Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 188: 108744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761429

RESUMO

Microplastic (MP) pollution has become a global environmental issue, and increasing concern has been raised about its impact on human health. Current studies on the toxic effects and mechanisms of MPs have mostly been conducted in animal models or in vitro cell cultures, which have limitations regarding inter-species differences or stimulation of cellular functions. Organoid technology derived from human pluripotent or adult stem cells has broader prospects for predicting the potential health risks of MPs to humans. Herein, we reviewed the current application advancements and opportunities for different organoids, including brain, retinal, intestinal, liver, and lung organoids, to assess the human health risks of MPs. Organoid techniques accurately simulate the complex processes of MPs and reflect phenotypes related to diseases caused by MPs such as liver fibrosis, neurodegeneration, impaired intestinal barrier and cardiac hypertrophy. Future perspectives were also proposed for technological innovation in human risk assessment of MPs using organoids, including extending the lifespan of organoids to assess the chronic toxicity of MPs, and reconstructing multi-organ interactions to explore their potential in studying the microbiome-gut-brainaxis effect of MPs.


Assuntos
Microplásticos , Organoides , Humanos , Medição de Risco , Microplásticos/toxicidade , Animais
2.
Beilstein J Nanotechnol ; 10: 2374-2382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886114

RESUMO

The recent years have witnessed a fast-paced development of perovskite solar cells (PSCs). Unfortunately, the vast majority of PSCs relies on the use of highly polar aprotic solvents during the preparation process, such as dimethylformamide (DMF), which is toxic and detrimental to both humans and the environment. Here, we describe the preparation of PSCs under ambient conditions from an aqueous solution of lead nitrate, to which polyvinylpyrrolidone (PVP) was added in order to enhance the photoelectric performance of the PSCs. By a combination of SEM, EIS, PL and UV spectroscopy and other characterization approaches, we show that the PVP additive is effective in inhibiting carrier recombination, enhancing composite resistance and reducing film defects. Ultimately, we achieved an outstanding photoelectric performance of the PVP-doped PSCs shown by a power conversion efficiency (PCE) of 15.19% and an average steady-state PCE of 14.55% under AM 1.5G simulated solar irradiation with a shadow mask of 0.1 cm2. The PCE continued to be over 80% of the initial PCE after 60 days of storage. FInally, the introduced PVP-doped PSCs present a low-cost and low-toxicity way to commercialize perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA