Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.389
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3737-3743, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498412

RESUMO

Employing a plasmonic decoupling mechanism, we report the design of a colorimetric pressure sensor that can respond to applied pressure with instant color changes. The sensor consists of a thin film of stacked uniform resorcinol-formaldehyde nanoshells with their inner surfaces functionalized with silver nanoparticles. Upon compression, the flexible polymer nanoshells expand laterally, inducing plasmonic decoupling between neighboring silver nanoparticles and a subsequent blue-shift. The initial color of the sensor is determined by the extent of plasmonic coupling, which can be controlled by tuning the interparticle distance through a seeded growth process. The sensing range can be conveniently customized by controlling the polymer shell thickness or incorporating hybrid nanoshells into various polymer matrices. The new colorimetric pressure sensors are easy to fabricate and highly versatile, allow for convenient tuning of the sensing range, and feature significant color shifts, holding great promise for a wide range of practical applications.

2.
BMC Biotechnol ; 24(1): 8, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321442

RESUMO

Silver nanoparticles (Ag-NPs) have a unique mode of action as antibacterial agents in addition to their anticancer and antioxidant properties. In this study, microbial nanotechnology is employed to synthesize Ag-NPs using the cell filtrate of Streptomyces enissocaesilis BS1. The synthesized Ag-NPs are confirmed by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Also, the effects of different factors on Ag-NPs synthesis were evaluated to set the optimum synthesis conditions. Also, the antibacterial, antibiofilm, and anticancer activity of Ag-NPs was assessed. The X-ray diffraction (XRD) analysis confirmed the crystalline nature of the sample and validated that the crystal structure under consideration is a face-centered cubic (FCC) pattern. The TEM examination displayed the spherical particles of the Ag-NPs and their average size, which is 32.2 nm. Fourier transform infrared spectroscopy (FTIR) revealed significant changes in functionality after silver nanoparticle dispersion, which could be attributed to the potency of the cell filtrate of Streptomyces enissocaesilis BS1 to act as both a reducing agent and a capping agent. The bioactivity tests showed that our synthesized Ag-NPs exhibited remarkable antibacterial activity against different pathogenic strains. Also, when the preformed biofilms of Pseudomonas aeruginosa ATCC 9027, Salmonella typhi ATCC 12023, Escherichia coli ATCC 8739, and Staphylococcus aureus ATCC 6598 were exposed to Ag NPs 50 mg/ml for 24 hours, the biofilm biomass was reduced by 10.7, 34.6, 34.75, and 39.08%, respectively. Furthermore, the Ag-NPs showed in vitro cancer-specific sensitivity against human breast cancer MCF-7 cell lines and colon cancer cell line Caco-2, and the IC50 was 0.160 mg/mL and 0.156 mg/mL, respectively. The results of this study prove the ease and efficiency of the synthesis of Ag-NPs using actinomycetes and demonstrate the significant potential of these Ag-NPs as anticancer and antibacterial agents.


Assuntos
Nanopartículas Metálicas , Prata , Streptomyces , Humanos , Prata/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células CACO-2 , Antibacterianos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
BMC Plant Biol ; 24(1): 597, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914943

RESUMO

Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Prata/farmacologia , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Clavibacter , Moringa oleifera/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde , Folhas de Planta/microbiologia
4.
BMC Plant Biol ; 24(1): 92, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321391

RESUMO

BACKGROUND: The biochemical and growth changes resulting from exposure of basil (Ocimum basilicum L.) seedlings to silver nanoparticles and silver were investigated. Over a two-week period, seedlings were exposed to different concentrations (0, 40, and 80 ppm) of silver nanoparticles and silver. RESULTS: Our findings revealed that at concentrations of 40 and 80 ppm, both silver nanoparticles and silver nitrate led to decreased weight, root and shoot length, as well as chlorophyll a and b content. Conversely, these treatments triggered an increase in key biochemical properties, such as total phenols, carotenoids and anthocyanins, with silver nanoparticles showing a more pronounced effect compared to silver nitrate. Moreover, the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) rose proportionally with treatment concentration, with the nanoparticle treatment exhibiting a more substantial increase. Silver content showed a significant upswing in both roots and leaves as treatment concentrations increased. CONCLUSIONS: Application of varying concentrations of silver nanoparticles and silver nitrate on basil plants resulted in reduced growth and lower chlorophyll content, while simultaneously boosting the production of antioxidant compounds. Notably, anthocyanin, carotenoid, and total phenol increased significantly. However, despite this increase in antioxidant activity, the plant remained unable to fully mitigate the oxidative stress induced by silver and silver nanoparticles.


Assuntos
Nanopartículas Metálicas , Ocimum basilicum , Clorofila A , Nitrato de Prata/farmacologia , Antocianinas , Peróxido de Hidrogênio/farmacologia , Prata , Antioxidantes/farmacologia , Carotenoides , Folhas de Planta
5.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637784

RESUMO

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Assuntos
Alternaria , Nanopartículas Metálicas , Quercus , Solanum lycopersicum , Prata/química , Nanopartículas Metálicas/química , Antifúngicos , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Difração de Raios X , Antibacterianos
6.
Small ; 20(8): e2307220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828643

RESUMO

Systematic management of infected wounds requires simultaneous antiinfection and wound healing, which has become the current treatment dilemma. Recently, a multifunctional silver nanoclusters (AgNCs)-based hydrogel dressing to meet these demands is developed. Here a diblock DNA with a cytosine-rich fragment (as AgNCs template) and a guanine-rich fragment (to form G-quadruplex/hemin DNAzyme, termed G4/hemin) is designed, for G4/hemin functionalization of AgNCs. Inside bacteria, G4/hemin can not only accelerate the oxidative release of Ag+ from AgNCs but also generate reactive oxygen species (ROS) via catalase- and peroxidase-mimic activities, which enhance the antibacterial effect. On the other hand, the AgNCs exhibit robust anti-inflammatory and antioxidative activities to switch M1 macrophages into M2 phenotype, which promotes wound healing. Moreover, the hemin is released to upregulate the heme oxygenase-1, an intracellular enzyme that can relieve oxidative stress, which significantly alleviates the cytotoxicity of silver. As a result, such silver-based dressing achieves potent therapeutic efficacy on infected wounds with excellent biosafety.


Assuntos
DNA Catalítico , Nanopartículas Metálicas , Prata , Hemina , DNA , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hidrogéis
7.
Small ; : e2404389, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318083

RESUMO

The Stokes-Einstein relationship (SER) is not valid anymore in polymeric solutions for nanoparticles. It is thus important to characterize their diffusion properties to get a finer understanding of their behavior and to better tune their attributes for biomedical applications. The diffusion of gold and silver nanoparticles with citrate, hyaluronic acid, methyl-polyethylene glycol, and antibody-polyethylene glycol coatings is studied in hyaluronic-based viscous solutions. The diffusion coefficient D is estimated from the Brownian motion thanks to a cost-effective side-illumination device. It is determined that the nanoparticles (hydrodynamic radius rh: 30-135 nm) diffuse up to 4-5 times faster than expected using the SER with a macroscopic viscosity from 1 to 30 mPa·s. It is shown that the adapted Huggins equation is a good model to describe the diffusion behavior of nanoparticles using an effective viscosity ηeff given by l n ( η e f f η s ) = k ( R e f f E ) a $ln\ ( {\frac{{{{\eta }_{eff}}}}{{{{\eta }_s}}}} ) = \ k{{( {\ \frac{{{{R}_{eff}}}}{E}} )}^a}$ where R e f f - 2 = r h - 2 + R h - 2 $R_{eff}^{ - 2} = r_h^{ - 2}\ + R_h^{ - 2}$ where E is the polymer correlation length, Rh the polymer hydrodynamic radius and ηs the solvent viscosity. The values of k and a are given and allow to obtain D with an error of 10-20%. The impact of chemical interactions on the model parameter values are also highlighted, especially due to electrostatic interactions between the polymer and the nanoparticles.

8.
Small ; : e2400345, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830337

RESUMO

The development of wearable thermoelectric generators (wTEG) represents a promising strategy to replace batteries and supercapacitors required to supply electrical energy for portable electronic devices. However, the main drawback of wTEGs is that the thermal gradient between the skin and the ambient is minimal, reducing the power output produced by the generator. Therefore, it is necessary to improve the thermal management of wTEG in order to increase its efficiency. This work deals with the preparation of a thermoelectric generator that harnesses the plasmonic heating effect to enhance the thermal gradient of the final device. The thermoelectric layer is created through the in situ polymerization of terthiophene (3T) within a polyurethane matrix, utilizing silver (Ag) (I) and copper (II) perchlorate as oxidants. The plasmonic film, composed of Ag-NP (nanoparticles), is formed via photocatalytic reduction of silver nitrate in the presence of titanium oxide. These layers are then meticulously assembled to yield the hybrid plasmonic/thermoelectric generator.

9.
Small ; : e2405754, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39314048

RESUMO

Lignin nanoparticles (LNPs) loaded with silver nanoparticles have exhibited significant application potential in antibacterial and catalytic fields. However, the high solubility of LNPs in silver ammonia solution makes it difficult to achieve the reduction of Ag+ and the adsorption of silver nanoparticles. In this study, a protecting agent, terephthalic aldehyde (TA) is used to block lignin condensation and introduce aldehyde groups onto the lignin molecular backbone during lignin extraction. Furthermore, the TA stabilized lignin (TASL) is cross-linked with bisphenol A diglycidyl ether (BADGE) to enhance its alkali resistance performance and subsequently prepared into alkali-resistance BADGE- TASL hybrid LNPs (BADGE- TASL hy-LNPs) by anti-solvent precipitation and self-assembly. Because the presence of a large number of aldehyde groups in TASL compensates for the loss of phenolic hydroxyl groups caused by crosslinking reactions, a high loading of silver nanoparticles of 54.00% is obtained after redox reaction and adsorption in silver ammonia solution. When the BADGE-TASL hy-LNPs@Ag is used as an antibacterial agent, its inhibition efficiency reached ≈99%. Besides, the BADGE-TASL hy-LNPs@Ag can serve as a printing material for the preparation of conductive printing ink. Therefore, this study provides a strategy for lignin functionalization and application in printed electronics and antimicrobial fields.

10.
Planta ; 260(1): 7, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789841

RESUMO

MAIN CONCLUSION: The study thoroughly investigates nanosilver production, properties, and interactions, shedding light on its multifaceted applications. It underscores the importance of characterizing nanosilver for predicting its behavior in complex environments. Particularly, it highlights the agricultural and environmental ramifications of nanosilver uptake by plants. Nowadays, silver nanoparticles (AgNPs) are a very adaptable nanomaterial with many uses, particularly in antibacterial treatments and agricultural operations. Clarification of key elements of nanosilver, such as its synthesis and characterization procedures, antibacterial activity, and intricate interactions with plants, particularly those pertaining to uptake and translocation mechanisms, is the aim of this in-depth investigation. Nanosilver synthesis is a multifaceted process that includes a range of methodologies, including chemical, biological, and sustainable approaches that are also environmentally benign. This section provides a critical evaluation of these methods, considering their impacts on repeatability, scalability, and environmental impact. The physicochemical properties of nanosilver were determined by means of characterization procedures. This review highlights the significance of analytical approaches such as spectroscopy, microscopy, and other state-of the-art methods for fully characterizing nanosilver particles. Although grasp of these properties is necessary in order to predict the behavior and potential impacts of nanosilver in complex biological and environmental systems. The second half of this article delves into the intricate interactions that plants have with nanosilver, emphasizing the mechanisms of absorption and translocation. There are significant ramifications for agricultural and environmental problems from the uptake of nanosilver by plants and its subsequent passage through their tissues. In summary, by summarizing the state-of-the-art information in this field, this study offers a comprehensive overview of the production, characterization, antibacterial capabilities, and interactions of nanosilver with plants. This paper contributes to the ongoing conversation in nanotechnology.


Assuntos
Nanopartículas Metálicas , Plantas , Prata , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Plantas/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Transporte Biológico
11.
Microb Pathog ; 192: 106708, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782213

RESUMO

The global rise of antibiotic resistance poses a substantial risk to mankind, underscoring the necessity for alternative antimicrobial options. Developing novel drugs has become challenging in matching the pace at which microbial resistance is evolving. Recently, nanotechnology, coupled with natural compounds, has emerged as a promising solution to combat multidrug-resistant bacteria. In the present study, silver nanoparticles were green-synthesized using aqueous extract of Phoenix dactylifera (variety Ajwa) fruits and characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDX), Transmission electron microscopy (TEM) and Thermogravimetric-differential thermal analysis (TGA-DTA). The in-vitro synergy of green synthesized P. dactylifera silver nanoparticle (PD-AgNPs) with selected antibiotics and bioactive extract of Punica granatum, i.e., ethyl acetate fraction (PGEF), was investigated using checkerboard assays. The most effective synergistic combination was evaluated against the QS-regulated virulence factors production and biofilm of Pseudomonas aeruginosa PAO1 by spectroscopic assays and electron microscopy. In-vivo anti-infective efficacy was examined in Caenorhabditis elegans N2 worms. PD-AgNPs were characterized as spherical in shape with an average diameter of 28.9 nm. FTIR analysis revealed the presence of functional groups responsible for the decrease and stabilization of PD-AgNPs. The signals produced by TGA-DTA analysis indicated the generation of thermally stable and pure crystallite AgNPs. Key phytocompounds detected in bioactive fractions include gulonic acid, dihydrocaffeic acid 3-O-glucuronide, and various fatty acids. The MIC of PD-AgNPs and PGEF ranged from 32 to 128 µg/mL and 250-500 µg/mL, respectively, against test bacterial strains. In-vitro, PD-AgNPs showed additive interaction with selected antibiotics (FICI 0.625-0.75) and synergy with PGEF (FICI 0.25-0.375). This combination inhibited virulence factors by up to 75 % and biofilm formation by 84.87 % in P. aeruginosa PAO1. Infected C. elegans worms with P. aeruginosa PAO1 had a 92.55 % survival rate when treated with PD-AgNPs and PGEF. The combination also reduced the reactive oxygen species (ROS) level in C. elegans N2 compared to the untreated control. Overall, these findings highlight that biosynthesized PD-AgNPs and bioactive P. granatum extract may be used as a potential therapeutic formulation against MDR bacteria.


Assuntos
Antibacterianos , Biofilmes , Sinergismo Farmacológico , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Phoeniceae , Extratos Vegetais , Punica granatum , Pseudomonas aeruginosa , Prata , Prata/farmacologia , Prata/química , Prata/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Phoeniceae/química , Virulência/efeitos dos fármacos , Punica granatum/química , Caenorhabditis elegans/efeitos dos fármacos , Química Verde , Difração de Raios X , Fatores de Virulência/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Frutas/química , Frutas/microbiologia
12.
Microb Pathog ; 192: 106711, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788810

RESUMO

Medicinal plants have been widely used for their antimicrobial properties against various microorganisms. Arisaema dracontium a familiar medicinal plant, was analyzed and silver nanoparticles (AgNPs) were synthesized using extracts of different parts of its shoot including leaves and stem. Further, the antimicrobial activity of different solvent extracts such as ethyl acetate, n-hexane, ethanol, methanol, and chloroform extracts were analyzed. AgNPs were prepared using aqueous silver nitrate solution and assessed their antibacterial activity against multidrug-resistant (MDR) and Non-multidrug-resistant bacteria. The characterization of AgNPs was done by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), UV-visible spectroscopy, Fourier Transform Infrared (FTI), and X-ray Diffraction approaches. The leaf extract contained Tannins, Flavonoids, Terpenoids, and Steroids while Alkaloids, Saponins, and Glycosides were undetected. The stem extract contained Alkaloids, Tannins, Flavonoids, Saponins, Steroids, and Glycosides while Terpenoids were not observed. The AgNPs synthesized from stem and leaf extracts in the current study had spherical shapes and ranged in size from 1 to 50 nm and 20-500 nm respectively as were visible in TEM. The leaf extract-prepared AgNPs showed significantly higher activities i.e., 27.75 mm ± 0.86 against the MDR strains as compared to the stem-derived nanoparticles i.e., 24.33 ± 0.33 by comparing the zones of inhibitions which can be attributed to the differences in their phytochemical constituents. The acute toxicity assay confirmed that no mortality was noticed when the dosage was 100 mg per kg which confirms that the confirms that the AgNPs are not toxic when used in low quantities. It is concluded that leaf extract from A. dracontium could be used against pathogenic bacteria offering economic and health benefits compared to the chemical substances.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Prata , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Folhas de Planta/química , Bactérias/efeitos dos fármacos , Difração de Raios X , Compostos Fitoquímicos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Plantas Medicinais/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Caules de Planta/química
13.
Microb Pathog ; 194: 106833, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096943

RESUMO

Bacterial biofilms pose a significant threat to healthcare due to their recalcitrance to antibiotics and disinfectants. This study explores the anti-biofilm potential of Bacillus licheniformis cell-free culture supernatant (CFS) and its derived silver nanoparticles (bSNPs) against Staphylococcus aureus and Pseudomonas aeruginosa. The CFS exhibited potent anti-biofilm activity against both bacterial species, even at low concentrations, while devoid of significant bactericidal effects, mitigating resistance risks. Characterization studies revealed the non-proteinaceous nature and thermal stability of the CFS's anti-biofilm agent, suggesting a robust and heat-resistant structure. Green synthesis of bSNPs from CFS resulted in nanoparticles with significant anti-biofilm properties, particularly against P. aeruginosa, indicating differences in susceptibility between the bacterial species. Epifluorescence microscopy confirmed bSNPs' ability to inhibit and partially disrupt biofilm formation without inducing cellular lysis. The study highlights the potential of B. licheniformis CFS and bSNPs as promising biofilm control agents, offering insights into their mechanisms of action and broad-spectrum efficacy. Further research elucidating the underlying molecular mechanisms and identifying specific bioactive compounds is warranted for the translation of these findings into clinically relevant applications for combating biofilm-associated infections.


Assuntos
Antibacterianos , Bacillus licheniformis , Biofilmes , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Prata , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Bacillus licheniformis/metabolismo , Bacillus licheniformis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química
14.
Microb Pathog ; 195: 106883, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182856

RESUMO

Therapeutic management of mastitis faces significant challenges due to multidrug resistance. In the present study, multi-drug-resistant (MDR) Staphylococcus spp, Klebsiella pneumoniae, and Escherichia coli were isolated from bovine clinical mastitis cases and the phenotypic and genotypic multidrug resistance profiling was carried out. Silver nanoparticles (AgNPs) were biosynthesized using Ocimum sanctum leaf extracts and characterized via UV Vis absorption, Fourier Transform Infrared Spectroscopy, X-ray diffraction studies, Energy dispersive spectroscopy and Electron Microscopy. The determined minimum inhibitory concentration and minimum bactericidal concentration of the AgNPs against the recovered MDR isolates were 62.5 µg/ml and 125 µg/ml respectively. At a concentration of 50 µg/ml, the AgNPs demonstrated biofilm inhibitory activities of 80.35 % for MDR E. coli, 71.29 % for S. aureus and 60.18 % for MDR K. pneumoniae. Post-treatment observations revealed notable differences in biofilm formation across bacterial isolates. Furthermore, AgNP treatment led to significant downregulation of expression of the efflux pump genes acrB, acrE, acrF, and emrB in Gram-negative isolates and norB in Staphylococci isolates. This research underscores the potential for the development of an eco-friendly antimicrobial alternative in the form of green synthesized silver nanoparticles to combat drug resistance offering potential antibiofilm and efflux pump inhibitory activities.


Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Mastite Bovina , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Ocimum sanctum , Extratos Vegetais , Prata , Animais , Biofilmes/efeitos dos fármacos , Bovinos , Prata/farmacologia , Prata/química , Prata/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ocimum sanctum/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Folhas de Planta/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Química Verde , Staphylococcus/efeitos dos fármacos
15.
Microb Pathog ; 193: 106742, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879139

RESUMO

Nano-biotechnology is quickly developing as an important field of modern research, generating the most promising applications in medicine and agriculture. Biosynthesis of silver nanoparticles using biogenic or green approach provide ecofriendly, clean and effective way out for the synthesis of nanoparticles. The main aim of the study was to synthesize silver nanoparticles (AgNPs) from Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum using a green approach and to test the antifungal activity of these synthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (Fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). The investigation confirmed the creation of AgNPs by the fungi Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum, as evidenced by prominent plasmon absorbance bands at 420 and 450 nm.The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Agar well diffusion method was performed to evaluate the antifungal activity of AgNPs against various plant pathogenic fungi. An efficient and strong antifungal activity was shown by these biosynthesized nanoparticles against serious plant pathogenic fungi, viz. Aspergillus terreus, Fusarium oxysporum, Penicillium citrinum, Rhizopus stolonifer and Mucor mucedo. The biosynthesized AgNPs at various concentrations caused significant zone of inhibition in the test fungal pathogens. Silver nanoparticles (AgNPs) biosynthesized from Aspergillus niger at highest concentrations showed maximum zone of inhibition against Penicillium citrinum (19.33 ± 0.57 mm) followed by Rhizopus stolonifer (17.66 ± 0.57), Aspergillus terreus (16.33 ± 1.54 mm), Fusarium oxysporum (14.00 ± 1.00 mm) and Mucor mucedo (13.33 ± 1.15 mm) respectively. Therefore, the findings clearly indicate that silver nanoparticles could play a significant role in managing diverse plant diseases caused by fungi.


Assuntos
Antifúngicos , Aspergillus flavus , Aspergillus niger , Fusarium , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Prata/farmacologia , Prata/química , Prata/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Nanopartículas Metálicas/química , Fusarium/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Aspergillus niger/efeitos dos fármacos , Aspergillus/efeitos dos fármacos , Aspergillus/metabolismo , Fungos/efeitos dos fármacos , Difração de Raios X , Microscopia Eletrônica de Varredura , Química Verde , Doenças das Plantas/microbiologia
16.
Microb Pathog ; 193: 106725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848933

RESUMO

Fish-borne pathogens such as A. hydrophila and F. aquidurense are the most resistant strains in pisciculture farming. Removing the aforementioned pathogens without antibiotics presents a formidable challenge. To overcome this problem, silver nanoparticles (AgNPs) are synthesized using silver nitrate, water medium, and as an AzadirachtaIndica leaf extract via the green synthesis route. X-ray diffraction (XRD) pattern results authenticate the synthesized material is the face-centered cubic structure of silver. The optical absorption edge of the synthesized product was found at the wavelength of 440 nm from the UV-visible spectra, which is confirmed to relate to the Surface Plasmon Resonance peaks of silver particles. In addition, the optical band gap value of the synthesized Ag sample is measured to be 2.81 eV from the obtained optical absorption spectra. EDX spectrum of the synthesized product also supports confirming the silver particle formation. The FT-IR spectra of the neem extract and silver nanoparticles showed their characteristic functional groups, respectively. The presence of bands between 1000 cm-1 to 500 cm-1 indicates to the formation of silver particles. Spherical particles appeared in the synthesized Ag using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The particle size of Ag NPs was measured as 40 nm and 62 ± 10 nm by TEM and Dynamic Light Scattering (DLS). The zeta potential was also measured as -12 mV showing the synthesized sample's stable nature. Using the DPPH assay, synthesized AgNPs were taken along with the various concentrations of ascorbic acid (20, 40, 60, 80, and 100 µg/mL) to examine the free radical scavenging activity (RSA). RSA value is higher (84 ± 2 %) for synthesized AgNPs at higher concentration (100 µg/mL) than 21 ± 2 % at low concentration (100 µg/mL). The antimicrobial efficacy of the AgNPs against A. hydrophila and F. aquidurense was performed through the agar diffusion method and its results showed the inhibitory zones of the F.aquidurense and A. hydrophila were measured as 25 ± 3 mm, and 28 ± 4 mm respectively. The synthesized Ag particles showed excellent antimicrobial and antioxidant properties confirmed by antimicrobial and DPPH experiments. It implies that the green synthesized silver nanoparticles could be a good alternative for antibiotics in aquaculture farms. The exposure of low concentrations of silver nanoparticles to zebrafish and brine shrimp does not affect the viability and morphology. The exposure of silver nanoparticles in the fisheries in optimized concentration and time could control the fish-borne pathogens without antibiotics.


Assuntos
Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Prata , Difração de Raios X , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Folhas de Planta/química , Azadirachta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/farmacologia , Antioxidantes/química , Aeromonas hydrophila/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Microscopia Eletrônica de Varredura , Peixes , Nitrato de Prata/farmacologia , Nitrato de Prata/química , Compostos de Bifenilo , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Picratos
17.
J Biol Inorg Chem ; 29(3): 353-373, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38744691

RESUMO

Investigating the application of innovative antimicrobial surface coatings on medical devices is an important field of research. Many of these coatings have significant drawbacks, including biocompatibility, coating stability and the inability to effectively combat multiple drug-resistant bacteria. In this research, we developed an antibiofilm surface coating for medical catheters using biosynthesized silver nanoparticles (b-Cs-AgNPs) developed using leaves extract of Calliandra surinamensis. Various characterization techniques were employed to thoroughly characterize the synthesized b-Cs-AgNPs and c-AgNPs. b-Cs-AgNPs were compatible with human normal kidney cells and chicken embryos. It did not trigger any skin inflammatory response in in vivo rat model. b-Cs-AgNPs demonstrated potent zone of inhibition of 19.09 mm when subjected to the disc diffusion method in E. coli confirming strong antibacterial property. Different anti-bacterial assays including liquid growth curve, colony counting assay, biofilm formation assay supported the potent antimicrobial efficacy of b-Cs-AgNPs alone and when coated to medical grade catheters. Mechanistic studies reveal the presence of ferulic acid, that was important for the synthesis of b-AgNPs along with enhanced antibacterial effects of b-Cs-AgNPs compared to c-AgNPs, supported by molecular docking analysis. These results together demonstrated the effective role b-Cs-AgNPs in combating infections and mitigating biofilm formations, highlighting their need for further study in the field of biomedical applications.


Assuntos
Antibacterianos , Biofilmes , Catéteres , Nanopartículas Metálicas , Prata , Animais , Biofilmes/efeitos dos fármacos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catéteres/microbiologia , Galinhas , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Testes de Sensibilidade Microbiana , Humanos , Embrião de Galinha , Ratos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/microbiologia
18.
Biomed Microdevices ; 26(2): 21, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558326

RESUMO

Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Dengue , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Ouro/química , Prata/química , Técnicas Biossensoriais/métodos , Eletrodos , Dengue/diagnóstico , Limite de Detecção
19.
Pharm Res ; 41(1): 93-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985572

RESUMO

OBJECTIVE: To prepare polylactic acid microneedles (PLAMNs) with sustained antibacterial effect to avoid skin infection caused by traditional MNs-based biosensors. METHODS: Silver nanoparticles (AgNPs) were synthesized using an in-situ reduction process with polydopamine (PDA). PLAMNs were fabricated using the hot-melt method. A series of pressure tests and puncture experiments were conducted to confirm the physicochemical properties of PLAMNs. Then AgNPs were modified on the surface of PLAMNs through in-situ reduction of PDA, resulting in the formation of PLAMNs@PDA-AgNPs. The in vitro antibacterial efficacy of PLAMNs@PDA-AgNPs was evaluated using agar diffusion assays and bacterial liquid co-culture approach. Wound healing and simulated long-term application were performed to assess the in vivo antibacterial effectiveness of PLAMNs@PDA-AgNPs. RESULTS: The MNs array comprised 169 tiny needle tips in pyramidal rows. Strength and puncture tests confirmed a 100% puncture success rate for PLAMNs on isolated rat skin and tin foil. SEM analysis revealed the integrity of PLAMNs@PDA-AgNPs with the formation of new surface substances. EDS analysis indicated the presence of silver elements on the surface of PLAMNs@PDA-AgNPs, with a content of 14.44%. Transepidermal water loss (TEWL) testing demonstrated the rapid healing of micro-pores created by PLAMNs@PDA-AgNPs, indicating their safety. Both in vitro and in vivo tests confirmed antibacterial efficacy of PLAMNs@PDA-AgNPs. CONCLUSIONS: In conclusion, the sustained antibacterial activity exhibited by PLAMNs@PDA-AgNPs offers a promising solution for addressing skin infections associated with MN applications, especially when compared to traditional MN-based biosensors. This advancement offers significant potential for the field of MN technology.


Assuntos
Nanopartículas Metálicas , Poliésteres , Prata , Ratos , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
20.
Cell Biol Int ; 48(5): 712-725, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499507

RESUMO

The involvement of the TRP vanilloid 1 (TRPV1) cation channel on the 5-Fluorouracil (5-FU)-caused Ca2+ signals through the activation of the apoptotic signaling pathway and stimulating the mitochondrial Ca2+ and Zn2+ accumulation-induced reactive oxygen species (ROS) productions in several cancer cells, except the colorectal cancer (HT-29) cell line, was recently reported. I aimed to investigate the action of silver nanoparticles (SiNPs) and 5-FU incubations through the activation of TRPV1 on ROS, apoptosis, and cell death in the HT-29 cell line. The cells were divided into four groups: control, SiNP (100 µM for 48 h), 5-FU (25 µM for 24 h), and 5-FU + SiNP. SiNP treatment through TRPV1 activation (via capsaicin) stimulated the oxidant and apoptotic actions of 5-FU in the cells, whereas they were diminished in the cells by the TRPV1 antagonist (capsazepine) treatment. The apoptotic and cell death actions of 5-FU were determined by increasing the propidium iodide/Hoechst rate, caspase-3, -8, and -9 activations, mitochondrial membrane depolarization, lipid peroxidation, and ROS, but decreasing the glutathione and glutathione peroxidase. The increase of cytosolic free Ca2+ and Zn2+ into mitochondria via the stimulation of TRPV1 current density increased oxidant and apoptotic properties of 5-FU in the cells. For the therapy of HT-29 tumor cells, I found that the combination of SiNPs and 5-FU was synergistic via TRPV1 activation.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas Metálicas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fluoruracila/farmacologia , Estresse Oxidativo , Prata/farmacologia , Sinalização do Cálcio , Regulação para Cima , Antineoplásicos/farmacologia , Apoptose , Oxidantes/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Cálcio/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA