Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ren Fail ; 41(1): 762-769, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31880214

RESUMO

There are seven endoplasmic reticulum (ER)-resident selenoproteins in human body and they can regulate the inflammation, oxidative stress, and ER stress. We established transforming growth factor-ß1 (TGF-ß1) or high glucose (HG) induced human mesangial cells (HMCs) fibronectin expression model in vitro. Next, the expression changes of seven ER-resident selenoproteins were detected under HG conditions and we found selenoprotein S (SELENOS), selenoprotein N (SELENON) were significantly down-regulated but selenoprotein M was significantly up-regulated in transcription level. Furthermore, we found that TGF-ß1 and HG down-regulated the expression of SELENOS and SELENON in a time- and dose-dependent manner, respectively. Finally, SELENOS was knocked down by siRNA and we found that knocking down SELENOS decreased TGF-ß1 induced fibronectin expression. Our research indicates the potential value of ER-resident selenoproteins on renal fibrosis.


Assuntos
Retículo Endoplasmático/metabolismo , Fibronectinas/metabolismo , Proteínas de Membrana/metabolismo , Células Mesangiais/metabolismo , Proteínas Musculares/metabolismo , Selenoproteínas/metabolismo , Células Cultivadas , Glucose , Humanos , Fator de Crescimento Transformador beta1
2.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464009

RESUMO

SELENON-Related Myopathy (SELENON-RM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology commonly includes multiminicores or a dystrophic pattern but is often non-specific. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency causes SELENON-RM are undetermined. A hurdle is the lack of cellular and animal models that show assayable phenotypes. Here we report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression between selenon and genes involved in glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit changes in glutathione and redox homeostasis, suggesting a direct relationship with SelN function. We report changes in metabolic function abnormalities in SelN-null myotubes when compared to WT. These results suggest that SelN has functional roles during zebrafish early development and myoblast metabolism.

3.
Antioxidants (Basel) ; 13(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39334739

RESUMO

Obstructive sleep apnoea (OSA) involves impaired upper airway muscle function and is linked to several pathologies including systemic hypertension, daytime somnolence and cognitive decline. Selenium is an essential micronutrient that exerts many of its effects through selenoproteins. Evidence indicates that either deficient or excessive dietary selenium intake can result in impaired muscle function, termed nutritional myopathy. To investigate the effects of selenium on an upper airway muscle, the sternohyoid, rats were fed on diets containing deficient, normal (0.5 ppm sodium selenite) or excessive (5 ppm selenite) selenium for a period of two weeks. Sternohyoid contractile function was assessed ex vivo. Serum selenium levels and activity of the glutathione antioxidant system were determined by biochemical assays. The abundance of three key muscle selenoproteins (selenoproteins -N, -S and -W (SELENON, SELENOS and SELENOW)) in sternohyoid muscle were quantified by immunoblotting. Levels of these selenoproteins were also compared between rats exposed to chronic intermittent hypoxia, a model of OSA, and sham treated animals. Although having no detectable effect on selected organ masses and whole-body weight, either selenium-deficient or -excessive diets severely impaired sternohyoid contractile function. These changes did not involve altered fibre size distribution. These dietary interventions resulted in corresponding changes in serum selenium concentrations but did not alter the activity of glutathione-dependent antioxidant systems in sternohyoid muscle. Excess dietary selenium increased the abundance of SELENOW protein in sternohyoid muscles but had no effect on SELENON or SELENOS. In contrast, chronic intermittent hypoxia increased SELENON, decreased SELENOW and had no significant effect on SELENOS in sternohyoid muscle. These findings indicate that two-week exposure to selenium-deficient or -excessive diets drastically impaired upper airway muscle function. In the sternohyoid, SELENON, SELENOS and SELENOW proteins show distinct alterations in level following exposure to different dietary selenium intakes, or to chronic intermittent hypoxia. Understanding how alterations in Se and selenoproteins impact sternohyoid muscle function has the potential to be translated into new therapies for prevention or treatment of OSA.

4.
Biomedicines ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830771

RESUMO

Growing evidence shows that the lipid bilayer is a key site for membrane interactions and signal transduction. Surprisingly, phospholipids have not been widely studied in skeletal muscles, although mutations in genes involved in their biosynthesis have been associated with muscular diseases. Using mass spectrometry, we performed a phospholipidomic profiling in the diaphragm of male and female, young and aged, wild type and SelenoN knock-out mice, the murine model of an early-onset inherited myopathy with severe diaphragmatic dysfunction. We identified 191 phospholipid (PL) species and revealed an important sexual dimorphism in PLs in the diaphragm, with almost 60% of them being significantly different between male and female animals. In addition, 40% of phospholipids presented significant age-related differences. Interestingly, SELENON protein absence was responsible for remodeling of 10% PL content, completely different in males and in females. Expression of genes encoding enzymes involved in PL remodeling was higher in males compared to females. These results establish the diaphragm PL map and highlight an important PL remodeling pattern depending on sex, aging and partly on genotype. These differences in PL profile may contribute to the identification of biomarkers associated with muscular diseases and muscle aging.

5.
Antioxidants (Basel) ; 11(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552625

RESUMO

Decreased selenium (Se) levels during childhood and infancy are associated with worse respiratory health. Se is biologically active after incorporation into Se-containing antioxidant enzymes (AOE) and proteins. It is unknown how decreased maternal Se during pregnancy and lactation impacts neonatal pulmonary selenoproteins, growth, and lung development. Using a model of neonatal Se deficiency that limits Se intake to the dam during pregnancy and lactation, we evaluated which neonatal pulmonary selenoproteins are decreased in both the saccular (postnatal day 0, P0) and early alveolar (postnatal day 7, P7) stages of lung development. We found that Se deficient (SeD) pups weigh less and exhibit impaired alveolar development compared to Se sufficient (SeS) pups at P7. The activity levels of glutathione peroxidase (GPx) and thioredoxin reductase (Txnrd) were decreased at P0 and P7 in SeD lungs compared to SeS lungs. Protein content of GPx1, GPx3 and Txnrd1 were decreased in SeD lungs at P0 and P7, whereas Txnrd2 content was unaltered compared to SeS controls. The expression of NRF-2 dependent genes and several non-Se containing AOE were similar between SeS and SeD lungs. SeD lungs exhibited a decrease in selenoprotein N, an endoplasmic reticulum protein implicated in alveolar development, at both time points. We conclude that exposure to Se deficiency during pregnancy and lactation impairs weight gain and lung growth in offspring. Our data identify multiple selenoproteins in the neonatal lung that are vulnerable to decreased Se intake, which may impact oxidative stress and cell signaling under physiologic conditions as well as after oxidative stressors.

6.
Front Genet ; 13: 825793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368679

RESUMO

Congenital muscular dystrophy with early rigid spine, also known as the rigid spine with muscular dystrophy type 1 (RSMD1), is caused by SEPN1 mutation. We investigated the clinical manifestations, pathological features, and genetic characteristics of 8 Chinese RSMD1 patients in order to improve diagnosis and management of the disease. Eight patients presented with delayed motor development, muscle weakness, hypotonia, and a myopathic face with high palatine arches. All patients could walk independently, though with poor running and jumping, and most had a rigid spine, lordosis, or scoliosis. The symptoms of respiratory involvement were present early, and upper respiratory tract infections and pneumonia often occurred. Five patients had severe pneumonia, pulmonary hypertension, and respiratory failure. Lung function tests showed variable restrictive ventilation dysfunction. Polysomnography suggested hypoxia and hypoventilation. The serum creatine kinase (CK) level was normal or mildly increased. Muscle biopsy indicated chronic myopathic changes and minicores. Muscle magnetic resonance imaging (MRI) showed diffuse fatty infiltration of the gluteus maximus and thigh muscle. SEPN1 gene analysis revealed 16 compound heterozygous variants, 81.3% of which are unreported, including 7 exon 1 variants. Our study expands the spectrum of clinical and genetic findings in RSMD1 to improve diagnosis, management, and standards of care. SEPN1 mutations in exon 1 are common and easily missed, and exon 1 should be carefully analyzed when RSMD1 is suspected, which will provide valuable genetic counseling for the family and useful information for future natural history studies and clinical trials.

7.
Front Neurol ; 12: 766942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867752

RESUMO

Background: Selenoprotein N-related myopathies (SEPN1-RMs) are a subset of congenital myopathies caused by mutations of Selenoprotein N gene (SELENON or SEPN1). Clinical phenotype is considered as highly consistent and little attention has been given to the extramuscular abnormalities. Methods: We reported clinical, histopathological, and genetic features of four Chinese patients with SEPN1-RM and performed literature review on delayed respiratory insufficiency and extramuscular involvement. Results: A total of four patients exhibited both the typical and atypical clinical features of SEPN1-RM. The classical manifestations included axial and limb girdle weakness, spinal rigidity, scoliosis, respiratory insufficiency, and multiminicore morphological lesions. However, high interindividual variability was noticed on disease severity, especially the onset of respiratory involvement. Two adult patients postponed respiratory insufficiency to the third decade of life, while two juvenile patients manifested early hypoventilation with puberty exacerbation. As atypical features, extramuscular involvement of weight gain, subcutaneous adipose tissue accumulation, intellectual disability, and mild cardiac changes were observed. Molecular findings revealed three novel mutations of SELENON such as c.1286_1288 del CCT, c.1078_1086dupGGCTACATA, and c.785 G>C. Ten cases with delayed respiratory insufficiency were identified from previous publications. A total of 18 studies described extramuscular abnormalities including joint contractures, alterations of body mass index (BMI), mild cardiac changes, and insulin resistance. Intellectual impairment was extremely rare. Conclusion: SEPN1-RM should be considered as a differential diagnosis in adult patients with delayed respiratory involvement. Extramuscular involvement such as body composition alterations deserves more clinical attention. The novel mutations of SELENON widened the genetic spectrum of patients with SEPN1-RM.

8.
Metallomics ; 13(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33693771

RESUMO

Selenoprotein N (SEPN1) is critical to the normal muscular physiology. Mutation of SEPN1 can raise congenital muscular disorder in human. It is also central to maturation and structure of skeletal muscle in chicken. However, human SEPN1 contained an EF-hand motif, which was not found in chicken. And the biochemical and molecular characterization of chicken SEPN1 remains unclear. Hence, protein domains, transcription factors, and interactions of Ca2+ in SEPN1 were analyzed in silico to provide the divergence and homology between chicken and human in this work. The results showed that vertebrates' SEPN1 evolved from a common ancestor. Human and chicken's SEPN1 shared a conserved CUGS-helix domain with function in antioxidant protection. SEPN1 might be a downstream target of JNK pathway, and it could respond to multiple stresses. Human's SEPN1 might not combine with Ca2+ with a single EF-hand motif in calcium homeostasis, and chicken SEPN1 did not have the EF-hand motif in the prediction, indicating the EF-hand motif malfunctioned in chicken SEPN1.


Assuntos
Antioxidantes/metabolismo , Cálcio/metabolismo , Simulação por Computador , Músculo Esquelético/metabolismo , Selenoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Humanos , Mutação , Filogenia , Conformação Proteica , Domínios Proteicos , Selenoproteínas/química , Selenoproteínas/genética , Homologia de Sequência
9.
J Clin Sleep Med ; 13(9): 1105-1108, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28558865

RESUMO

ABSTRACT: Selenoprotein-related myopathy (SEPN1-RM) is a rare disease with a variable clinical presentation. The selenoprotein N1 gene (SEPN1) mutation causing this congenital muscular dystrophy was identified in 2001. Sleep-disordered breathing (SDB) may occur in young patients with SEPN1-RM who are still able to walk. We report the cases of two children with SEPN1-RM who presented with SDB at the ages of 7 and 12 years and for whom long-term nocturnal noninvasive ventilation yielded significant improvement. Based on literature review and our current cases, it seems that there is no obvious relationship between the time since SDB onset and outcome of pulmonary function tests or limb muscle weakness. We therefore suggest that SDB should be systematically screened for in patients with SEPN1-RM, at regular intervals using nocturnal polysomnography.


Assuntos
Proteínas Musculares/genética , Doenças Musculares/complicações , Ventilação não Invasiva/métodos , Selenoproteínas/deficiência , Síndromes da Apneia do Sono/etiologia , Síndromes da Apneia do Sono/terapia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Doenças Musculares/genética , Mutação/genética , Polissonografia/estatística & dados numéricos , Selenoproteínas/genética
10.
Oncotarget ; 7(51): 83843-83849, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27863379

RESUMO

Rigid spine muscular dystrophy 1 (RSMD1) is a neuromuscular disorder, manifested with poor axial muscle strength, scoliosis and neck weakness, and a variable degree of spinal rigidity with an early ventilatory insufficiency which can lead to death by respiratory failure. Mutations of SEPN1 gene are associated with autosomal recessive RSMD1. Here, we present a clinical molecular study of a Chinese proband with RSMD1. The proband is a 17 years old male, showing difficulty in feeding, delayed motor response, problem in running with frequent fall down, early onset respiratory insufficiency, general muscle weakness and rigid cervical spine. Muscle biopsy identified increased variability of fiber size with atrophic muscle cells consistent with non-specific myopathic changes. Proband's elder brother presented with same phenotype as the proband and died at the age of 15 years due to acute respiratory failure. Proband's father and mother are phenotypically normal. Targeted exome capture based next generation sequencing and Sanger sequencing identified that the proband was a compound heterozygote with two novel mutations in SEPN1 gene; a novel missense mutation (c.1384T>C; p.Sec462Arg) and a novel nonsense mutation (c.1525C>T; p.Gln509Ter), inherited from his father and mother respectively. These two mutations are co-segregated with the disease phenotypes in the proband and was absent in normal healthy controls. Our present study expands the mutational spectrum of the SEPN1 associated RSMD1.


Assuntos
Códon sem Sentido , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Corpos de Mallory/patologia , Proteínas Musculares/genética , Distrofias Musculares/genética , Mutação de Sentido Incorreto , Escoliose/genética , Selenoproteínas/genética , Adolescente , Biópsia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Hereditariedade , Heterozigoto , Humanos , Masculino , Corpos de Mallory/genética , Distrofias Musculares/diagnóstico por imagem , Linhagem , Fenótipo , Valor Preditivo dos Testes , Escoliose/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA