Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Exp Cell Res ; 435(1): 113926, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228225

RESUMO

The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.


Assuntos
Nanofibras , Alicerces Teciduais , Adesão Celular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Silibina/farmacologia , Alicerces Teciduais/química , Nanofibras/química , Colágeno/farmacologia , Colágeno/química , Engenharia Tecidual , Células-Tronco , Proliferação de Células , Células Cultivadas , Compostos Orgânicos
2.
Arch Biochem Biophys ; 753: 109916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296016

RESUMO

During persistent hyperglycaemia, albumin, one of the major blood proteins, can undergo fast glycation. It can be expected that timely inhibition of protein glycation might be add quality years to diabetic patients' life. Therefore, this study was designed to analyse the role of silibinin to reduced or delay amadori adduct formation at early glycation and its beneficial effect to improve the glycated albumin structure and conformation. We also analysed cytotoxic effect of amadori-albumin in the presence of silibinin on murine macrophage cell line RAW cells by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. Formation of early glycated product (furosine) in all samples was confirmed by LCMS. Albumin incubated with glucose only showed presence of furosine like structure. Albumin treated with silibinin in the presence of glucose did not show such furosine like peak. This LCMS result showed the silibinin play a protective role in the formation of early glycated product. HMF contents were also reduced in the presence of silibinin, when albumin was incubated with increasing concentrations of silibinin (100 and 200 µM) in the presence of glucose. ANS binding fluorescence decrease by increasing silibinin concentrations with amadori-albumin. SDS-PAGE was also showed that no significant difference in the band mobility of albumin treated with silibinin as compared to native albumin. The secondary conformational alteration in amadori-albumin due to silibinin were confirmed by FTIR. This spectrum showed slight shift in amide I and Amide II band in albumin co-incubated with glucose and silibinin as compared to albumin incubated with glucose only. We further discussed about cytotoxic effect of amadori albumin and its prevention by silibinin. MTT assay results demonstrated that amadori-albumin showed cytotoxic effect on RAW cells but silibinin showed protective role and increased the cell viability. Moreover, the results showed that silibinin has anti-glycating potential and playing a role to prevent the formation of Amadori-albumin in-vitro. Silibinin possesses strong anti-glycating capacity and can improve albumin structure and function at early stage. It might be useful in delaying the progression of diabetes mellitus and its secondary complications at early stage.


Assuntos
Antineoplásicos , Diabetes Mellitus , Animais , Camundongos , Amidas , Glucose , Glicosilação , Reação de Maillard , Albumina Sérica/química , Albumina Sérica/metabolismo , Silibina/farmacologia , Células RAW 264.7
3.
Exp Eye Res ; 244: 109939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789021

RESUMO

Transforming growth factor-ß2 (TGF-ß2) induced fibrogenic changes in human trabecular meshwork (HTM) cells have been implicated in trabecular meshwork (TM) damage and intraocular pressure (IOP) elevation in primary open-angle glaucoma (POAG) patients. Silibinin (SIL) exhibited anti-fibrotic properties in various organs and tissues. This study aimed to assess the effects of SIL on the TGF-ß2-treated HTM cells and to elucidate the underlying mechanisms. Our study found that SIL effectively inhibited HTM cell proliferation, attenuated TGF-ß2-induced cell migration, and mitigated TGF-ß2-induced reorganization of both actin and vimentin filaments. Moreover, SIL suppressed the expressions of fibronectin (FN), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA) in the TGF-ß2-treated HTM cells. RNA sequencing indicated that SIL interfered with the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, extracellular matrix (ECM)-receptor interaction, and focal adhesion in the TGF-ß2-treated HTM cells. Western blotting demonstrated SIL inhibited the activation of Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and the downstream PI3K/AKT signaling pathways induced by TGF-ß2, potentially contributing to its inhibitory effects on ECM protein production in the TGF-ß2-treated HTM cells. Our study demonstrated the ability of SIL to inhibit TGF-ß2-induced fibrogenic changes in HTM cells. SIL could be a potential IOP-lowering agent by reducing the fibrotic changes in the TM tissue of POAG patients, which warrants further investigation through additional animal and clinical studies.


Assuntos
Movimento Celular , Proliferação de Células , Transdução de Sinais , Silibina , Malha Trabecular , Humanos , Antioxidantes/farmacologia , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibrose , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/patologia , Janus Quinase 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Silibina/farmacologia , Silimarina/farmacologia , Fator de Transcrição STAT3/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo
4.
Pharmacol Res ; 204: 107200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710241

RESUMO

Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.


Assuntos
Antineoplásicos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Terapia de Alvo Molecular , Neoplasias , Animais , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
5.
Phytother Res ; 38(4): 1830-1837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353369

RESUMO

CD44+ cancer stem cells (CSCs) are believed to account for drug resistance and tumour recurrence due to their potential to self-renew and differentiate into heterogeneous lineages. Therefore, efficient treatment strategies targeting and eliminating these CSCs are required. The flavonolignan, Silibinin, has gained immense attention in targeting CD44+ CSCs as it alters functional properties like cell cycle arrest, apoptosis, inhibition of invasion and metastasis and also inhibits a range of molecular pathways. However, its limited bioavailability is a major hurdle in asserting Silibinin as a translational therapeutic agent. Combinatorial therapy of Silibinin with conventional chemotherapeutic drugs is an alternative approach in targeting CD44+ CSCs as it increases the efficacy and reduces the cytotoxicity of chemotherapeutic drugs, thus preventing drug resistance. Certain Silibinin-conjugated nano-formulations have also been successfully developed, through which there is improved absorptivity/bioavailability of Silibinin and a decrease in the concentration of therapeutic drugs leading to reduced cytotoxicity. In this review, we summarise the effectiveness of the synergistic therapeutic approach for Silibinin in targeting the molecular mechanisms of CD44+ CSCs and emphasise the potential role of Silibinin as a novel therapeutic agent.


Assuntos
Neoplasias , Humanos , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/uso terapêutico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas , Silibina/farmacologia
6.
Drug Dev Ind Pharm ; 50(5): 470-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625641

RESUMO

OBJECTIVE: Belonging to the class II drugs according to the biopharmaceutics classification system, silibinin (SLB) benefits from high permeability but suffers poor solubility that negatively affects the development of any delivery system. This research aimed to improve SLB solubility by combined use of co-solvency and complexation phenomena. METHODS: Solubility studies were performed using the phase solubility analysis according to the shake-flask method in the presence of ethanol and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as a co-solvent and inclusion complexing agent, respectively. SLB release studies from chitosan nanoparticles were carried out in double-wall, diffusion cells using the optimized drug release medium. RESULTS: SLB solubility was mathematically optimized constraining to using the lowest concentrations of ethanol and HP-ß-CD. SLB solubility increased linearly with the increase of HP-ß-CD concentration. The solubility in PBS-ethanol mixtures followed a log-linear model. SLB solubility in the presence of the ethanol co-solvent and HP-ß-CD complexing agent was optimized by adopting a genetic algorithm suggesting the phosphate buffer saline solution supplemented by 6%v/v ethanol and 8 mM HP-ß-CD as an optimized medium. The optimized solution was examined to study SLB release from chitosan nanoparticles (4.5 ± 0.2% drug loading) at 37 °C under static conditions. The sigmoidal release profile of SLB from the particles indicated a combination of erosion and diffusion mechanisms governing drug release from the nanoparticles. CONCLUSION: SLB solubility in a buffered solution supplemented by ethanol co-solvent and HP-ß-CD complexing agent is a function of free drug present in the semi-aqueous media, the drug-ligand binary complex, and the drug/ligand/co-solvent ternary complex.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Quitosana , Liberação Controlada de Fármacos , Nanopartículas , Silibina , Solubilidade , Solventes , Silibina/química , Silibina/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/química , Quitosana/química , Nanopartículas/química , Solventes/química , Etanol/química , Silimarina/química , Silimarina/administração & dosagem , Química Farmacêutica/métodos , Portadores de Fármacos/química
7.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675723

RESUMO

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Assuntos
Apoptose , Proliferação de Células , Farmacologia em Rede , Silibina , Silibina/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos/farmacologia
8.
AAPS PharmSciTech ; 25(6): 149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954224

RESUMO

Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aß1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aß1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aß1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aß1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aß1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aß1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores , Fragmentos de Peptídeos , Silibina , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Camundongos , Silibina/farmacologia , Silibina/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Tamanho da Partícula , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo
9.
Curr Issues Mol Biol ; 45(10): 8126-8137, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37886956

RESUMO

This study investigated the effects of silibinin, derived from milk thistle (Silybum marianum), on lipopolysaccharide (LPS)-induced morphological changes in mouse macrophages. Silibinin was treated at various doses and time points to assess its effects on macrophage activation, including morphological changes and phagocytosis. Silibinin effectively inhibited LPS-induced pseudopodia formation and size increase, while unstimulated cells remained round. Silibinin's impact on phagocytosis was dose- and time-dependent, showing a decrease. We explored its mechanism of action on kinases using a MAPK array. Among the three MAPK family members tested, silibinin had a limited effect on JNK and p38 but significantly inhibited ERK1/2 and related RSK1/2. Silibinin also inhibited MKK6, AKT3, MSK2, p70S6K, and GSK-3ß. These findings highlight silibinin's potent inhibitory effects on phagocytosis and morphological changes in macrophages. We suggest its potential as an anti-inflammatory agent due to its ability to target key inflammatory pathways involving ERK1/2 and related kinases. Overall, this study demonstrates the promising therapeutic properties of silibinin in modulating macrophage function and inflammation.

10.
Biochem Biophys Res Commun ; 676: 103-108, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506470

RESUMO

BACKGROUND: Acetaminophen (Act) overdose is a known inducer of liver failure in both children and adults. Cell annihilation ensues following acetaminophen overdose and its toxic metabolites by depleting cellular GSH storage and increasing ROS levels. Silymarin extract and its major compound silibinin (SLB) possess robust antioxidant properties by inducing ROS elimination; however, low bioavailability and rapid metabolism limit their applications. Herein, we aimed at using SLB liposomes to combat acetaminophen-induced acute liver toxicity. METHODS: We have developed a SLB-lipid complex to improve SLB loading efficiency within nanoliposome by using the lipid film method. Liposomes were characterized by using DLS and TEM analysis, and the release pattern, and toxicity profile on the normal cells as well as histopathological and serum analysis were investigated to reveal relevant enzyme activities in an animal model. RESULTS: Data demonstrated that negatively-charged SLB liposomes of 115 nm had homogeneous spherical morphology, and entrapped a considerable quantity of SLB of almost 40%. Liposomes shows a favorable release pattern and were not toxic against NIH3T3 mouse fibroblast cells. The animal study revealed that treatment of mice with SLB nanoliposomes could significantly preserve liver function as revealed by the reduced levels of ALT and AST hepatic enzymes as well as ALP in the serum. Our data indicated that intraperitoneal administration of SLB Lip could significantly reduce ALT enzyme levels (p < 0.05) compared to N-acetylcysteine, while i.v administration resulted in no significant difference compared to control animals with no treatment. CONCLUSION: The results of this study support the significant hepatoprotective effect of SLB nanoliposomes against acetaminophen-induced toxicity depending on the route of administration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática , Camundongos , Animais , Silibina/farmacologia , Acetaminofen/farmacologia , Lipossomos/metabolismo , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Fígado/metabolismo , Falência Hepática/patologia , Lipídeos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia
11.
Cancer Cell Int ; 23(1): 88, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165384

RESUMO

PURPOSE: Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS: In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS: According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION: According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.

12.
Arch Biochem Biophys ; 744: 109691, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473980

RESUMO

Ferroptosis, an iron-dependent cell death, is caused by lipid peroxidation. Noteworthily, accumulation of iron and lipid peroxidation are found in the proximity of the neuritic plaque, a hallmark of Alzheimer's disease (AD), but the relationship between ferroptosis and neuroinflammation in AD is unclear. Silibinin, extracted from the Silybum marianum, is possibly developed as an agent for AD treatment from its neuroprotective effect, but the effect of silibinin on sporadic AD that accounts for more than 95% of AD remains unclear. To determine whether silibinin alleviates the pathogenesis of sporadic AD and investigate the underlying mechanisms, STZ-treated HT22 murine hippocampal neurons and intracerebroventricular injection of streptozotocin (ICV-STZ) rats, a sporadic AD model, were used in this study. Results show that silibinin not only promotes survival of STZ-treated HT22 cells, but also ameliorates the cognitive impairment and anxiety/depression-like behavior of ICV-STZ rats. We here demonstrate that silibinin evidently inhibits the protein level of p53 as well as upregulates the protein level of cystine/glutamate antiporter SLC7A11 and ferroptosis inhibitor GPX4, but not p21, leading to the protection against STZ-induced ferroptotic damage. Immunofluorescent staining also shows that accumulation of lipid peroxidation induced by ferroptotic damage leads to increased fluorescence of 8-oxo-deoxyguanosine (8-OHDG), a maker of oxidized DNA. The oxidized DNA then leaks to the cytoplasm and upregulates the expression of the stimulator of interferon gene (STING), which triggers the production of IFN-ß and other inflammatory cascades including NF-κB/TNFα and NLRP3/caspase 1/IL-1ß. However, the treatment with silibinin blocks the above pathological changes. Moreover, in HT22 cells with/without STZ treatment, GPX4-knockdown increases the protein level of STING, indicating that the ferroptotic damage leads to the activation of STING signaling pathway. These results imply that silibinin exerts neuroprotective effect on an STZ-induced sporadic AD model by downregulating ferroptotic damage and thus the downstream STING-mediated neuroinflammation.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Silibina/farmacologia , Silibina/uso terapêutico , Regulação para Baixo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estreptozocina/efeitos adversos , Modelos Animais de Doenças
13.
Arch Biochem Biophys ; 743: 109644, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245586

RESUMO

Type 2 diabetes (T2DM) is induced by the abundance of glucose and lipids, which causes glucolipotoxicity to the pancreatic ß-cells. Silibinin is a natural flavonoid possessing the regulatory activity on insulin production and therapeutic activity in diabetic mice; however, its effect on glucolipotoxicity is not fully explained. This in vitro study investigates the effects of silibinin on palmitic acid (PA) and high glucose (HG)-induced cell loss and ferroptosis of rat insulinoma INS-1 cells. In the cells treated with PA and HG, expressions of glucose transporter 4 (Glut4) and carnitine acyltransferase I (CPT1) for ß-oxidation of fatty acids are reduced. Mitochondria are the metabolic organelles for glucose and fatty acids. The mitochondrial membrane potential (MMP) and ATP production were decreased, while the ROS level was elevated in the cells treated with PA and HG, indicating an induction of mitochondrial disorder. Cell loss was partially rescued by ferroptosis inhibition, suggesting an involvement of ferroptosis in the cells treated with PA and HG. More importantly, the increases in total iron, lipid ROS, MDA and COX-2, and the decrease in ferroptosis inhibitory molecules GSH, GPX4 and FSP1 appeared in the cells treated with PA and HG, confirming the occurrence of ferroptosis. Moreover, PINK1/parkin-mediated mitophagy, a vital process for selective elimination of damaged mitochondria, was blocked. Interestingly, silibinin rescued the mitochondria, restricted the ferroptosis and restored the mitophagy. By using the pharmacological stimulator and inhibitor of mitophagy, and si-RNA transfection to silence PINK1 expression, silibinin's protective effect against ferroptosis caused by PA and HG treatment was found to depend on mitophagy. Collectively, our current study reveals the new mechanisms for the protection of silibinin against the injury of INS-1 cells treated with PA and HG, elucidates the participation of ferroptosis in glucolipotoxicity, highlighting the involvement of mitophagy in defense against ferroptotic cell death.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Animais , Ratos , Glucose/farmacologia , Mitofagia , Ácido Palmítico/farmacologia , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Silibina/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
14.
Neuroendocrinology ; 113(6): 606-614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36791678

RESUMO

INTRODUCTION: The glucocorticoid receptor is pivotal to control corticotrophin (ACTH) secretion, and its function is closely linked to the heat shock protein 90 (HSP90) chaperone complex. Impaired sensitivity to glucocorticoid feedback is a hallmark of human corticotroph adenomas, i.e., Cushing's disease, a disorder with few medical treatment options. Silibinin, a HSP90 inhibitor, has been studied in tumoral corticotroph cells and its use proposed in Cushing's disease. Aim of the present study was to further investigate the effect of silibinin on human corticotroph adenomas in vitro. METHODS: Seven human ACTH-secreting pituitary adenomas were established in culture and treated with 10-50 µm silibinin with/without dexamethasone for up to 72 h. ACTH medium levels were measured, and POMC and glucocorticoid receptor, i.e., NR3C1, gene expression assessed. RESULTS: Silibinin reduced spontaneous ACTH secretion and restored sensitivity to steroid negative feedback to a different extent in individual adenomas. POMC expression was decreased in both control and dexamethasone-treated wells in specimens sensitive to silibinin. Interestingly, silibinin reduced constitutive NR3C1 expression and reversed the dexamethasone-induced inhibition. CONCLUSIONS: Our findings indicate that silibinin can inhibit ACTH synthesis and secretion in individual human corticotroph adenomas and directly affects NR3C1 gene expression. These results reveal promising effects of this HSP90 inhibitor on human corticotroph adenomas and support an innovative target treatment for patients with Cushing's disease.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Antineoplásicos , Hipersecreção Hipofisária de ACTH , Humanos , Adenoma Hipofisário Secretor de ACT/genética , Receptores de Glucocorticoides/genética , Silibina/farmacologia , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Pró-Opiomelanocortina/metabolismo , Adenoma/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Dexametasona/farmacologia
15.
J Biochem Mol Toxicol ; 37(9): e23408, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37335224

RESUMO

5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.


Assuntos
Antioxidantes , Fator de Necrose Tumoral alfa , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Silibina/farmacologia , Caspase 3 , Estresse Oxidativo , Oxidantes/farmacologia , Fluoruracila/toxicidade , Superóxido Dismutase/metabolismo
16.
J Clin Periodontol ; 50(7): 964-979, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36940707

RESUMO

AIM: To investigate whether silibinin impacts diabetic periodontitis (DP) via mitochondrial regulation. MATERIALS AND METHODS: In vivo, rats were divided into control, diabetes, DP and DP combined with silibinin groups. Diabetes and periodontitis were induced by streptozocin and silk ligation, respectively. Bone turnover was evaluated by microcomputed tomography, histology and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were exposed to hydrogen peroxide (H2 O2 ) with or without silibinin. Osteogenic function was analysed by Alizarin Red and alkaline phosphatase staining. Mitochondrial function and biogenesis were investigated by mitochondrial imaging assays and quantitative polymerase chain reaction. Activator and lentivirus-mediated knockdown of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a critical regulator of mitochondria biogenesis, was used to explore the mitochondrial mechanisms. RESULTS: Silibinin attenuated periodontal destruction and mitochondrial dysfunction and enhanced mitochondrial biogenesis and PGC-1α expression in rats with DP. Meanwhile, silibinin promoted cell proliferation, osteogenesis and mitochondrial biogenesis and increased the PGC-1α level in hPDLCs exposed to H2 O2 . Silibinin also protected PGC-1α from proteolysis in hPDLCs. Furthermore, both silibinin and activator of PGC-1α ameliorated cellular injury and mitochondrial abnormalities in hPDLCs, while knockdown of PGC-1α abolished the beneficial effect of silibinin. CONCLUSIONS: Silibinin attenuated DP through the promotion of PGC-1α-dependent mitochondrial biogenesis.


Assuntos
Diabetes Mellitus Tipo 1 , Fatores de Transcrição , Ratos , Animais , Humanos , Fatores de Transcrição/metabolismo , Silibina/farmacologia , Silibina/uso terapêutico , Biogênese de Organelas , Microtomografia por Raio-X , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
17.
Ecotoxicol Environ Saf ; 252: 114614, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753973

RESUMO

Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Silimarina , Masculino , Humanos , Silimarina/farmacologia , Silimarina/uso terapêutico , NF-kappa B/metabolismo , Arsênio/toxicidade , Sêmen
18.
Phytother Res ; 37(8): 3572-3582, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37115717

RESUMO

Anaphylaxis is a type of potentially fatal hypersensitivity reaction resulting from the activation of mast cells. Many endogenous or exogenous factors could cause this reaction. Silibinin is the main chemical component of silymarin and has been reported to have pharmacological activities. However, the anti-allergic reaction effect of silibinin has not yet been investigated. This study aimed to evaluate the effect of silibinin to attenuate pseudo-allergic reactions in vivo and to investigate the underlying mechanism in vitro. In this study, calcium imaging was used to assess Ca2+ mobilization. The levels of cytokines and chemokines, released by stimulated mast cells, were measured using enzyme immunoassay kits. The activity of silibinin was evaluated in a mouse model of passive cutaneous anaphylaxis (PCA). Western blotting was used to explore the related molecular signaling pathways. In results, silibinin markedly inhibited mast cell degranulation, calcium mobilization, and preventing the release of cytokines and chemokines in a dose-dependent manner via the PLCγ and PI3K/Akt signaling pathway. Silibinin also attenuated PCA in a dose-dependent manner. In summary, silibinin has an anti-pseudo-allergic pharmacological activity, which makes it a potential candidate for the development of a novel agent to arrest pseudo-allergic reactions.


Assuntos
Anafilaxia , Antialérgicos , Camundongos , Animais , Silibina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Degranulação Celular , Mastócitos , Cálcio/metabolismo , Transdução de Sinais , Anafilaxia/tratamento farmacológico , Citocinas/metabolismo , Quimiocinas/metabolismo , Antialérgicos/farmacologia
19.
Pestic Biochem Physiol ; 197: 105643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072518

RESUMO

In the current study, silibinin-loaded nanostructured lipid carriers (Sili-NLCs) was synthesized, and the hepatoprotective effectiveness of Sili-NLCs against diazinon (DZN)-induced liver damage in male mice was evaluated. The emulsification-solvent evaporation technique was applied to prepare Sili-NLCs, and characterized by using particle size, zeta potential, entrapment efficacy (EE %), in vitro drug release behavior, and stability studies. In vivo, studies were done on male mice. Hepatotoxicity in male mice were induced by DZN (10 mg/kg/day, i.p.). Four groups treated with silibinin and Sili-NLCs with the same doses (100 and 200 mg/kg, p.o.). On 31th days, serum and liver tissue samples were collected. Alanine (ALT) and aspartate (AST) aminotransferase levels, oxidative stress biomarkers, inflammatory cytokines, and histopathological alterations were assessed. The Sili-NLCs particle size, zeta potential, polydispersity index (PDI), and EE % were obtained at 220.8 ± 0.86 nm, -18.7 ± 0.28 mV, 0.118 ± 0.03, and 71.83 ± 0.15%, respectively. The in vivo studies revealed that DZN significantly increased the serum levels of AST, ALT, hepatic levels of lipid peroxidation (LPO), and tumor necrosis factor-α (TNF-α), while decreased the antioxidant defense system in the mice's liver. However, Sili-NLCs was more effective than silibinin to return the aforementioned ratio toward the normal situation, and these results were well correlated with histopathological findings. Improvement of silibinin protective efficacy and oral bioavailability by using NLCs caused to Sili-NLCs can be superior to free silibinin in ameliorating DZN-induced hepatotoxicity in male mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diazinon , Camundongos , Animais , Diazinon/toxicidade , Silibina/farmacologia , Portadores de Fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Lipídeos
20.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762688

RESUMO

Keloid scars are fibro-proliferative conditions characterized by abnormal fibroblast proliferation and excessive extracellular matrix deposition. The mammalian target of the rapamycin (mTOR) pathway has emerged as a potential therapeutic target in keloid disease. Silibinin, a natural flavonoid isolated from the seeds and fruits of the milk thistle, is known to inhibit the mTOR signaling pathway in human cervical and hepatoma cancer cells. However, the mechanisms underlying this inhibitory effect are not fully understood. This in vitro study investigated the effects of silibinin on collagen expression in normal human dermal and keloid-derived fibroblasts. We evaluated the effects of silibinin on the expressions of collagen types I and III and assessed its effects on the suppression of the mTOR signaling pathway. Our findings confirmed elevated mTOR phosphorylation levels in keloid scars compared to normal tissue specimens. Silibinin treatment significantly reduced collagen I and III expressions in normal human dermal and keloid-derived fibroblasts. These effects were accompanied by the suppression of the mTOR signaling pathway. Our findings suggest the potential of silibinin as a promising therapeutic agent for preventing and treating keloid scars. Further studies are warranted to explore the clinical application of silibinin in scar management.


Assuntos
Queloide , Humanos , Animais , Silibina/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR , Colágeno , Colágeno Tipo I/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA