps13a formed a complex in mouse splenic T cells, and Xk was crucial for ATP-induced PtdSer exposure and cytolysis in CD25+CD4+ T cells. XK and VPS13A are responsible for McLeod syndrome and chorea-acanthocytosis, both characterized by a progressive movement disorder and cognitive and behavior changes. Our results suggest that the phospholipid scrambling activity mediated by XK and VPS13A is essential for maintaining homeostasis in the immune and nerve systems.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fosfolipídeos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Linfócitos T/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Trifosfato de Adenosina , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Sistemas CRISPR-Cas , Morte Celular , Linhagem Celular , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fosfatidilserinas/farmacologia , Receptores Purinérgicos P2X7/genética , Proteínas de Transporte Vesicular/genética
3.
Neurobiol Dis ; 192: 106432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331352

RESUMO

The aim of this study was to explore the role and mechanism of the olfactory bulb (OB) microglial P2X7 receptor (P2X7R) in allergic rhinitis (AR)-related depression, with the objective of identifying a potential clinical target. An AR mouse model was induced using ovalbumin (OVA), while chronic stress was employed to induce depression. The study used P2X7R-specific antagonists and OB microglia-specific P2X7R knockdown mice as crucial tools. The results showed that mice in the OVA + stress group exhibited more pronounced depressive-like phenotypes. Furthermore, there was an observed increase in microglial activation in the OB, followed by a rise in the level of inflammation. The pharmacological inhibition of P2X7R significantly mitigated the depression-like phenotype and the OB inflammatory response in OVA + stress mice. Notably, the specific knockdown of microglial P2X7R in the OB resulted in a similar effect, possibly linked to the regulation of IL-1ß via the "ATP-P2X7R-Caspase 1" axis. These findings collectively demonstrate that microglial P2X7R in the OB acts as a direct effector molecule in AR-related depression, and its inhibition may offer a novel strategy for clinical prevention and treatment.


Assuntos
Microglia , Rinite Alérgica , Animais , Camundongos , Depressão , Bulbo Olfatório , Receptores Purinérgicos P2X7/genética
4.
Hippocampus ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269925

RESUMO

Fragile-X Syndrome (FXS) is the leading monogenetic cause of intellectual disability among children but remains without a cure. Using the Fmr1 KO mouse model of FXS, much work has been done to understand FXS hippocampus dysfunction. Purinergic signaling, where ATP and its metabolites are used as signaling molecules, participates in hippocampus development, but it is unknown if purinergic signaling is affected in the developing Fmr1 KO hippocampus. In our study, we characterized the purinergic receptor P2X7. We first found that P2X7 was reduced in Fmr1 KO whole hippocampus tissue at P14 and P21, corresponding to the periods of neurite outgrowth and synaptic refinement in the hippocampus. We then evaluated the cell-specific expression of P2X7 with immunofluorescence and found differences between WT and Fmr1 KO mice in P2X7 colocalization with hippocampal microglia and neurons. P2X7 colocalized more with microglia at P14 and P21, but there was a sex-specific reduction in P2X7 colocalization with neurons. In contrast, male mice at P14 and P21 showed reduced neuronal P2X7 colocalization compared to females, but only females showed reduced absolute neuronal P2X7 expression across the dorsal hippocampal formation. Together, our results suggest that P2X7 expression is altered during Fmr1-KO hippocampal development, potentially influencing several developmental processes in the Fmr1-KO hippocampus formation.

5.
Clin Immunol ; 265: 110304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964633

RESUMO

Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.


Assuntos
Cladribina , Citocinas , Imunidade Inata , Monócitos , Esclerose Múltipla Recidivante-Remitente , Humanos , Cladribina/uso terapêutico , Cladribina/farmacologia , Imunidade Inata/efeitos dos fármacos , Feminino , Masculino , Adulto , Estudos Prospectivos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/sangue , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/imunologia , Receptores Purinérgicos P2X7/imunologia , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Adulto Jovem
6.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39142135

RESUMO

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

7.
FASEB J ; 37(6): e22955, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37159387

RESUMO

The pathogenesis of allergic rhinitis (AR)-related olfactory dysfunction (OD) remains unknown. Inhibiting microglial response in olfactory bulb (OB) can ameliorate AR-related OD, but no precise targets have been available. In this study, we established a mouse model of ovalbumin (OVA)-induced AR and combined with the application of P2X7 receptor (P2X7R)-specific antagonists and cell culture in conditioned medium to investigate the role and mechanism of OB microglial P2X7R in AR-related OD. Serum IgE and IL-5 levels determined via ELISA and federated the number of nose-scratching to affirm the success of OVA-induced AR mouse model. Buried food pellet test was used to evaluate the olfactory function of mice. The changes of IBA1, GFAP, P2X7R, IL-1ß, IL-1Ra, and CASPASE 1 were detected by quantitative polymerase chain reaction and western blotting. The levels of adenosine triphosphate (ATP) were determined by the commercialized kit. The morphological changes of microglia were assessed using immunofluorescence staining and Sholl analysis. Findings showed that AR-related OD was associated with OB microglia-mediated imbalance between IL-1ß and IL-1Ra. Treatment with BBG improved the olfactory function in AR mice with restoring the balance between IL-1ß and IL-1Ra. In vitro, the conditioned medium obtained after HNEpC treatment with Der p1 could activate HMC3 to arise inflammatory reaction basing on "ATP-P2X7R-Caspase 1" axis, while inhibition of its P2X7R suppressed the reaction. In brief, microglial P2X7R in OB is a direct effector molecule in AR-related OD and inhibition of it may be a new strategy for the treatment of AR-related OD.


Assuntos
Transtornos do Olfato , Receptores Purinérgicos P2X7 , Rinite Alérgica , Animais , Camundongos , Trifosfato de Adenosina , Caspase 1 , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Proteína Antagonista do Receptor de Interleucina 1 , Microglia , Bulbo Olfatório , Ovalbumina , Receptores Purinérgicos P2X7/genética , Rinite Alérgica/complicações
8.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460804

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Camundongos , Zika virus/genética , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina
9.
Brain Behav Immun ; 120: 121-140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777288

RESUMO

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.


Assuntos
Modelos Animais de Doenças , Microglia , Neurônios , Receptores Purinérgicos P2X7 , Convulsões , Animais , Microglia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Masculino , Camundongos , Convulsões/metabolismo , Convulsões/genética , Neurônios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Ácido Caínico , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/genética , Hipocampo/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/genética , Camundongos Knockout , Pentilenotetrazol , Transdução de Sinais , Neurônios GABAérgicos/metabolismo , Epilepsia/metabolismo , Epilepsia/genética , Encéfalo/metabolismo
10.
Purinergic Signal ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222236

RESUMO

P2X7 receptor (P2X7R) has been found to contribute to the peripheral mechanism of acupuncture analgesia (AA). However, whether it plays an important role in central mechanism remains unknown. In this study, we aimed to reveal the role of astrocytic P2X7R in retrosplenial cortex (RSC) in AA and provide new evidence for underlying the central mechanism of AA. We applied the chemogenetic receptors hM3Dq to stimulate or hM4Di to inhibit astrocytes ligand clozapine-N-oxide (CNO) following injection of adeno-associated virus (AAV) into the bilateral RSC, or pharmacologically intervened in the activity of the purinergic receptor P2X7R. Current data indicated that chemogenetic inhibition of astrocytes or injection of P2X7R agonist Bz-ATP in the bilateral RSC significantly reverses the analgesic effect of electroacupuncture (EA) in formalin tests while the bilateral injection of the P2X7R antagonist A438079 alleviated formalin-induced nociceptive behavior. Additionally, chemogenetic suppression of astrocytic P2X7R by injection of AAV in the bilateral RSC decreased hind paw flinches induced by formalin in the mice. These findings indicate the participation of both astrocytes and P2X7R in the RSC in EA analgesic. Moreover, P2X7R on astrocytes in the RSC appears to play a critical role in the ability of EA to attenuate formalin-induced pain responses in mice.

11.
Purinergic Signal ; 20(5): 533-546, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38436880

RESUMO

The development of ionizable lipid (IL) was necessary to enable the effective formulation of small interfering RNA (siRNA) to inhibit P2X7 receptors (P2X7R), a key player in tumor proliferation, apoptosis, and metastasis. In this way, the synthesis and utility of IL for enhancing cellular uptake of lipid nanoparticles (LNP) improve the proper delivery of siRNA-LNPs for knockdown overexpression of P2X7R. Therefore, to evaluate the impact of P2X7 knockdown on breast cancer (BC) migration and apoptosis, a branched and synthesized ionizable lipid (SIL) was performed for efficient transfection of LNP with siRNA for targeting P2X7 receptors (siP2X7) in mouse 4T-1 cells. Following synthesis and structural analysis of SIL, excellent characterization of the LNP was achieved (Z-average 126.8 nm, zeta-potential - 12.33, PDI 0.16, and encapsulation efficiency 85.35%). Afterward, the stability of the LNP was evaluated through an analysis of the leftover composition, and toxic concentration values for SIL and siP2X7 were determined. Furthermore, siP2X7-LNP cellular uptake in the formulation was assessed via confocal microscopy. Following determining the optimal dose (45 pmol), wound healing analysis was assessed using scratch assay microscopy, and apoptosis was evaluated using flow cytometry. The use of the innovative branched SIL in the formulation of siP2X7-LNP resulted in significant inhibition of migration and induction of apoptosis in 4T-1 cells due to improved cellular uptake. Subsequently, the innovative SIL represents a critical role in efficiently delivering siRNA against murine triple-negative breast cancer cells (TNBC) using LNP formulation, resulting in significant efficacy.


Assuntos
Apoptose , Neoplasias da Mama , Movimento Celular , Lipídeos , RNA Interferente Pequeno , Receptores Purinérgicos P2X7 , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Neoplasias da Mama/patologia , Feminino , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/administração & dosagem , Animais , Camundongos , Nanopartículas , Humanos , Linhagem Celular Tumoral
12.
Purinergic Signal ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271580

RESUMO

Moxibustion, traditional Chinese medicine treatment, involves the warming of specific acupuncture points of the body using ignited herbal materials. Evidence suggests beneficial effects of moxibustion in several brain diseases including epilepsy, however, whether moxibustion pretreatment impacts on seizures and what are the underlying mechanisms remains to be established. Evidence has suggested the purinergic ATP-gated P2X7 receptor (P2X7R) to be involved in the actions of moxibustion. Moreover, P2X7R signalling is now well established to contribute to long-lasting brain hyperexcitability underlying epilepsy development. Whether P2X7R signalling is involved in the seizure-reducing actions of moxibustion has not been investigated to date. For our studies we used C57BL/6 male mice that received moxibustion pre-treatments at the acupoints Zusanli (ST36) and Dazhui (GV14) once daily for either 7, 14, or 21 days. This was followed by an intraperitoneal injection of kainic acid (KA, 30 mg/kg) to induce status epilepticus. Behavioral changes during KA-induced status epilepticus were analyzed according to the Racine scale. Changes in electrographic seizures were analyzed via cortical implanted electroencephalogram (EEG) electrodes. While no effect on seizure severity was observed following 7 days of moxibustion pre-treatment, moxibustion pre-treatment at both ST36 and GV14 for 14 or 21 days significantly reduced KA-induced behavior seizures at a similar rate. Cortical EEG recordings showed that 14 days of moxibustion pre-treatments also reduced electrographic seizures, confirming the anticonvulsant actions of moxibustion pre-treatment. To determine whether moxibustion impacts the pro-convulsant actions of P2X7R signaling, mice were treated with the P2X7R agonist BzATP or P2X7R antagonist A438079. While treatment with the P2X7R agonist BzATP exacerbated seizure severity, treatment with the P2X7R antagonist reduced seizure severity. We further found that moxibustion pre-treatment attenuated epileptic seizures by counteracting the effects of BzATP. These results suggest that moxibustion pre-treatment at the acupoints ST36 and GV14 for 14 days has anti-epileptic effects, which may counteract the proconvulsant functions of the P2X7R.

13.
Purinergic Signal ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325357

RESUMO

Acute stress causes depressive-like reactions in the tail suspension (TST) and forced swim tests (FST) of mice. Similarly, inescapable foot shock is able to promote the development of anhedonia as indicated by decreased sucrose consumption of treated mice in the sucrose preference test (SPT). The astrocyte-specific deletion of the P2X7R by a conditional knockout strategy or its knockdown by the intracerebroventricular (i.c.v.) delivery of an adeno-associated virus (AAV) expressing P2X7R-specific shRNA in astrocytes significantly prolonged the immobility time in TST and FST. In contrast, the shRNA-induced downregulation of the P2X7R in neurons, oligodendrocytes, or microglia had no detectable effect on the behavior of treated mice in these tests. Moreover, sucrose consumption in the SPT was not altered following inescapable foot shock treatment in any of these cell type-specific approaches. Immunohistochemistry indicated that the administered astrocyte-specific AAV efficiently conveyed expression of shRNA by hippocampal CA1 astrocytes, but not by neurons. In conclusion, P2X7R in astrocytes of this area of the brain appears to be involved in depressive-like reactions to acute stressors.

14.
Purinergic Signal ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771429

RESUMO

Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.

15.
Purinergic Signal ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676825

RESUMO

P2X7 receptor (P2X7R) plays an important role in modulating inflammation and fibrosis, but information is limited whether Zusanli (ST36) can inhibit inflammation and fibrosis by regulating P2X7R. Isoprenaline at 5 mg/kg was subcutaneously injected to wild-type and P2X7R knockout mice for 7 days, while treatment groups received electroacupuncture (EA) stimulation at ST36 for 7 sessions. Following 7-session treatment, Masson's trichrome staining was performed to assess the fibrosis. Morphology, electrocardiogram, and echocardiography were carried out to evaluate the cardiac function and structure. Western blotting, hematoxylin and eosin staining, immunohistochemistry, and biochemical analysis of inflammatory cytokine and transmission electron microscopy were carried out to characterize the effect of ST36 on inflammation. P2X7R was overexpressed in ISO-treated mice. EA at ST36, but not at non-points, reduced ISO-induced cardiac fibrosis, increases in HW/BW, R+S wave relative to mice in ISO groups. In addition, EA at ST36 downregulated ISO-upregulated P2X7R and NLRP3 in ventricle. Moreover, EA reduced cytokines of IL-1ß, IL-6, and IL-18 in serum, and inhibited foam cell gathering, inflammatory cell infiltration, and autophagy. However, EA at ST36 failed to attenuate the cardiac fibrosis and hypertrophy in P2X7R knockout mice. In conclusion, EA at ST36 attenuated ISO-induced fibrosis possibly via P2X7R.

16.
Purinergic Signal ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320433

RESUMO

Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.

17.
Purinergic Signal ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489005

RESUMO

Berberine (BBR) is a Chinese herb with antioxidant and anti-inflammatory properties. In a previous study, we found that BBR had a protective effect against light-induced retinal degeneration in BALB/c mice. The purinergic P2X7 receptor (P2X7R) plays a key role in retinal degeneration via inducing oxidative stress, inflammatory changes, and cell death. The aim of this study was to investigate whether BBR can induce protective effects in light damage experiments and whether P2X7R can get involved in these effects. C57BL/6 J mice and P2X7 knockout (KO) mice on the C57BL/6 J background were used. We found that BBR preserved the outer nuclear layer (ONL) thickness and retinal ganglion cells following light stimulation. Furthermore, BBR significantly suppressed photoreceptor apoptosis, pro-apoptotic c-fos expression, pro-inflammatory responses of Mϋller cells, and inflammatory factors (TNF-α, IL-1ß). In addition, protein levels of P2X7R were downregulated in BBR-treated mice. Double immunofluorescence showed that BBR reduced overexpression of P2X7R in retinal ganglion cells and Mϋller cells. Furthermore, BBR combined with the P2X7R agonist BzATP blocked the effects of BBR on retinal morphology and photoreceptor apoptosis. However, in P2X7 KO mice, BBR had an additive effect resulting in thicker ONL and more photoreceptors. The data suggest that the P2X7 receptor is involved in retinal light damage, and BBR inhibits this process by reducing histological impairment, cell death, and inflammatory responses.

18.
Purinergic Signal ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39304596

RESUMO

Ongoing cardiac remodeling can lead to negative outcomes, such as cardiac failure and diminished myocardial function, although the remodeling process initially protects the heart as a compensatory mechanism[1] . Importantly, ferroptosis appears to be a critical process in the development of cardiac disease. In a recent publication in Redox Biology, (Zhong et al. [2] showed that reactive oxygen species (ROS) generation and cardiac ferroptosis may be the mechanisms underlying angiotensin II (Ang II)-induced cardiac remodeling, as well as that ferroptosis is required for heart impairment and cardiac dysfunction induced by Ang II. Moreover, this study provides evidence that Ang II increases the expression of P2X7 receptors (P2X7R) in cardiac tissues and that both silencing and pharmacological inhibition of P2X7R significantly inhibited Ang II-induced ferroptosis and hypertrophy. Also, this work confirmed that P2X7R deficiency mitigated the Ang II-induced deterioration of cardiac injury in mice fed an iron-rich diet. Most interestingly, this study revealed that Ang II directly interacts with the P2X7R to activate and induce nucleocytoplasmic shuttling of human antigen R (HuR), which in turn controls the stability of the mRNA of heme oxygenase 1 (HO-1) and GPX4 and subsequent ROS production, which translated to induction of myocardial ferroptosis and remodeling.

19.
Europace ; 26(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261756

RESUMO

AIMS: Depression, the most prevalent psychiatric disorder, is associated with the occurrence and development of atrial fibrillation (AF). P2X7 receptor (P2X7R) activation participates in the development of depression, but little attention has been given to its role in AF. This study was to investigate the effects of P2X7R on AF in depression models. METHODS AND RESULTS: Lipopolysaccharide (LPS) and chronic unpredictable stress (CUS) were carried out to induce depression in rodents. Behavioural assessments, atrial electrophysiological parameters, electrocardiogram (ECG) parameters, western blot, and histology were performed. Atrial fibrillation inducibility was increased in both LPS- and CUS-induced depression, along with the up-regulation of P2X7R in atria. CUS facilitated atrial fibrosis. CUS reduced heart rate variability (HRV) and increased the expression of TH and GAP43, representing autonomic dysfunction. Down-regulation of Nav1.5, Cav1.2, Kv1.5, Kv4.3, Cx40, and Cx43 in CUS indicated the abnormalities in ion channels. In addition, the expression levels of TLR4, P65, P-P65, NLRP3, ASC, caspase-1, and IL-1ß were elevated in depression models. Pharmacological inhibitor (Brilliant Blue G, BBG) or genetic deficiency of P2X7R significantly mitigated depressive-like behaviours; ameliorated electrophysiological deterioration and autonomic dysfunction; improved ion channel expression and atrial fibrosis; and prevented atrial NLRP3 inflammasome activation in the pathophysiological process of AF in depression models. CONCLUSION: LPS or CUS induces AF and promotes P2X7R-dependent activation of NLRP3 inflammasome, whereas pharmacological P2X7R inhibition or P2X7R genetic deficiency prevents atrial remodelling without interrupting normal atrial physiological functions. Our results point to P2X7R as an important factor in the pathology of AF in depression.


Assuntos
Fibrilação Atrial , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Depressão/prevenção & controle , Modelos Animais de Doenças , Fibrose , Inflamassomos/metabolismo , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2X7/genética , Roedores/metabolismo
20.
Cereb Cortex ; 33(14): 8858-8875, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37183178

RESUMO

Major depressive disorder is a frequent and debilitating psychiatric disease. We have shown in some of the acute animal models of major depressive disorder (tail suspension test and forced swim test) that depression-like behavior can be aggravated in mice by the microinjection into the medial prefrontal cortex of the P2X7R agonistic adenosine 5'-triphosphate or its structural analog dibenzoyl-ATP, and these effects can be reversed by the P2X7R antagonistic JNJ-47965567. When measuring tail suspension test, the prolongation of immobility time by the P2YR agonist adenosine 5'-[ß-thio]diphosphate and the reduction of the adenosine 5'-(γ-thio)triphosphate effect by P2Y1R (MRS 2179) or P2Y12R (PSB 0739) antagonists, but not by JNJ-47965567, all suggest the involvement of P2YRs. In order to elucidate the localization of the modulatory P2X7Rs in the brain, we recorded current responses to dibenzoyl-ATP in layer V astrocytes and pyramidal neurons of medial prefrontal cortex brain slices by the whole-cell patch-clamp procedure; the current amplitudes were not altered in preparations taken from tail suspension test or foot shock-treated mice. The release of adenosine 5'-triphosphate was decreased by foot shock, although not by tail suspension test both in the hippocampus and PFC. In conclusion, we suggest, that in the medial prefrontal cortex, acute stressful stimuli cause supersensitivity of P2X7Rs facilitating the learned helplessness reaction.


Assuntos
Transtorno Depressivo Maior , Receptores Purinérgicos P2X7 , Camundongos , Animais , Depressão , Córtex Pré-Frontal , Trifosfato de Adenosina , Adenosina , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA