Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249359

RESUMO

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Glutaratos/farmacologia , Leucemia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Glutaratos/uso terapêutico , Células HEK293 , Humanos , Células Jurkat , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Processamento Pós-Transcricional do RNA
2.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36889306

RESUMO

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Immunity ; 53(5): 925-933.e4, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33129373

RESUMO

We conducted a serological study to define correlates of immunity against SARS-CoV-2. Compared to those with mild coronavirus disease 2019 (COVID-19) cases, individuals with severe disease exhibited elevated virus-neutralizing titers and antibodies against the nucleocapsid (N) and the receptor binding domain (RBD) of the spike protein. Age and sex played lesser roles. All cases, including asymptomatic individuals, seroconverted by 2 weeks after PCR confirmation. Spike RBD and S2 and neutralizing antibodies remained detectable through 5-7 months after onset, whereas α-N titers diminished. Testing 5,882 members of the local community revealed only 1 sample with seroreactivity to both RBD and S2 that lacked neutralizing antibodies. This fidelity could not be achieved with either RBD or S2 alone. Thus, inclusion of multiple independent assays improved the accuracy of antibody tests in low-seroprevalence communities and revealed differences in antibody kinetics depending on the antigen. We conclude that neutralizing antibodies are stably produced for at least 5-7 months after SARS-CoV-2 infection.


Assuntos
Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Imunidade Humoral , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Arizona/epidemiologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Prevalência , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
4.
Mol Cell ; 78(4): 779-784.e5, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32362314

RESUMO

The pandemic coronavirus SARS-CoV-2 threatens public health worldwide. The viral spike protein mediates SARS-CoV-2 entry into host cells and harbors a S1/S2 cleavage site containing multiple arginine residues (multibasic) not found in closely related animal coronaviruses. However, the role of this multibasic cleavage site in SARS-CoV-2 infection is unknown. Here, we report that the cellular protease furin cleaves the spike protein at the S1/S2 site and that cleavage is essential for S-protein-mediated cell-cell fusion and entry into human lung cells. Moreover, optimizing the S1/S2 site increased cell-cell, but not virus-cell, fusion, suggesting that the corresponding viral variants might exhibit increased cell-cell spread and potentially altered virulence. Our results suggest that acquisition of a S1/S2 multibasic cleavage site was essential for SARS-CoV-2 infection of humans and identify furin as a potential target for therapeutic intervention.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/química , Animais , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Furina/química , Furina/genética , Furina/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/virologia , Pandemias , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Ligação Viral
5.
Proc Natl Acad Sci U S A ; 121(15): e2317222121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557175

RESUMO

Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies. Our results indicate that spatially diverse mutations, including D950N and Q954H, which are observed in Delta and Omicron variants, respectively, weaken the binding of spike to these antibodies. Although S2 apex antibodies are known to be nonneutralizing, we show that they confer protection in vivo through Fc-mediated effector functions. Overall, this study indicates that the S2 domain of SARS-CoV-2 spike can undergo antigenic drift, which represents a potential challenge for the development of more universal coronavirus vaccines.


Assuntos
Deriva e Deslocamento Antigênicos , COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
6.
RNA ; 30(7): 779-794, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565242

RESUMO

The stem-loop 2 motif (s2m) in SARS-CoV-2 (SCoV-2) is located in the 3'-UTR. Although s2m has been reported to display characteristics of a mobile genomic element that might lead to an evolutionary advantage, its function has remained unknown. The secondary structure of the original SCoV-2 RNA sequence (Wuhan-Hu-1) was determined by NMR in late 2020, delineating the base-pairing pattern and revealing substantial differences in secondary structure compared to SARS-CoV-1 (SCoV-1). The existence of a single G29742-A29756 mismatch in the upper stem of s2m leads to its destabilization and impedes a complete NMR analysis. With Delta, a variant of concern has evolved with one mutation compared to the original sequence that replaces G29742 by U29742. We show here that this mutation results in a more defined structure at ambient temperature accompanied by a rise in melting temperature. Consequently, we were able to identify >90% of the relevant NMR resonances using a combination of selective RNA labeling and filtered 2D NOESY as well as 4D NMR experiments. We present a comprehensive NMR analysis of the secondary structure, (sub)nanosecond dynamics, and ribose conformation of s2m Delta based on heteronuclear 13C NOE and T 1 measurements and ribose carbon chemical shift-derived canonical coordinates. We further show that the G29742U mutation in Delta has no influence on the druggability of s2m compared to the Wuhan-Hu-1 sequence. With the assignment at hand, we identify the flexible regions of s2m as the primary site for small molecule binding.


Assuntos
Conformação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , RNA Viral/genética , RNA Viral/química , RNA Viral/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética/métodos , Regiões 3' não Traduzidas , Ligantes , Humanos , Mutação , COVID-19/virologia , Pareamento de Bases , Motivos de Nucleotídeos
7.
RNA ; 29(11): 1754-1771, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604684

RESUMO

The s2m, a highly conserved 41-nt hairpin structure in the SARS-CoV-2 genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and the subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a >99% correlation of a single nucleotide mutation at the 15th position (G15U) in Delta SARS-CoV-2. Based on 1H NMR spectroscopy assignments comparing the imino proton resonance region of s2m and the s2m G15U at 19°C, we show that the U15-A29 base pair closes, resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we show that the s2m G15U mutation drastically impacts the binding of host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on immune responses.


Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Dimerização , Mutação , MicroRNAs/metabolismo
8.
Mol Cell ; 66(4): 546-557.e3, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28506463

RESUMO

Eukaryotic genes are marked by conserved post-translational modifications on the RNA pol II C-terminal domain (CTD) and the chromatin template. How the 5'-3' profiles of these marks are established is poorly understood. Using pol II mutants in human cells, we found that slow transcription repositioned specific co-transcriptionally deposited chromatin modifications; histone H3 lysine 36 trimethyl (H3K36me3) shifted within genes toward 5' ends, and histone H3 lysine 4 dimethyl (H3K4me2) extended farther upstream of start sites. Slow transcription also evoked a hyperphosphorylation of CTD Ser2 residues at 5' ends of genes that is conserved in yeast. We propose a "dwell time in the target zone" model to explain the effects of transcriptional dynamics on the establishment of co-transcriptionally deposited protein modifications. Promoter-proximal Ser2 phosphorylation is associated with a longer pol II dwell time at start sites and reduced transcriptional polarity because of strongly enhanced divergent antisense transcription at promoters. These results demonstrate that pol II dynamics help govern the decision between sense and divergent antisense transcription.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/enzimologia , DNA Fúngico/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica , Cromatina/genética , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Células HEK293 , Humanos , Mutação , Fosforilação , Domínios Proteicos , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930824

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in tremendous loss worldwide. Although viral spike (S) protein binding of angiotensin-converting enzyme 2 (ACE2) has been established, the functional consequences of the initial receptor binding and the stepwise fusion process are not clear. By utilizing a cell-cell fusion system, in complement with a pseudoviral infection model, we found that the spike engagement of ACE2 primed the generation of S2' fragments in target cells, a key proteolytic event coupled with spike-mediated membrane fusion. Mutagenesis of an S2' cleavage site at the arginine (R) 815, but not an S2 cleavage site at arginine 685, was sufficient to prevent subsequent syncytia formation and infection in a variety of cell lines and primary cells isolated from human ACE2 knock-in mice. The requirement for S2' cleavage at the R815 site was also broadly shared by other SARS-CoV-2 spike variants, such as the Alpha, Beta, and Delta variants of concern. Thus, our study highlights an essential role for host receptor engagement and the key residue of spike for proteolytic activation, and uncovers a targetable mechanism for host cell infection by SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Fusão de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Ligação Proteica , Proteólise , Internalização do Vírus
10.
J Bacteriol ; 206(4): e0045223, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38551342

RESUMO

The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.


Assuntos
Escherichia coli K12 , RNA de Transferência , Humanos , RNA de Transferência/genética , Escherichia coli K12/genética , Bactérias/genética , Metilação , Bactérias Gram-Positivas/genética
11.
Carcinogenesis ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046731

RESUMO

Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) is a protein that controls protein synthesis under various stress conditions and is abnormally expressed in several cancers. However, there is limited insight regarding the expression and molecular role of EIF2S2 in gastric cancer. In this study, we identified the overexpression of EIF2S2 in gastric cancer by immunohistochemical (IHC) staining and found a positive correlation between EIF2S2 expression and shorter overall survival and disease-free survival. Functionally, we revealed that EIF2S2 knockdown suppressed gastric cancer cell proliferation and migration, induced cell apoptosis, and caused G2 phase cell arrest. Additionally, EIF2S2 is essential for in vivo tumor formation. Mechanistically, we demonstrated that EIF2S2 transcriptionally regulated hypoxia induicible factor-1 alpha (HIF1α) expression by NRF1. The promoting role of EIF2S2 in malignant behaviors of gastric cancer cells depended on HIF1α expression. Furthermore, the PI3K/AKT/mTOR signaling was activated upon EIF2S2 overexpression in gastric cancer. Collectively, EIF2S2 exacerbates gastric cancer progression via targeting HIF1α, providing a fundamental basis for considering EIF2S2 as a potential therapeutic target for gastric cancer patients.

12.
BMC Genomics ; 25(1): 307, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521929

RESUMO

BACKGROUND: Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. RESULTS: Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell-cell signaling pathways, and eye development. CONCLUSIONS: We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells.


Assuntos
Drosophila , Fatores de Transcrição , Humanos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila/genética , Drosophila melanogaster/metabolismo , Redes Reguladoras de Genes , DNA/metabolismo , Linhagem Celular
13.
Biochem Biophys Res Commun ; 696: 149453, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181486

RESUMO

Ribosomal Protein S2 (RPS2) has emerged as a potential prognostic biomarker due to its involvement in key cellular processes and its altered expression pattern in certain types of cancer. However, its role in hepatocellular carcinoma (HCC) has yet to be investigated. Herein, we analyzed RPS2 mRNA expression and promoter methylation in HCC patient samples and HepG2 cells. Subsequently, loss-of-function experiments were conducted to determine the function of RPS2 in HCC cells in vitro. Our results revealed that RPS2 mRNA expression is significantly elevated, and its promoter is hypomethylated in HCC patient samples compared to controls. In addition, 5-Azacytidine treatment in HepG2 cells decreased RPS2 promoter methylation level and increased its mRNA expression. RPS2 knockdown in HepG2 cells suppressed cell proliferation and promoted apoptosis. Functional pathway analysis of genes positively and negatively associated with RPS2 expression in HCC showed enrichment in ribosomal biogenesis, translation machinery, cell cycle regulation, and DNA processing. Furthermore, utilizing drug-protein 3D docking, we found that doxorubicin, sorafenib, and 5-Fluorouracil, showed high affinity to the active sites of RPS2, and in vitro treatment with these drugs reduced RPS2 expression. For the first time, we report on DNA methylation-mediated epigenetic regulation of RPS2 and its oncogenic role in HCC. Our findings suggest that RPS2 plays a significant role in the development and progression of HCC, hence its potential prognostic and therapeutic utility. Moreover, as epigenetic changes happen early in cancer development, RPS2 may serve as a potential biomarker for tumor progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Metilação de DNA , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/metabolismo , Biomarcadores/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
14.
Small ; 20(5): e2305948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759414

RESUMO

The large-scale commercialization of the hydrogen evolution reaction (HER) necessitates the development of cost-effective and highly efficient electrocatalysts. Although transition metal sulfides, such as MoS2 and Ni3 S2 , hold great potential in the field of HER, their catalytic performance has been unsatisfactory due to incomplete exposure of active sites and poor electrical conductivity. In this work, via a simple hydrothermal strategy, amorphous MoS2 nanoshells in the form of urchin-like MoS2 -Ni3 S2 core-shell heterogeneous structure is realized and in situ loaded on nickel foam (A-MoS2 -Ni3 S2 -NF). In particular, XPS analysis results show that the coupling of amorphous MoS2 and Ni3 S2 makes the electrode surface exhibit electron-abundant property, which will have a positive impact on HER catalytic activity. In addition, the fully exposed active site of amorphous MoS2 is another crucial factor contributing to its high catalytic performance of A-MoS2 -Ni3 S2 -NF electrode. In particular, at a current density of 10 mA cm⁻2 , the overpotential of electrode is 95 mV (1.0 m KOH) and 145 mV (0.5 m H2 SO4 ). This work highlights the importance of amorphous MoS2 and MoS2 -Ni3 S2 of sea-urchin core-shell structure in optimizing HER performance, which provides an important reference for HER research.

15.
Small ; 20(9): e2305906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857591

RESUMO

Replacing traditional oxygen evoltion reaction (OER) with biomass oxidation reaction (BOR) is an advantageous alternative choice to obtain green hydrogen energy from electrocatalytic water splitting. Herein, a novel of extremely homogeneous Ni3 S2 nanosheets covered TiO2 nanorod arrays are in situ growth on conductive Ni foam (Ni/TiO2 @Ni3 S2 ). The Ni/TiO2 @Ni3 S2 electrode exhibits excellent electrocatalytic activity and long-term stability for both BOR and hydrogen evolution reaction (HER). Especially, taking glucose as a typical biomass, the average hydrogen production rate of the HER-glucose oxidation reaction (GOR) two-electrode system reached 984.74 µmol h-1 , about 2.7 times higher than that of in a common HER//OER two-electrode water splitting system (365.50 µmol h-1 ). The calculated power energy saving efficiency of the GOR//HER system is about 13% less than that of the OER//HER system. Meanwhile, the corresponding selectivity of the value-added formic acid produced by GOR reaches about 80%. Moreover, the Ni/TiO2 @Ni3 S2 electrode also exhibits excellent electrocatalytic activity on a diverse range of typical biomass intermediates, such as urea, sucrose, fructose, furfuryl alcohol (FFA), 5-hydroxymethylfurfural (HMF), and alcohol (EtOH). These results show that Ni/TiO2 @Ni3 S2 has great potential in electrocatalysis, especially in replacing OER reaction with BOR reaction and promoting the sustainable development of hydrogen production.

16.
Small ; 20(26): e2310387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38312084

RESUMO

Rational design of heterostructure catalysts through phase engineering strategy plays a critical role in heightening the electrocatalytic performance of catalysts. Herein, a novel amorphous/crystalline (a/c) heterostructure (a-CoS/Ni3S2) is manufactured by a facile hydrothermal sulfurization method. Strikingly, the interface coupling between amorphous phase (a-CoS) and crystalline phase (Ni3S2) in a-CoS/Ni3S2 is much stronger than that between crystalline phase (c-CoS) and crystalline phase (Ni3S2) in crystalline/crystalline (c/c) heterostructure (c-CoS/Ni3S2) as control sample, which makes the meta-stable amorphous structure more stable. Meanwhile, a-CoS/Ni3S2 has more S vacancies (Sv) than c-CoS/Ni3S2 because of the presence of an amorphous phase. Eventually, for the oxygen evolution reaction (OER), the a-CoS/Ni3S2 exhibits a significantly lower overpotential of 192 mV at 10 mA cm-2 compared to the c-CoS/Ni3S2 (242 mV). An exceptionally low cell voltage of 1.51 V is required to achieve a current density of 50 mA cm-2 for overall water splitting in the assembled cell (a-CoS/Ni3S2 || Pt/C). Theoretical calculations reveal that more charges transfer from a-CoS to Ni3S2 in a-CoS/Ni3S2 than in c-CoS/Ni3S2, which promotes the enhancement of OER activity. This work will bring into play a fabrication strategy of a/c catalysts and the understanding of the catalytic mechanism of a/c heterostructures.

17.
Small ; : e2311770, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794870

RESUMO

Developing low-cost and highly efficient bifunctional catalysts for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is a challenging problem in electrochemical overall water splitting. Here, iron, tungsten dual-doped nickel sulfide catalyst (Fe/W-Ni3S2) is synthesized on the nickel foam, and it exhibits excellent OER and HER performance. As a result, the water electrolyze based on Fe/W-Ni3S2 bifunctional catalyst illustrates 10 mA cm-2 at 1.69 V (without iR-compensation) and highly durable overall water splitting over 100 h tested under 500 mA cm-2. Experimental results and DFT calculations indicate that the synergistic interaction between Fe doping and Ni vacancy induced by W leaching during the in situ oxidation process can maximize exposed OER active sites on the reconstructed NiOOH species for accelerating OER kinetics, while the Fe/W dual-doping optimizes the electronic structure of Fe/W-Ni3S2 and the binding strength of intermediates for boosting HER. This study unlocks the different promoting mechanisms of incorporating Fe and W for boosting the OER and HER activity of Ni3S2 for water splitting, which provides significant guidance for designing high-performance bifunctional catalysts for overall water splitting.

18.
Small ; 20(26): e2309655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243851

RESUMO

Bifunctional catalysts have inherent advantages in simplifying electrolysis devices and reducing electrolysis costs. Developing efficient and stable bifunctional catalysts is of great significance for industrial hydrogen production. Herein, a bifunctional catalyst, composed of nitrogen and sulfur co-doped carbon-coated trinickel disulfide (Ni3S2)/molybdenum dioxide (MoO2) nanowires (NiMoS@NSC NWs), is developed for seawater electrolysis. The designed NiMoS@NSC exhibited high activity in alkaline electrolyte with only 52 and 191 mV overpotential to attain 10 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Significantly, the electrolyzer (NiMoS@NSC||NiMoS@NSC) based on this bifunctional catalyst drove 100 mA cm-2 at only 1.71 V along with a robust stability over 100 h in alkaline seawater, which is superior to a platinum/nickel-iron layered double hydroxide couple (Pt||NiFe LDH). Theoretical calculations indicated that interfacial interactions between Ni3S2 and MoO2 rearranged the charge at interfaces and endowed Mo sites at the interfaces with Pt-like HER activity, while Ni sites on Ni3S2 surfaces at non-interfaces are the active centers for OER. Meanwhile, theoretical calculations and experimental results also demonstrated that interfacial interactions improved the electrical conductivity, boosting reaction kinetics for both HER and OER. This study presented a novel insight into the design of high-performance bifunctional electrocatalysts for seawater splitting.

19.
Small ; 20(23): e2309371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169101

RESUMO

Construction of heterojunctions is an effective strategy to enhanced electrocatalytic oxygen evolution reaction (OER), but the structural evolution of the active phases and synergistic mechanism still lack in-depth understanding. Here, an FeOOH/Ni3S2 heterostructure supported on nickel foam (NF) through a two-step hydrothermal-chemical etching method is reported. In situ Raman spectroscopy study of the surface reconstruction behaviors of FeOOH/Ni3S2/NF indicates that Ni3S2 can be rapidly converted to NiOOH, accompanied by the phase transition from α-FeOOH to ß-FeOOH during the OER process. Importantly, a deep analysis of Ni─O bond reveals that the phase transition of FeOOH can regulate the lattice disorder of NiOOH for improved catalytic activity. Density functional theory (DFT) calculations further confirm that NiOOH/FeOOH heterostructure possess strengthened adsorption for O-containing intermediates, as well as lower energy barrier toward the OER. As a result, FeOOH/Ni3S2/NF exhibits promising OER activity and stability in alkaline conditions, requiring an overpotential of 268 mV @ 100 mA cm-2 and long-term stability over 200 h at a current density of 200 mA cm-2. This work provides a new perspective for understanding the synergistic mechanism of heterogeneous electrocatalysts during the OER process.

20.
RNA ; 28(12): 1568-1581, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192131

RESUMO

Transfer RNAs acquire a large plethora of chemical modifications. Among those, modifications of the anticodon loop play important roles in translational fidelity and tRNA stability. Four human wobble U-containing tRNAs obtain 5-methoxycarbonylmethyluridine (mcm5U34) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), which play a role in decoding. This mark involves a cascade of enzymatic activities. The last step is mediated by alkylation repair homolog 8 (ALKBH8). In this study, we performed a transcriptome-wide analysis of the repertoire of ALKBH8 RNA targets. Using a combination of HITS-CLIP and RIP-seq analyses, we uncover ALKBH8-bound RNAs. We show that ALKBH8 targets fully processed and CCA modified tRNAs. Our analyses uncovered the previously known set of wobble U-containing tRNAs. In addition, both our approaches revealed ALKBH8 binding to several other types of noncoding RNAs, in particular C/D box snoRNAs.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , RNA não Traduzido/genética , Homólogo AlkB 8 da RNAt Metiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA