Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.016
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(2): 387-402.e16, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978347

RESUMO

Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Instabilidade de Microssatélites , Mutação/genética , Proteômica/métodos
2.
Trends Biochem Sci ; 49(9): 754-756, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38897854

RESUMO

While the central dogma of molecular biology describes how genetic information flows, gene expression is also affected by epigenetic and epitranscriptomic processes. A recent report by Rajan et al. demonstrates how pseudouridylation of a Leishmania ribosomal rRNA affects the expression of particular proteins: an example of epitranslatomic control.


Assuntos
Leishmania , RNA Mensageiro , Ribossomos , Leishmania/metabolismo , Leishmania/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , RNA Ribossômico/genética
3.
Mol Cell ; 74(3): 508-520.e4, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30902547

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded RNAs with a contiguous structure that have enhanced stability and a lack of end motifs necessary for interaction with various cellular proteins. Here, we show that unmodified exogenous circRNA is able to bypass cellular RNA sensors and thereby avoid provoking an immune response in RIG-I and Toll-like receptor (TLR) competent cells and in mice. The immunogenicity and protein expression stability of circRNA preparations are found to be dependent on purity, with small amounts of contaminating linear RNA leading to robust cellular immune responses. Unmodified circRNA is less immunogenic than unmodified linear mRNA in vitro, in part due to the evasion of TLR sensing. Finally, we provide the first demonstration to our knowledge of exogenous circRNA delivery and translation in vivo, and we show that circRNA translation is extended in adipose tissue in comparison to unmodified and uridine-modified linear mRNAs.


Assuntos
Proteína DEAD-box 58/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA/genética , Animais , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Imunidade Inata/genética , Camundongos , MicroRNAs/genética , RNA Circular , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Uridina/genética , Vacinas Sintéticas/genética
4.
Mol Cell ; 76(5): 838-851.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31564558

RESUMO

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/metabolismo , Metaboloma/fisiologia , Biomarcadores Tumorais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Neoplasias/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(36): e2404790121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186653

RESUMO

Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.


Assuntos
Células Artificiais , Núcleo Celular , Biologia Sintética , Biologia Sintética/métodos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Células Artificiais/metabolismo , Transdução de Sinais , Citoplasma/metabolismo , Comunicação Celular
6.
J Biol Chem ; 300(9): 107702, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173948

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease involving T cell-mediated destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. CD8+ T cells, responding to beta cell peptides presented by class I major histocompatibility complex (MHC) molecules, are important effectors leading to beta cell elimination. Human leukocyte antigen (HLA) B∗39:06, B∗39:01, and B∗38:01 are closely related class I MHC allotypes that nonetheless show differential association with T1D. HLA-B∗39:06 is the most predisposing of all HLA class I molecules and is associated with early age at disease onset. B∗39:01 is also associated with susceptibility to T1D, but to a lesser extent, though differing from B∗39:06 by only two amino acids. HLA-B∗38:01, in contrast, is associated with protection from the disease. Upon identifying a peptide that binds to both HLA-B∗39:06 and B∗39:01, we determined the respective X-ray structures of the two allotypes presenting this peptide to 1.7 Å resolution. The peptide residues available for T cell receptor contact and those serving as anchors were identified. Analysis of the F pocket of HLA-B∗39:06 and B∗39:01 provided an explanation for the distinct peptide C terminus preferences of the two allotypes. Structure-based modeling of the protective HLA-B∗38:01 suggested a potential reason for its peptide preferences and its reduced propensity to present 8-mer peptides compared to B∗39:06. Notably, the three allotypes showed differential binding to peptides derived from beta cell autoantigens. Taken together, our findings should facilitate identification of disease-relevant candidate T cell epitopes and structure-guided therapeutics to interfere with peptide binding.


Assuntos
Diabetes Mellitus Tipo 1 , Antígenos HLA-B , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Humanos , Antígenos HLA-B/química , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Antígenos HLA-B/imunologia , Cristalografia por Raios X , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/imunologia
7.
J Biol Chem ; 300(7): 107451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844131

RESUMO

Complement receptor 1 (CR1) is a membrane glycoprotein with a highly duplicated domain structure able to bind multiple ligands such as C3b and C4b, the activated fragments of complement components C3 and C4, respectively. We have previously used our knowledge of this domain structure to identify CSL040, a soluble extracellular fragment of CR1 containing the long homologous repeat (LHR) domains A, B, and C. CSL040 retains the ability to bind both C3b and C4b but is also a more potent complement inhibitor than other recombinant CR1-based therapeutics. To generate soluble CR1 variants with increased inhibitory potential across all three complement pathways, or variants with activity skewed to specific pathways, we exploited the domain structure of CR1 further by generating LHR domain duplications. We identified LHR-ABCC, a soluble CR1 variant containing a duplicated C3b-binding C-terminal LHR-C domain that exhibited significantly enhanced alternative pathway inhibitory activity in vitro compared to CSL040. Another variant, LHR-BBCC, containing duplications of both LHR-B and LHR-C with four C3b binding sites, was shown to have reduced classical/lectin pathway inhibitory activity compared to CSL040, but comparable alternative pathway activity. Interestingly, multiplication of the C4b-binding LHR-A domain resulted in only minor increases in classical/lectin pathway inhibitory activity. The CR1 duplication variants characterized in these in vitro potency assays, as well as in affinity in solution C3b and C4b binding assays, not only provides an opportunity to identify new therapeutic molecules but also additional mechanistic insights to the multiple interactions between CR1 and C3b/C4b.


Assuntos
Complemento C3b , Domínios Proteicos , Humanos , Complemento C3b/metabolismo , Complemento C3b/química , Complemento C3b/genética , Receptores de Complemento 3b/metabolismo , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/química , Complemento C4b/metabolismo , Complemento C4b/genética , Complemento C4b/química , Ligação Proteica
8.
J Biol Chem ; : 107853, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362470

RESUMO

YcjN is a putative substrate binding protein expressed from a cluster of genes involved in carbohydrate import and metabolism in Escherichia coli. Here, we determine the crystal structure of YcjN to a resolution of 1.95 Å, revealing that its three-dimensional structure is similar to substrate binding proteins in subcluster D-I, which includes the well-characterized maltose binding protein (MBP). Furthermore, we found that recombinant overexpression of YcjN results in the formation of a lipidated form of YcjN that is posttranslationally diacylated at cysteine 21. Comparisons of size-exclusion chromatography profiles and dynamic light scattering measurements of lipidated and non-lipidated YcjN proteins suggest that lipidated YcjN aggregates in solution via its lipid moiety. Additionally, bioinformatic analysis indicates that YcjN-like proteins may exist in both Bacteria and Archaea, potentially in both lipidated and non-lipidated forms. Together, our results provide a better understanding of the aggregation properties of recombinantly expressed bacterial lipoproteins in solution and establish a foundation for future studies that aim to elucidate the role of these proteins in bacterial physiology.

9.
J Biol Chem ; : 107829, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341498

RESUMO

High mobility group box (HMGB) proteins belong to high mobility group (HMG) superfamily of non-histone nuclear proteins that are involved in chromatin remodeling, regulation of gene expression and DNA repair. When extracellular, HMGBs serve as alarmins inducing inflammation and this is attributed to the proinflammatory activity of box B. Here, we show that Plasmodium HMGB1 has key amino acid changes in box B resulting in the loss of TNF-α stimulatory activity. Site-directed mutagenesis of the critical amino acids in box B with respect to mouse HMGB1 renders recombinant Plasmodium berghei (Pb) HMGB1 capable of inducing TNF-α release. Targeted deletion of PbHMGB1 and a detailed in vivo phenotyping show that PbHMGB1 knockout (KO) parasites can undergo asexual stage development. Interestingly, Balb/c mice-infected with PbHMGB1KO parasites display a protective phenotype with subsequent clearance of blood parasitemia, and develop long-lasting protective immunity against the challenges performed with Pb wildtype parasites. The characterization of splenic responses show prominent germinal centres leading to effective humoral responses and enhanced T follicular helper cells. There is also a complete protection from experimental cerebral malaria in CBA/CaJ mice susceptible for cerebral pathogenesis with subsequent parasite clearance. Transcriptomic studies suggest the involvement of PbHMGB1 in pir expression. Our findings highlight the gene regulatory function of parasite HMGB1 and its in vivo significance in modulating the host immune responses. Further, clearance of asexual stages in PbHMGB1KO-infected mice underscores the important role of parasite HMGB1 in host immune evasion. These findings have implications in developing attenuated blood-stage vaccine for malaria.

10.
J Biol Chem ; 300(5): 107201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508313

RESUMO

The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Modelos Moleculares , Proteínas Quinases
11.
J Biol Chem ; 300(4): 107155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479597

RESUMO

Despite significant advances in the development of therapeutic interventions targeting autoimmune diseases and chronic inflammatory conditions, lack of effective treatment still poses a high unmet need. Modulating chronically activated T cells through the blockade of the Kv1.3 potassium channel is a promising therapeutic approach; however, developing selective Kv1.3 inhibitors is still an arduous task. Phage display-based high throughput peptide library screening is a rapid and robust approach to develop promising drug candidates; however, it requires solid-phase immobilization of target proteins with their binding site preserved. Historically, the KcsA bacterial channel chimera harboring only the turret region of the human Kv1.3 channel was used for screening campaigns. Nevertheless, literature data suggest that binding to this type of chimera does not correlate well with blocking potency on the native Kv1.3 channels. Therefore, we designed and successfully produced advanced KcsA-Kv1.3, KcsA-Kv1.1, and KcsA-Kv1.2 chimeric proteins in which both the turret and part of the filter regions of the human Kv1.x channels were transferred. These T+F (turret-filter) chimeras showed superior peptide ligand-binding predictivity compared to their T-only versions in novel phage ELISA assays. Phage ELISA binding and competition results supported with electrophysiological data confirmed that the filter region of KcsA-Kv1.x is essential for establishing adequate relative affinity order among selected peptide toxins (Vm24 toxin, Hongotoxin-1, Kaliotoxin-1, Maurotoxin, Stichodactyla toxin) and consequently obtaining more reliable selectivity data. These new findings provide a better screening tool for future drug development efforts and offer insight into the target-ligand interactions of these therapeutically relevant ion channels.


Assuntos
Canal de Potássio Kv1.3 , Bloqueadores dos Canais de Potássio , Proteínas Recombinantes de Fusão , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/química , Ligantes , Biblioteca de Peptídeos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Linhagem Celular
12.
Plant J ; 119(2): 895-915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753873

RESUMO

Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.


Assuntos
Bryopsida , Cloroplastos , Citosol , Mitocôndrias , Edição de RNA , RNA de Plantas , Cloroplastos/metabolismo , Cloroplastos/genética , Citosol/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citidina/metabolismo , Citidina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Regulação da Expressão Gênica de Plantas , Uridina/metabolismo , Uridina/genética
13.
Proteomics ; 24(17): e2400031, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39044338

RESUMO

In this study, we present a high-resolution dataset and bioinformatic analysis of the proteome of Bacillus subtilis 168 trp+ (BSB1) during germination and spore outgrowth. Samples were collected at 14 different time points (ranging from 0 to 130 min) in three biological replicates after spore inoculation into germination medium. A total of 2191 proteins were identified and categorized based on their expression kinetics. We observed four distinct clusters that were analyzed for functional categories and KEGG pathways annotations. The examination of newly synthesized proteins between successive time points revealed significant changes, particularly within the first 50 min. The dataset provides an information base that can be used for modeling purposes and inspire the design of new experiments.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteoma , Esporos Bacterianos , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Proteoma/metabolismo , Proteoma/análise , Esporos Bacterianos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteômica/métodos , Biologia Computacional/métodos
14.
Proteomics ; 24(11): e2300391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556629

RESUMO

Arterial thrombosis manifesting as heart attack and stroke is the leading cause of death worldwide. Platelets are central mediators of thrombosis that can be activated through multiple activation pathways. Platelet-derived extracellular vesicles (pEVs), also known as platelet-derived microparticles, are granular mixtures of membrane structures produced by platelets in response to various activating stimuli. Initial studies have attracted interest on how platelet agonists influence the composition of the pEV proteome. In the current study, we used physiological platelet agonists of varying potencies which reflect the microenvironments that platelets experience during thrombus formation: adenosine diphosphate, collagen, thrombin as well as a combination of thrombin/collagen to induce platelet activation and pEV generation. Proteomic profiling revealed that pEVs have an agonist-dependent altered proteome in comparison to their cells of origin, activated platelets. Furthermore, we found that various protein classes including those related to coagulation and complement (prothrombin, antithrombin, and plasminogen) and platelet activation (fibrinogen) are attributed to platelet EVs following agonist stimulation. This agonist-dependent altered proteome suggests that protein packaging is an active process that appears to occur without de novo protein synthesis. This study provides new information on the influence of physiological agonist stimuli on the biogenesis and proteome landscape of pEVs.


Assuntos
Plaquetas , Vesículas Extracelulares , Ativação Plaquetária , Proteoma , Proteômica , Trombina , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Humanos , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Trombina/farmacologia , Trombina/metabolismo , Proteômica/métodos , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Colágeno/metabolismo
15.
BMC Bioinformatics ; 25(1): 309, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333857

RESUMO

BACKGROUND: The study of codon usage bias is important for understanding gene expression, evolution and gene design, providing critical insights into the molecular processes that govern the function and regulation of genes. Codon Usage Bias (CUB) indices are valuable metrics for understanding codon usage patterns across different organisms without extensive experiments. Considering that there is no one-fits-all index for all species, a comprehensive platform supporting the calculation and analysis of multiple CUB indices for codon optimization is greatly needed. RESULTS: Here, we release GenRCA, an updated version of our previous Rare Codon Analysis Tool, as a free and user-friendly website for all-inclusive evaluation of codon usage preferences of coding sequences. In this study, we manually reviewed and implemented up to 31 codon preference indices, with 65 expression host organisms covered and batch processing of multiple gene sequences supported, aiming to improve the user experience and provide more comprehensive and efficient analysis. CONCLUSIONS: Our website fills a gap in the availability of comprehensive tools for species-specific CUB calculations, enabling researchers to thoroughly assess the protein expression level based on a comprehensive list of 31 indices and further guide the codon optimization.


Assuntos
Uso do Códon , Software , Genoma/genética , Códon/genética
16.
J Proteome Res ; 23(5): 1725-1743, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636938

RESUMO

Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).


Assuntos
Proteínas de Bactérias , Proteoma , Proteômica , Treponema pallidum , Treponema pallidum/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espectrometria de Massas , Sífilis/microbiologia , Sífilis/metabolismo
17.
J Biol Chem ; 299(9): 105120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527776

RESUMO

Transmembrane protein 2 (TMEM2) was originally identified as a membrane-anchored protein of unknown function. We previously demonstrated that TMEM2 can degrade hyaluronan (HA). Furthermore, we showed that induced global knockout of Tmem2 in adult mice results in rapid accumulation of incompletely degraded HA in bodily fluids and organs, supporting the identity of TMEM2 as a cell surface hyaluronidase. In spite of these advances, no direct evidence has been presented to demonstrate the intrinsic hyaluronidase activity of TMEM2. Here, we directly establish the catalytic activity of TMEM2. The ectodomain of TMEM2 (TMEM2ECD) was expressed as a His-tagged soluble protein and purified by affinity and size-exclusion chromatography. Both human and mouse TMEM2ECD robustly degrade fluorescein-labeled HA into 5 to 10 kDa fragments. TMEM2ECD exhibits this HA-degrading activity irrespective of the species of TMEM2 origin and the position of epitope tag insertion. The HA-degrading activity of TMEM2ECD is more potent than that of HYAL2, a hyaluronidase which, like TMEM2, has been implicated in cell surface HA degradation. Finally, we show that TMEM2ECD can degrade not only fluorescein-labeled HA but also native high-molecular weight HA. In addition to these core findings, our study reveals hitherto unrecognized confounding factors, such as the quality of reagents and the choice of assay systems, that could lead to erroneous conclusions regarding the catalytic activity of TMEM2. In conclusion, our results demonstrate that TMEM2 is a legitimate functional hyaluronidase. Our findings also raise cautions regarding the choice of reagents and methods for performing degradation assays for hyaluronidases.


Assuntos
Hialuronoglucosaminidase , Proteínas de Membrana , Animais , Humanos , Camundongos , Membrana Celular/metabolismo , Fluoresceínas , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
18.
J Biol Chem ; 299(11): 105305, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778732

RESUMO

Previous research of anion channelrhodopsins (ACRs) has been performed using cytoplasmic domain (CPD)-deleted constructs and therefore have overlooked the native functions of full-length ACRs and the potential functional role(s) of the CPD. In this study, we used the recombinant expression of full-length Guillardia theta ACR1 (GtACR1_full) for pH measurements in Pichia pastoris cell suspensions as an indirect method to assess its anion transport activity and for absorption spectroscopy and flash photolysis characterization of the purified protein. The results show that the CPD, which was predicted to be intrinsically disordered and possibly phosphorylated, enhanced NO3- transport compared to Cl- transport, which resulted in the preferential transport of NO3-. This correlated with the extended lifetime and large accumulation of the photocycle intermediate that is involved in the gate-open state. Considering that the depletion of a nitrogen source enhances the expression of GtACR1 in native algal cells, we suggest that NO3- transport could be the natural function of GtACR1_full in algal cells.


Assuntos
Criptófitas , Ânions/metabolismo , Channelrhodopsins/metabolismo , Criptófitas/metabolismo , Transporte de Íons , Nitratos/metabolismo
19.
J Biol Chem ; 299(12): 105410, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913906

RESUMO

Aquaporins can facilitate the passive movement of water, small polar molecules, and some ions. Here, we examined solute selectivity for the barley Nodulin 26-like Intrinsic Protein (HvNIP2;1) embedded in liposomes and examined through stopped-flow light scattering spectrophotometry and Xenopus laevis oocyte swelling assays. We found that HvNIP2;1 permeates water, boric and germanic acids, sucrose, and lactose but not d-glucose or d-fructose. Other saccharides, such as neutral (d-mannose, d-galactose, d-xylose, d-mannoheptaose) and charged (N-acetyl d-glucosamine, d-glucosamine, d-glucuronic acid) aldoses, disaccharides (cellobiose, gentiobiose, trehalose), trisaccharide raffinose, and urea, glycerol, and acyclic polyols, were permeated to a much lower extent. We observed apparent permeation of hydrated KCl and MgSO4 ions, while CH3COONa and NaNO3 permeated at significantly lower rates. Our experiments with boric acid and sucrose revealed no apparent interaction between solutes when permeated together, and AgNO3 or H[AuCl4] blocked the permeation of all solutes. Docking of sucrose in HvNIP2;1 and spinach water-selective SoPIP2;1 aquaporins revealed the structural basis for sucrose permeation in HvNIP2;1 but not in SoPIP2;1, and defined key residues interacting with this permeant. In a biological context, sucrose transport could constitute a novel element of plant saccharide-transporting machinery. Phylogenomic analyses of 164 Viridiplantae and 2993 Archaean, bacterial, fungal, and Metazoan aquaporins rationalized solute poly-selectivity in NIP3 sub-clade entries and suggested that they diversified from other sub-clades to acquire a unique specificity of saccharide transporters. Solute specificity definition in NIP aquaporins could inspire developing plants for food production.


Assuntos
Aquaporinas , Hordeum , Metaloides , Água , Animais , Aquaporinas/metabolismo , Glucosamina , Hordeum/metabolismo , Metaloides/metabolismo , Sacarose , Água/metabolismo
20.
J Biol Chem ; 299(2): 102892, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642181

RESUMO

Bone morphogenetic proteins (BMPs) are secreted cytokines belonging to the transforming growth factor-ß superfamily. New therapeutic approaches based on BMP activity, particularly for cartilage and bone repair, have sparked considerable interest; however, a lack of understanding of their interaction pathways and the side effects associated with their use as biopharmaceuticals have dampened initial enthusiasm. Here, we used BMP-2 as a model system to gain further insight into both the relationship between structure and function in BMPs and the principles that govern affinity for their cognate antagonist Noggin. We produced BMP-2 and Noggin as inclusion bodies in Escherichia coli and developed simple and efficient protocols for preparing pure and homogeneous (in terms of size distribution) solutions of the native dimeric forms of the two proteins. The identity and integrity of the proteins were confirmed using mass spectrometry. Additionally, several in vitro cell-based assays, including enzymatic measurements, RT-qPCR, and matrix staining, demonstrated their biological activity during cell chondrogenic and hypertrophic differentiation. Furthermore, we characterized the simple 1:1 noncovalent interaction between the two ligands (KDca. 0.4 nM) using bio-layer interferometry and solved the crystal structure of the complex using X-ray diffraction methods. We identified the residues and binding forces involved in the interaction between the two proteins. Finally, results obtained with the BMP-2 N102D mutant suggest that Noggin is remarkably flexible and able to accommodate major structural changes at the BMP-2 level. Altogether, our findings provide insights into BMP-2 activity and reveal the molecular details of its interaction with Noggin.


Assuntos
Proteína Morfogenética Óssea 2 , Proteínas de Transporte , Condrogênese , Citocinas , Humanos , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Cartilagem/metabolismo , Diferenciação Celular , Citocinas/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA