Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264984

RESUMO

Lupinus mutabilis is an under-domesticated legume species from the Andean region of South America. It belongs to the New World lupins clade, which groups several lupin species displaying large genetic variation and adaptability to highly different environments. L. mutabilis is attracting interest as a potential multipurpose crop to diversify the European supply of plant proteins, increase agricultural biodiversity, and fulfill bio-based applications. This study reports the first high-quality L. mutabilis genome assembly, which is also the first sequenced assembly of a New World lupin species. Through comparative genomics and phylogenetics, the evolution of L. mutabilis within legumes and lupins is described, highlighting both genomic similarities and patterns specific to L. mutabilis, potentially linked to environmental adaptations. Furthermore, the assembly was used to study the genetics underlying important traits for the establishment of L. mutabilis as a novel crop, including protein and quinolizidine alkaloids contents in seeds, genomic patterns of classic resistance genes, and genomic properties of L. mutabilis mycorrhiza-related genes. These analyses pointed out copy number variation, differential genomic gene contexts, and gene family expansion through tandem duplications as likely important drivers of the genomic diversity observed for these traits between L. mutabilis and other lupins and legumes. Overall, the L. mutabilis genome assembly will be a valuable resource to conduct genetic research and enable genomic-based breeding approaches to turn L. mutabilis into a multipurpose legume crop.

2.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069383

RESUMO

High temperature is one of the most important factors limiting legume productivity. We have previously shown the induction of senescence in the apical part of nodules of the pea SGE line, formed by Rhizobium leguminosarum bv. viciae strain 3841, when they were exposed to elevated temperature (28 °C). In this study, we analyzed the potential involvement of abscisic acid (ABA), ethylene, and gibberellins in apical senescence in pea nodules under elevated temperature. Immunolocalization revealed an increase in ABA and 1-aminocyclopropane-1-carboxylic acid (ACC, the precursor of ethylene biosynthesis) levels in cells of the nitrogen fixation zone in heat-stressed nodules in 1 day of exposure compared to heat-unstressed nodules. Both ABA and ethylene appear to be involved in the earliest responses of nodules to heat stress. A decrease in the gibberellic acid (GA3) level in heat-stressed nodules was observed. Exogenous GA3 treatment induced a delay in the degradation of the nitrogen fixation zone in heat-stressed nodules. At the same time, a decrease in the expression level of many genes associated with nodule senescence, heat shock, and defense responses in pea nodules treated with GA3 at an elevated temperature was detected. Therefore, apical senescence in heat-stressed nodules is regulated by phytohormones in a manner similar to natural senescence. Gibberellins can be considered as negative regulators, while ABA and ethylene can be considered positive regulators.


Assuntos
Reguladores de Crescimento de Plantas , Rhizobium leguminosarum , Giberelinas , Temperatura , Rhizobium leguminosarum/genética , Etilenos , Ácido Abscísico/metabolismo , Fixação de Nitrogênio/genética , Simbiose/fisiologia
3.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003367

RESUMO

Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Sinorhizobium meliloti/genética , Simbiose/genética , RNA-Seq , Mutação , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia
4.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138973

RESUMO

Despite global warming, the influence of heat on symbiotic nodules is scarcely studied. In this study, the effects of heat stress on the functioning of nodules formed by Rhizobium leguminosarum bv. viciae strain 3841 on pea (Pisum sativum) line SGE were analyzed. The influence of elevated temperature was analyzed at histological, ultrastructural, and transcriptional levels. As a result, an unusual apical pattern of nodule senescence was revealed. After five days of exposure, a senescence zone with degraded symbiotic structures was formed in place of the distal nitrogen fixation zone. There was downregulation of various genes, including those associated with the assimilation of fixed nitrogen and leghemoglobin. After nine days, the complete destruction of the nodules was demonstrated. It was shown that nodule recovery was possible after exposure to elevated temperature for 3 days but not after 5 days (which coincides with heat wave duration). At the same time, the exposure of plants to optimal temperature during the night leveled the negative effects. Thus, the study of the effects of elevated temperature on symbiotic nodules using a well-studied pea genotype and Rhizobium strain led to the discovery of a novel positional response of the nodule to heat stress.


Assuntos
Rhizobium leguminosarum , Rhizobium , Pisum sativum , Temperatura , Rhizobium leguminosarum/genética , Rhizobium/genética , Fixação de Nitrogênio/genética , Simbiose/fisiologia
5.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269869

RESUMO

Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.


Assuntos
Fabaceae , Rhizobium , Fabaceae/metabolismo , Gliceraldeído , Fixação de Nitrogênio , Pressão Osmótica , Pisum sativum/metabolismo , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
6.
Proc Natl Acad Sci U S A ; 114(26): 6854-6859, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607058

RESUMO

Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix-). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/metabolismo , Medicago truncatula , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Microbiologia do Solo , Simbiose/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia
7.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018578

RESUMO

Legume crops represent the major source of food protein and contribute to human nutrition and animal feeding. An essential improvement of their productivity can be achieved by symbiosis with beneficial soil microorganisms-rhizobia (Rh) and arbuscular mycorrhizal (AM) fungi. The efficiency of these interactions depends on plant genotype. Recently, we have shown that, after simultaneous inoculation with Rh and AM, the productivity gain of pea (Pisum sativum L) line K-8274, characterized by high efficiency of interaction with soil microorganisms (EIBSM), was higher in comparison to a low-EIBSM line K-3358. However, the molecular mechanisms behind this effect are still uncharacterized. Therefore, here, we address the alterations in pea seed proteome, underlying the symbiosis-related productivity gain, and identify 111 differentially expressed proteins in the two lines. The high-EIBSM line K-8274 responded to inoculation by prolongation of seed maturation, manifested by up-regulation of proteins involved in cellular respiration, protein biosynthesis, and down-regulation of late-embryogenesis abundant (LEA) proteins. In contrast, the low-EIBSM line K-3358 demonstrated lower levels of the proteins, related to cell metabolism. Thus, we propose that the EIBSM trait is linked to prolongation of seed filling that needs to be taken into account in pulse crop breeding programs. The raw data have been deposited to the ProteomeXchange with identifier PXD013479.


Assuntos
Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Proteínas de Plantas/isolamento & purificação , Proteoma/isolamento & purificação , Sementes/genética , Simbiose/genética , Bactérias/crescimento & desenvolvimento , Biomassa , Cromatografia Líquida de Alta Pressão , Fungos/fisiologia , Ontologia Genética , Genótipo , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Micorrizas/fisiologia , Pisum sativum/química , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Nodulação/genética , Proteoma/classificação , Proteoma/genética , Proteômica/métodos , Sementes/química , Sementes/metabolismo , Microbiologia do Solo , Espectrometria de Massas em Tandem
9.
Plant J ; 81(2): 258-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399831

RESUMO

The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short-chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor-like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide-based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rhizobium/fisiologia , Proteínas de Arabidopsis/genética , Micorrizas/fisiologia , Imunidade Vegetal/fisiologia , Proteínas Serina-Treonina Quinases/genética , Simbiose/genética , Simbiose/fisiologia
10.
Plant Cell Physiol ; 57(11): 2283-2290, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27519312

RESUMO

In legume-specific rhizobial symbiosis, host plants perceive rhizobial signal molecules, Nod factors, by a pair of LysM receptor-like kinases, NFR1/LYK3 and NFR5/NFP, and activate symbiotic responses through the downstream signaling components also required for arbuscular mycorrhizal (AM) symbiosis. Recently, the rice NFR1/LYK3 ortholog, OsCERK1, was shown to play crucial roles for AM symbiosis. On the other hand, the roles of the NFR5/NFP ortholog in rice have not been elucidated, while it has been shown that NFR5/NFP orthologs, Parasponia PaNFR5 and tomato SlRLK10, engage in AM symbiosis. OsCERK1 also triggers immune responses in combination with a receptor partner, OsCEBiP, against fungal or bacterial infection, thus regulating opposite responses against symbiotic and pathogenic microbes. However, it has not been elucidated how OsCERK1 switches these opposite functions. Here, we analyzed the function of the rice NFR5/NFP ortholog, OsNFR5/OsRLK2, as a possible candidate of the OsCERK1 partner for symbiotic signaling. Inoculation of AM fungi induced the expression of OsNFR5 in the rice root, and the chimeric receptor consisting of the extracellular domain of LjNFR5 and the intracellular domain of OsNFR5 complemented the Ljnfr5 mutant for rhizobial symbiosis, indicating that the intracellular kinase domain of OsNFR5 could activate symbiotic signaling in Lotus japonicus. Although these data suggested the possible involvement of OsNFR5 in AM symbiosis, osnfr5 knockout mutants were colonized by AM fungi similar to the wild-type rice. These observations suggested several possibilities including the presence of functionally redundant genes other than OsNFR5 or involvement of novel ligands, which do not require OsNFR5 for recognition.


Assuntos
Micorrizas/fisiologia , Oryza/enzimologia , Oryza/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Simbiose , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Teste de Complementação Genética , Lotus/metabolismo , Mutação/genética , Oryza/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Nodulação/genética , Proteínas Quinases/genética , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Simbiose/genética
11.
New Phytol ; 228(1): 24-25, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33448399
12.
Int J Biol Macromol ; 278(Pt 3): 134910, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173792

RESUMO

Chitin, an N-acetyl-D-glucosamine polymer, has multiple functions in living organisms, including the induction of disease resistance and growth promotion in plants. In addition, chitin oligosaccharides (COs) are used as the backbone of the signaling molecule Nod factor secreted by soil bacteria rhizobia to establish a mutual symbiosis with leguminous plants. Nod factor perception triggers host plant responses for rhizobial symbiosis. In this study, the effects of chitins on rhizobial symbiosis were examined in the leguminous plants Lotus japonicus and soybean. Chitin nanofiber (CNF), retained with polymeric structures, and COs elicited calcium spiking in L. japonicus roots expressing a nuclear-localized cameleon reporter. Shoot growth and symbiotic nitrogen fixation were significantly increased by CNF but not COs in L.japonicus and soybean. However, treatments with chitin and cellulose nanofiber, structurally similar polymers to CNF, did not affect shoot growth and nitrogen fixation in L.japonicus. Transcriptome analysis also supported the specific effects of CNF on rhizobial symbiosis in L.japonicus. Although chitins comprise the same monosaccharides and nanofibers share similar physical properties, only CNF can promote rhizobial nitrogen fixation in leguminous plants. Taking the advantages on physical properties, CNF could be a promising material for improving legume yield by enhancing rhizobial symbiosis.


Assuntos
Quitina , Lotus , Nanofibras , Fixação de Nitrogênio , Rhizobium , Simbiose , Lotus/microbiologia , Quitina/química , Quitina/farmacologia , Quitina/metabolismo , Nanofibras/química , Rhizobium/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/microbiologia , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento
13.
Plant Physiol Biochem ; 173: 76-86, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101797

RESUMO

Phospholipase Ds (PLDs) are a heterogeneous group of enzymes that are widely distributed in organisms. These enzymes hydrolyze the structural phospholipids of the plasma membrane, releasing phosphatidic acid (PA), an important secondary messenger. Plant PLDs play essential roles in several biological processes, including growth and development, abiotic stress responses, and plant-microbe interactions. Although the roles of PLDs in plant-pathogen interactions have been extensively studied, their roles in symbiotic relationships are not well understood. The establishment of the best-studied symbiotic interactions, those between legumes and rhizobia and between most plants and mycorrhizae, requires the regulation of several physiological, cellular, and molecular processes. The roles of PLDs in hormonal signaling, lipid metabolism, and cytoskeletal dynamics during rhizobial symbiosis were recently explored. However, to date, the roles of PLDs in mycorrhizal symbiosis have not been reported. Here, we present a critical review of the participation of PLDs in the interactions of plants with pathogens, nitrogen-fixing bacteria, and arbuscular mycorrhizal fungi. We describe how PLDs regulate rhizobial and mycorrhizal symbiosis by modulating reactive oxygen species levels, hormonal signaling, cytoskeletal rearrangements, and G-protein activity.


Assuntos
Micorrizas , Fosfolipase D , Fosfolipases , Plantas , Simbiose
14.
Front Plant Sci ; 13: 823183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557719

RESUMO

Plant cell differentiation is based on rearrangements of the tubulin cytoskeleton; this is also true for symbiotic nodules. Nevertheless, although for indeterminate nodules (with a long-lasting meristem) the organization of microtubules during nodule development has been studied for various species, for determinate ones (with limited meristem activity) such studies are rare. Here, we investigated bacteroid morphology and dynamics of the tubulin cytoskeleton in determinate nodules of four legume species: Glycine max, Glycine soja, Phaseolus vulgaris, and Lotus japonicus. The most pronounced differentiation of bacteroids was observed in G. soja nodules. In meristematic cells in incipient nodules of all analyzed species, the organization of both cortical and endoplasmic microtubules was similar to that described for meristematic cells of indeterminate nodules. In young infected cells in developing nodules of all four species, cortical microtubules formed irregular patterns (microtubules were criss-crossed) and endoplasmic ones were associated with infection threads and infection droplets. Surprisingly, in uninfected cells the patterns of cortical microtubules differed in nodules of G. max and G. soja on the one hand, and P. vulgaris and L. japonicus on the other. The first two species exhibited irregular patterns, while the remaining two exhibited regular ones (microtubules were oriented transversely to the longitudinal axis of cell) that are typical for uninfected cells of indeterminate nodules. In contrast to indeterminate nodules, in mature determinate nodules of all four studied species, cortical microtubules formed a regular pattern in infected cells. Thus, our analysis revealed common patterns of tubulin cytoskeleton in the determinate nodules of four legume species, and species-specific differences were associated with the organization of cortical microtubules in uninfected cells. When compared with indeterminate nodules, the most pronounced differences were associated with the organization of cortical microtubules in nitrogen-fixing infected cells. The revealed differences indicated a possible transition during evolution of infected cells from anisotropic growth in determinate nodules to isodiametric growth in indeterminate nodules. It can be assumed that this transition provided an evolutionary advantage to those legume species with indeterminate nodules, enabling them to host symbiosomes in their infected cells more efficiently.

15.
Plants (Basel) ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35567142

RESUMO

Biological nitrogen fixation by legume-rhizobacterial symbiosis in temperate grasslands is an important source of soil nitrogen. The aim of the present study was to characterize the dependence of different accessions of T. fragiferum, a rare crop wild relative legume species, from their native rhizobia as well as additional nitrogen fertilization in controlled conditions. Asymbiotically cultivated, mineral-fertilized T. fragiferum plants gradually showed signs of nitrogen deficiency, appearing as a decrease in leaf chlorophyll concentration, leaf senescence, and a decrease in growth rate. The addition of nitrogen, and the inoculation with native rhizobia, or both treatments significantly prevented the onset of these symptoms, leading to both increase in plant shoot biomass as well as an increase in tissue concentration of N. The actual degree of each type of response was genotype-specific. Accessions showed a relatively similar degree of dependence on nitrogen (70-95% increase in shoot dry mass) but the increase in shoot dry mass by inoculation with native rhizobia ranged from 27 to 85%. In general, there was no correlation between growth stimulation and an increase in tissue N concentration by the treatments. The addition of N or rhizobial inoculant affected mineral nutrition at the level of both macronutrient and micronutrient concentration in different plant parts. In conclusion, native rhizobial strains associated with geographically isolated accessions of T. fragiferum at the northern range of distribution of the species represent a valuable resource for further studies aimed at the identification of salinity-tolerant N2-fixing bacteria for the needs of sustainable agriculture, as well as in a view of understanding ecosystem functioning at the level of plant-microorganism interactions.

16.
Plants (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34961054

RESUMO

The aim of the present study was to establish an experimental system in controlled conditions to study the physiological effect of abiotic/biotic interaction using a rare wild leguminous plant species from coastal sand dunes, Anthyllis maritima. The particular hypothesis tested was that there is an interaction between sand burial, rhizobial symbiosis and salt treatment at the level of physiological responses. Experiment in controlled conditions included 18 treatment combinations of experimental factors, with two intensities of sand burial, rhizobial inoculation and two types of NaCl treatment (soil irrigation and foliar spray). Shoot biomass was significantly affected both by burial and by inoculation, and by interaction between burial and NaCl in the case of shoot dry mass. For plants sprayed with NaCl, burial had a strong significant positive effect on shoot growth irrespective of inoculation. General effect of inoculation with rhizobia on shoot growth of plants without NaCl treatment was negative except for the plants buried 2 cm with sand, where significant stimulation of shoot dry mass by inoculant was found. The positive effect of burial on shoot growth was mainly associated with an increase in leaf petiole height and number of leaves. Performance index significantly increased in buried plants in all treatment combinations, and leaf chlorophyll concentration increased in buried plants independently on burial depth, and only in plants not treated with NaCl. Inoculation led to significant increase of leaf peroxidase activity in all treatment combinations except NaCl-irrigated plants buried for 2 cm by sand. Sand burial stimulated peroxidase activity, mostly in non-inoculated plants, as inoculation itself led to increased enzyme activity. In conclusion, strong interaction between sand burial and NaCl treatment was evident, as the latter significantly affected the effect of burial on growth and physiological indices. Moreover, rhizobial symbiosis had a significant effect on physiological processes through interaction with both sand burial and NaCl treatment, but the effect was rather controversial; it was positive for photosynthesis-related parameters but negative for growth and tissue integrity indices.

17.
Mol Plant ; 14(11): 1935-1950, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314895

RESUMO

An important question in biology is how organisms can associate with different microbes that pose no threat (commensals), pose a severe threat (pathogens), and those that are beneficial (symbionts). The root nodule symbiosis serves as an important model system for addressing such questions in the context of plant-microbe interactions. It is now generally accepted that rhizobia can actively suppress host immune responses during the infection process, analogous to the way in which plant pathogens can evade immune recognition. However, much remains to be learned about the mechanisms by which the host recognizes the rhizobia as pathogens and how, subsequently, these pathways are suppressed to allow establishment of the nitrogen-fixing symbiosis. In this study, we found that SymRK (Symbiosis Receptor-like Kinase) is required for rhizobial suppression of plant innate immunity in Lotus japonicus. SymRK associates with LjBAK1 (BRASSINOSTEROID INSENSITIVE 1-Associated receptor Kinase 1), a well-characterized positive regulator of plant innate immunity, and directly inhibits LjBAK1 kinase activity. Rhizobial inoculation enhances the association between SymRK and LjBAK1 in planta. LjBAK1 is required for the regulation of plant innate immunity and plays a negative role in rhizobial infection in L. japonicus. The data indicate that the SymRK-LjBAK1 protein complex serves as an intersection point between rhizobial symbiotic signaling pathways and innate immunity pathways, and support that rhizobia may actively suppress the host's ability to mount a defense response during the legume-rhizobium symbiosis.


Assuntos
Lotus/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rhizobium/fisiologia , Simbiose/imunologia , Proteínas de Arabidopsis/química , Lotus/imunologia , Proteínas de Plantas/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Rhizobium/imunologia
18.
Vavilovskii Zhurnal Genet Selektsii ; 25(5): 502-513, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34595373

RESUMO

Annexins as Ca2+/phospholipid-binding proteins are involved in the control of many biological processes essential for plant growth and development. In a previous study, we had shown, using a proteomic approach, that the synthesis of two annexins is induced in pea roots in response to rhizobial inoculation. In this study, phylogenetic analysis identif ied these annexins as PsAnn4 and PsAnn8 based on their homology with annexins from other legumes. The modeling approach allowed us to estimate the structural features of these annexins that might inf luence their functional activity. To verify the functions of these annexins, we performed comparative proteomic analysis, experiments with calcium inf lux inhibitors, and localization of labeled proteins. Essential down-regulation of PsAnn4 synthesis in a non-nodulating pea mutant P56 (sym10) suggests an involvement of this annexin in the rhizobial symbiosis. Quantitative RT-PCR analysis showed that PsAnn4 was upregulated at the early stages of symbiosis development, starting from 1-3 days after inoculation to up to 5 days after inoculation, while experiments with the Ca2+ channel blocker LaCl3 revealed its negative inf luence on this expression. To follow the PsAnn4 protein localization in plant cells, it was fused to the f luorophores such as red f luorescent protein (RFP) and yellow f luorescent protein (YFP) and expressed under the transcriptional regulation of the 35S promoter in Nicotiana benthamiana leaves by inf iltration with Agrobacterium tumefaciens. The localization of PsAnn4 in the cell wall or plasma membrane of plant cells may indicate its participation in membrane modif ication or ion transport. Our results suggest that PsAnn4 may play an important role during the early stages of pea-rhizobial symbiosis development.

19.
Cells ; 10(5)2021 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923032

RESUMO

The tubulin cytoskeleton plays an important role in establishing legume-rhizobial symbiosis at all stages of its development. Previously, tubulin cytoskeleton organization was studied in detail in the indeterminate nodules of two legume species, Pisum sativum and Medicago truncatula. General as well as species-specific patterns were revealed. To further the understanding of the formation of general and species-specific microtubule patterns in indeterminate nodules, the tubulin cytoskeleton organization was studied in three legume species (Vicia sativa, Galega orientalis, and Cicer arietinum). It is shown that these species differ in the shape and size of rhizobial cells (bacteroids). Immunolocalization of microtubules revealed the universality of cortical and endoplasmic microtubule organization in the meristematic cells, infected cells of the infection zone, and uninfected cells in nodules of the three species. However, there are differences in the endoplasmic microtubule organization in nitrogen-fixing cells among the species, as confirmed by quantitative analysis. It appears that the differences are linked to bacteroid morphology (both shape and size).


Assuntos
Citoesqueleto/fisiologia , Fabaceae/fisiologia , Microtúbulos/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Tubulina (Proteína)/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/microbiologia , Fabaceae/classificação , Fixação de Nitrogênio , Especificidade da Espécie
20.
Front Plant Sci ; 12: 808573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095980

RESUMO

Heterotrimeric G-proteins regulate plant growth and development as master regulators of signaling pathways. In legumes with indeterminate nodules (e.g., Medicago truncatula and Pisum sativum), the role of heterotrimeric G-proteins in symbiosis development has not been investigated extensively. Here, the involvement of heterotrimeric G-proteins in M. truncatula and P. sativum nodulation was evaluated. A genome-based search for G-protein subunit-coding genes revealed that M. truncatula and P. sativum harbored only one gene each for encoding the canonical heterotrimeric G-protein beta subunits, MtG beta 1 and PsG beta 1, respectively. RNAi-based suppression of MtGbeta1 and PsGbeta1 significantly decreased the number of nodules formed, suggesting the involvement of G-protein beta subunits in symbiosis in both legumes. Analysis of composite M. truncatula plants carrying the pMtGbeta1:GUS construct showed ß-glucuronidase (GUS) staining in developing nodule primordia and young nodules, consistent with data on the role of G-proteins in controlling organ development and cell proliferation. In mature nodules, GUS staining was the most intense in the meristem and invasion zone (II), while it was less prominent in the apical part of the nitrogen-fixing zone (III). Thus, MtG beta 1 may be involved in the maintenance of meristem development and regulation of the infection process during symbiosis. Protein-protein interaction studies using co-immunoprecipitation revealed the possible composition of G-protein complexes and interaction of G-protein subunits with phospholipase C (PLC), suggesting a cross-talk between G-protein- and PLC-mediated signaling pathways in these legumes. Our findings provide direct evidence regarding the role of MtG beta 1 and PsG beta 1 in symbiosis development regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA