Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.116
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(12): 2644-2655.e16, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224812

RESUMO

Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.


Assuntos
Inflamação , Lisofosfolipídeos , Humanos , Esfingosina , Proteínas de Transporte de Ânions/fisiologia
2.
Immunity ; 55(2): 272-289.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35081372

RESUMO

T follicular helper (Tfh) cells are defined by a Bcl6+CXCR5hiPD-1hi phenotype, but only a minor fraction of these reside in germinal centers (GCs). Here, we examined whether GC-resident and -nonresident Tfh cells share a common physiology and function. Fluorescently labeled, GC-resident Tfh cells in different mouse models were distinguished by low expression of CD90. CD90neg/lo GCTfh cells required antigen-specific, MHCII+ B cells to develop and stopped proliferating soon after differentiation. In contrast, nonresident, CD90hi Tfh (GCTfh-like) cells developed normally in the absence of MHCII+ B cells and proliferated continuously during primary responses. The TCR repertoires of both Tfh subsets overlapped initially but later diverged in association with dendritic cell-dependent proliferation of CD90hi GCTfh-like cells, suggestive of TCR-dependency seen also in TCR-transgenic adoptive transfer experiments. Furthermore, the transcriptomes of CD90neg/lo and CD90hi GCTfh-like cells were enriched in different functional pathways. Thus, GC-resident and nonresident Tfh cells have distinct developmental requirements and activities, implying distinct functions.


Assuntos
Centro Germinativo/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Células T Auxiliares Foliculares/metabolismo , Subpopulações de Linfócitos T/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular/imunologia , Diferenciação Celular , Proliferação de Células , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Células T Auxiliares Foliculares/imunologia , Subpopulações de Linfócitos T/imunologia , Antígenos Thy-1/metabolismo
3.
Mol Cell ; 83(15): 2739-2752.e5, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37499662

RESUMO

Solute carrier spinster homolog 2 (SPNS2), one of only four known major facilitator superfamily (MFS) lysolipid transporters in humans, exports sphingosine-1-phosphate (S1P) across cell membranes. Here, we explore the synergistic effects of lipid binding and conformational dynamics on SPNS2's transport mechanism. Using mass spectrometry, we discovered that SPNS2 interacts preferentially with PI(4,5)P2. Together with functional studies and molecular dynamics (MD) simulations, we identified potential PI(4,5)P2 binding sites. Mutagenesis of proposed lipid binding sites and inhibition of PI(4,5)P2 synthesis reduce S1P transport, whereas the absence of the N terminus renders the transporter essentially inactive. Probing the conformational dynamics of SPNS2, we show how synergistic binding of PI(4,5)P2 and S1P facilitates transport, increases dynamics of the extracellular gate, and stabilizes the intracellular gate. Given that SPNS2 transports a key signaling lipid, our results have implications for therapeutic targeting and also illustrate a regulatory mechanism for MFS transporters.


Assuntos
Lisofosfolipídeos , Esfingosina , Humanos , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo
4.
Mol Cell ; 78(4): 779-784.e5, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32362314

RESUMO

The pandemic coronavirus SARS-CoV-2 threatens public health worldwide. The viral spike protein mediates SARS-CoV-2 entry into host cells and harbors a S1/S2 cleavage site containing multiple arginine residues (multibasic) not found in closely related animal coronaviruses. However, the role of this multibasic cleavage site in SARS-CoV-2 infection is unknown. Here, we report that the cellular protease furin cleaves the spike protein at the S1/S2 site and that cleavage is essential for S-protein-mediated cell-cell fusion and entry into human lung cells. Moreover, optimizing the S1/S2 site increased cell-cell, but not virus-cell, fusion, suggesting that the corresponding viral variants might exhibit increased cell-cell spread and potentially altered virulence. Our results suggest that acquisition of a S1/S2 multibasic cleavage site was essential for SARS-CoV-2 infection of humans and identify furin as a potential target for therapeutic intervention.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/química , Animais , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Furina/química , Furina/genética , Furina/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/virologia , Pandemias , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Ligação Viral
5.
Immunity ; 48(4): 773-786.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29625896

RESUMO

The molecular mechanisms whereby CD8+ T cells become "exhausted" in the tumor microenvironment remain unclear. Programmed death ligand-1 (PD-L1) is upregulated on tumor cells and PD-1-PD-L1 blockade has significant efficacy in human tumors; however, most patients do not respond, suggesting additional mechanisms underlying T cell exhaustion. B7 superfamily member 1 (B7S1), also called B7-H4, B7x, or VTCN1, negatively regulates T cell activation. Here we show increased B7S1 expression on myeloid cells from human hepatocellular carcinoma correlated with CD8+ T cell dysfunction. B7S1 inhibition suppressed development of murine tumors. Putative B7S1 receptor was co-expressed with PD-1 but not T cell immunoglobulin and mucin-domain containing-3 (Tim-3) at an activated state of early tumor-infiltrating CD8+ T cells, and B7S1 promoted T cell exhaustion, possibly through Eomes overexpression. Combinatorial blockade of B7S1 and PD-1 synergistically enhanced anti-tumor immune responses. Collectively, B7S1 initiates dysfunction of tumor-infiltrating CD8+ T cells and may be targeted for cancer immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética
6.
Proc Natl Acad Sci U S A ; 121(5): e2306816121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266047

RESUMO

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.


Assuntos
Esclerose Múltipla , Fragmentos de Peptídeos , Inibidor Tecidual de Metaloproteinase-1 , Animais , Camundongos , Ratos , Astrócitos , Fibronectinas/genética , Cloridrato de Fingolimode/farmacologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Proteômica , Inibidor Tecidual de Metaloproteinase-1/genética
7.
Proc Natl Acad Sci U S A ; 120(34): e2307355120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552762

RESUMO

Hearing loss is highly heterogeneous, but one common form involves a failure to maintain the local ionic environment of the sensory hair cells reflected in a reduced endocochlear potential. We used a genetic approach to ask whether this type of pathology can be reversed, using the Spns2tm1a mouse mutant known to show this defect. By activating Spns2 gene transcription at different ages after the onset of hearing loss, we found that an existing auditory impairment can be reversed to give close to normal thresholds for an auditory brainstem response (ABR), at least at low to mid stimulus frequencies. Delaying the activation of Spns2 led to less effective recovery of ABR thresholds, suggesting that there is a critical period for intervention. Early activation of Spns2 not only led to improvement in auditory function but also to protection of sensory hair cells from secondary degeneration. The genetic approach we have used to establish that this type of hearing loss is in principle reversible could be extended to many other diseases using available mouse resources.


Assuntos
Proteínas de Transporte de Ânions , Terapia Genética , Perda Auditiva , Animais , Camundongos , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva/terapia , Proteínas de Transporte de Ânions/genética , Ativação Transcricional , Potenciais Microfônicos da Cóclea , Células Ciliadas Auditivas/patologia
8.
Dev Biol ; 509: 11-27, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311163

RESUMO

Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4+ spermatogonia decreased significantly, whereas self-renewing GFRα1+ and proliferating PLZF+ spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1-/- mice. Further analyses suggest that OCT4+ spermatogonia in Akt1s1-/- mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Espermatogônias , Masculino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espermatogênese/genética , Diferenciação Celular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
J Biol Chem ; 300(5): 107219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522516

RESUMO

G-protein-gated inward rectifier K+ (GIRK) channels play a critical role in the regulation of the excitability of cardiomyocytes and neurons and include GIRK1, GIRK2, GIRK3 and GIRK4 subfamily members. BD1047 dihydrobromide (BD1047) is one of the representative antagonists of the multifunctional Sigma-1 receptor (S1R). In the analysis of the effect of BD1047 on the regulation of Gi-coupled receptors by S1R using GIRK channel as an effector, we observed that BD1047, as well as BD1063, directly inhibited GIRK currents even in the absence of S1R and in a voltage-independent manner. Thus, we aimed to clarify the effect of BD1047 on GIRK channels and identify the structural determinants. By electrophysiological recordings in Xenopus oocytes, we observed that BD1047 directly inhibited GIRK channel currents, producing a much stronger inhibition of GIRK4 compared to GIRK2. It also inhibited ACh-induced native GIRK current in isolated rat atrial myocytes. Chimeric and mutagenesis studies of GIRK2 and GIRK4 combined with molecular docking analysis demonstrated the importance of Leu77 and Leu84 within the cytoplasmic, proximal N-terminal region and Glu147 within the pore-forming region of GIRK4 for inhibition by BD1047. The activator of GIRK channels, ivermectin, competed with BD1047 at Leu77 on GIRK4. This study provides us with a novel inhibitor of GIRK channels and information for developing pharmacological treatments for GIRK4-associated diseases.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Receptores sigma , Receptor Sigma-1 , Animais , Ratos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Oócitos/metabolismo , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inibidores , Receptores sigma/genética , Receptores sigma/química , Xenopus laevis , Ratos Wistar
10.
J Biol Chem ; 300(7): 107486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897570

RESUMO

Aberrant regulation of signal transduction pathways can adversely derail biological processes for tissue development. One such process is the embryonic eyelid closure that is dependent on the mitogen-activated protein kinase kinase kinase 1 (MAP3K1). Map3k1 KO in mice results in defective eyelid closure and an autosomal recessive eye-open at birth phenotype. We have shown that in utero exposure to dioxin, a persistent environmental toxicant, induces the same eye defect in Map3k1+/- heterozygous but not WT pups. Here, we explore the mechanisms of the Map3k1 (gene) and dioxin (environment) interactions (GxE) underlying defective eyelid closure. We show that, acting through the aryl hydrocarbon receptor, dioxin activates epidermal growth factor receptor signaling, which in turn depresses MAP3K1-dependent Jun N-terminal kinase (JNK) activity. The dioxin-mediated JNK repression is moderate but is exacerbated by Map3k1 heterozygosity. Therefore, dioxin exposed Map3k1+/- embryonic eyelids have a marked reduction of JNK activity, accelerated differentiation and impeded polarization in the epithelial cells. Knocking out Ahr or Egfr in eyelid epithelium attenuates the open-eye defects in dioxin-treated Map3k1+/- pups, whereas knockout of Jnk1 and S1pr that encodes the sphigosin-1-phosphate (S1P) receptors upstream of the MAP3K1-JNK pathway potentiates the dioxin toxicity. Our novel findings show that the crosstalk of aryl hydrocarbon receptor, epidermal growth factor receptor, and S1P-MAP3K1-JNK pathways determines the outcome of dioxin exposure. Thus, gene mutations targeting these pathways are potential risk factors for the toxicity of environmental chemicals.


Assuntos
Dioxinas , Receptores ErbB , MAP Quinase Quinase Quinase 1 , Receptores de Hidrocarboneto Arílico , Animais , Feminino , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Dioxinas/toxicidade , Receptores ErbB/metabolismo , Receptores ErbB/genética , Pálpebras/metabolismo , Pálpebras/anormalidades , Interação Gene-Ambiente , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Knockout , Receptor Cross-Talk , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/efeitos dos fármacos
11.
FASEB J ; 38(10): e23656, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752523

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Obesity is a major risk factor for the development of COVID-19. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2. The receptor-binding domain of the S1 subunit (S1-RBD protein) in the SARS-CoV-2 spike glycoprotein binds to ACE2 on host cells, through which the virus enters several organs, including the lungs. Considering these findings, recombinant ACE2 might be utilized as a decoy protein to attenuate SARS-CoV-2 infection. Here, we examined whether obesity increases ACE2 expression in the lungs and whether recombinant ACE2 administration diminishes the entry of S1-RBD protein into lung cells. We observed that high-fat diet-induced obesity promoted ACE2 expression in the lungs by increasing serum levels of LPS derived from the intestine. S1-RBD protein entered the lungs specifically through ACE2 expressed in host lungs and that the administration of recombinant ACE2 attenuated this entry. We conclude that obesity makes hosts susceptible to recombinant SARS-CoV-2 spike proteins due to elevated ACE2 expression in lungs, and this model of administering S1-RBD protein can be applied to new COVID-19 treatments.


Assuntos
COVID-19 , Dieta Hiperlipídica , Pulmão , Obesidade , Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Masculino , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/metabolismo , COVID-19/virologia , Dieta Hiperlipídica/efeitos adversos , Pulmão/metabolismo , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
12.
J Pathol ; 263(1): 22-31, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332723

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung that leads rapidly to respiratory failure. Novel approaches to treatment are urgently needed. The bioactive lipid sphingosine-1-phosphate (S1P) is increased in IPF lungs and promotes proinflammatory and profibrotic TGF-ß signaling. Hence, decreasing lung S1P represents a potential therapeutic strategy for IPF. S1P is degraded by the intracellular enzyme S1P lyase (SPL). Here we find that a knock-in mouse with a missense SPL mutation mimicking human disease resulted in reduced SPL activity, increased S1P, increased TGF-ß signaling, increased lung fibrosis, and higher mortality after injury compared to wild type (WT). We then tested adeno-associated virus 9 (AAV9)-mediated overexpression of human SGPL1 (AAV-SPL) in mice as a therapeutic modality. Intravenous treatment with AAV-SPL augmented lung SPL activity, attenuated S1P levels within the lungs, and decreased injury-induced fibrosis compared to controls treated with saline or only AAV. We confirmed that AAV-SPL treatment led to higher expression of SPL in the epithelial and fibroblast compartments during bleomycin-induced lung injury. Additionally, AAV-SPL decreased expression of the profibrotic cytokines TNFα and IL1ß as well as markers of fibroblast activation, such as fibronectin (Fn1), Tgfb1, Acta2, and collagen genes in the lung. Taken together, our results provide proof of concept for the use of AAV-SPL as a therapeutic strategy for the treatment of IPF. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Dependovirus , Fibrose Pulmonar Idiopática , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Camundongos , Animais , Dependovirus/genética , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina , Modelos Animais , Terapia Genética , Aldeído Liases/genética , Aldeído Liases/metabolismo
13.
Exp Cell Res ; 439(1): 114071, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729336

RESUMO

Atherosclerosis preferentially occurs in areas with low shear stress (LSS) and oscillatory flow. LSS has been demonstrated to correlate with the development of atherosclerosis. The sphingosine 1-phosphate receptor 1 (S1PR1), involving intravascular blood flow sensing, regulates vascular development and vascular barrier function. However, whether LSS affects atherosclerosis via regulating S1PR1 remains incompletely clear. In this study, immunostaining results of F-actin, ß-catenin, and VE-cadherin indicated that LSS impaired endothelial barrier function in human umbilical vein endothelial cells (HUVECs). Western blot analysis showed that LSS resulted in blockage of autophagic flux in HUVECs. In addition, autophagy agonist Rapamycin (Rapa) antagonized LSS-induced endothelial barrier dysfunction, whereas autophagic flux inhibitor Bafilomycin A1 (BafA1) exacerbated it, indicating that LSS promoted endothelial barrier dysfunction by triggering autophagic flux blockage. Notably, gene expression analysis revealed that LSS downregulated S1PR1 expression, which was antagonized by Rapa. Selective S1PR1 antagonist W146 impaired endothelial barrier function of HUVECs under high shear stress (HSS) conditions. Moreover, our data showed that expression of GAPARAPL2, a member of autophagy-related gene 8 (Atg8) proteins, was decreased in HUVECs under LSS conditions. Autophagic flux blockage induced by GAPARAPL2 knockdown inhibited S1PR1, aggravated endothelial barrier dysfunction of HUVECs in vitro, and promoted aortic atherosclerosis in ApoE-/- mice in vivo. Our study demonstrates that autophagic flux blockage induced by LSS downregulates S1PR1 expression and impairs endothelial barrier function. GABARAPL2 inhibition is involved in LSS-induced autophagic flux blockage, which impairs endothelial barrier function via downregulation of S1PR1.


Assuntos
Aterosclerose , Autofagia , Células Endoteliais da Veia Umbilical Humana , Receptores de Esfingosina-1-Fosfato , Estresse Mecânico , Animais , Autofagia/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 119(40): e2204509119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161894

RESUMO

Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.


Assuntos
Azetidinas , Compostos de Benzil , Esclerose Múltipla Crônica Progressiva , Oligodendroglia , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animais , Azetidinas/farmacologia , Compostos de Benzil/farmacologia , Cuprizona , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Oligodendroglia/efeitos dos fármacos , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Receptores de Esfingosina-1-Fosfato/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(16): e2117716119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412894

RESUMO

As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1 to S1PR5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or nonlipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its nonredundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here, we report four atomic resolution cryo-electron microscopy (cryo-EM) structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod [(S)-FTY720-P], or nonlipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step "shallow to deep" transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1PRs.


Assuntos
Moduladores do Receptor de Esfingosina 1 Fosfato , Receptores de Esfingosina-1-Fosfato , Colite Ulcerativa/tratamento farmacológico , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Humanos , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Organofosfatos/química , Organofosfatos/farmacologia , Organofosfatos/uso terapêutico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Moduladores do Receptor de Esfingosina 1 Fosfato/química , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/química
16.
Nano Lett ; 24(14): 4064-4071, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466130

RESUMO

Herein, we fabricate host-directed virus-mimicking particles (VMPs) to block the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells through competitive inhibition enabled by their interactions with the angiotensin-converting enzyme 2 (ACE2) receptor. A microfluidic platform is developed to fabricate a lipid core of the VMPs with a narrow size distribution and a low level of batch-to-batch variation. The resultant solid lipid nanoparticles are decorated with an average of 231 or 444 Spike S1 RBD protrusions mimicking either the original SARS-CoV-2 or its delta variant, respectively. Compared with that of the nonfunctionalized core, the cell uptake of the functionalized VMPs is enhanced with ACE2-expressing cells due to their strong interactions with the ACE2 receptor. The fabricated VMPs efficiently block the entry of SARS-CoV-2 pseudovirions into host cells and suppress viral infection. Overall, this study provides potential strategies for preventing the spread of SARS-CoV-2 or other coronaviruses employing the ACE2 receptor to enter into host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica
17.
J Biol Chem ; 299(6): 104775, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142226

RESUMO

The vascular and lymphatic systems both comprise a series of structurally distinct vessels lined with an inner layer of endothelial cells that function to provide a semipermeable barrier to blood and lymph. Regulation of the endothelial barrier is critical for maintaining vascular and lymphatic barrier homeostasis. One of the regulators of endothelial barrier function and integrity is sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite secreted into the blood by erythrocytes, platelets, and endothelial cells and into the lymph by lymph endothelial cells. Binding of S1P to its G protein-coupled receptors, known as S1PR1-5, regulates its pleiotropic functions. This review outlines the structural and functional differences between vascular and lymphatic endothelium and describes current understanding of the importance of S1P/S1PR signaling in regulation of barrier functions. Most studies thus far have been primarily focused on the role of the S1P/S1PR1 axis in vasculature and have been summarized in several excellent reviews, and thus, we will only discuss new perspectives on the molecular mechanisms of action of S1P and its receptors. Much less is known about the responses of the lymphatic endothelium to S1P and the functions of S1PRs in lymph endothelial cells, and this is the major focus of this review. We also discuss current knowledge related to signaling pathways and factors regulated by the S1P/S1PR axis that control lymphatic endothelial cell junctional integrity. Gaps and limitations in current knowledge are highlighted together with the need to further understand the role of S1P receptors in the lymphatic system.


Assuntos
Endotélio Vascular , Vasos Linfáticos , Lisofosfolipídeos , Receptores de Lisoesfingolipídeo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Humanos , Animais , Junções Intercelulares , Transdução de Sinais , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo
18.
J Biol Chem ; 299(7): 104851, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220855

RESUMO

Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 µM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed ß2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.


Assuntos
Filaminas , Receptores de Esfingosina-1-Fosfato , Células Endoteliais/metabolismo , Filaminas/genética , Filaminas/metabolismo , Lisofosfolipídeos/metabolismo , Proteômica , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Humanos , Técnicas de Silenciamento de Genes , Células Cultivadas , Transporte Proteico
19.
Breast Cancer Res ; 26(1): 33, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409088

RESUMO

INTRODUCTION: Estrogen receptor (ER) positive patients compromise about 70% of breast cancers. Tamoxifen, an antagonist of ERα66 (the classic ER), is the most effective and the standard first-line drug. However, its efficacy is limited by the development of acquired resistance. METHODS: A specific inhibitor of Hsp70-Bim protein-protein interaction (PPI), S1g-2, together with an inhibitor of Hsp70-Bag3 PPI, MKT-077 and an ATP-competitive inhibitor VER155008, were used as chemical tools. Cell viability assays, co-immunoprecipitation and gene knockdown were used to investigate the role of Hsp70 in tamoxifen resistance. A xenograft model was established in which tamoxifen-resistant breast cancer (MCF-7/TAM-R) cells maintained in the presence of 5 µM tamoxifen were subcutaneously inoculated. The anti-tumor efficiency of S1g-2 was measured after a daily injection of 0.8 mg/kg for 14 days. RESULTS: It was revealed that Hsp70-Bim PPI protects ERα-positive breast cancer from tamoxifen-induced apoptosis through binding and stabilizing ERα36, rather than ERα66, resulting in sustained EGFR mRNA and protein expression. Disruption of Hsp70-Bim PPI and downregulation of ERα36 expression in tumor samples are consistent with the in vitro functions of S1g-2, resulting in about a three-fold reduction in tumor volume. CONCLUSIONS: The in vivo activity and safety of S1g-2 illustrated that it is a potential strategy for Hsp70-Bim disruption to overcome tamoxifen-resistant ER-positive breast cancer.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica
20.
Neurobiol Dis ; 199: 106585, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955289

RESUMO

Sphingosine-1 phosphate (S1P) is a lipid metabolite regulating diverse biological processes, including proliferation, differentiation, migration, and apoptosis, highlighting its physiological and therapeutic significance. Current S1P-based therapeutic approaches primarily focus on modulating the downstream signalling via targeting S1P receptors, however, this is challenged by incomplete receptor internalisation. Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that "gatekeeps" the final step of S1P degradation. Cognisant of the complex ligand and receptor interaction and dynamic metabolic networks, the selective modulation of SPL activity presents a new opportunity to regulate S1P biosynthesis and reveal its role in various systems. Over the past decade, an evolving effort has been made to identify new molecules that could block SPL activity in vitro or in vivo. This review focuses on summarising the current understanding of the reported SPL inhibitors identified through various screening approaches, discussing their efficacy in diverse model systems and the possible mechanism of action. Whilst effective modulation of S1P levels via inhibiting SPL is feasible, the specificity of those inhibitors remains inconclusive, presenting a clear challenge for future implications. Yet, none of the currently available SPL inhibitors is proven effective in elevating S1P levels within the central nervous system. This review article embraces future research focusing on investigating selective SPL inhibitors with high potency and possibly blood-brain-barrier permeability, which would aid the development of new S1P-based therapeutics for neurological disorders.


Assuntos
Aldeído Liases , Lisofosfolipídeos , Esfingosina , Aldeído Liases/metabolismo , Aldeído Liases/antagonistas & inibidores , Humanos , Animais , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA