Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 796
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(36): e2300305120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639609

RESUMO

The vanilloid receptor TRPV1 is an exquisite nociceptive sensor of noxious heat, but its temperature-sensing mechanism is yet to define. Thermodynamics dictate that this channel must undergo an unusually energetic allosteric transition. Thus, it is of fundamental importance to measure directly the energetics of this transition in order to properly decipher its temperature-sensing mechanism. Previously, using submillisecond temperature jumps and patch-clamp recording, we estimated that the heat activation for TRPV1 opening incurs an enthalpy change on the order of 100 kcal/mol. Although this energy is on a scale unparalleled by other known biological receptors, the generally imperfect allosteric coupling in proteins implies that the actual amount of heat uptake driving the TRPV1 transition could be much larger. In this paper, we apply differential scanning calorimetry to directly monitor the heat flow in TRPV1 that accompanies its temperature-induced conformational transition. Our measurements show that heat invokes robust, complex thermal transitions in TRPV1 that include both channel opening and a partial protein unfolding transition and that these two processes are inherently coupled. Our findings support that irreversible protein unfolding, which is generally thought to be destructive to physiological function, is essential to TRPV1 thermal transduction and, possibly, to other strongly temperature-dependent processes in biology.


Assuntos
Temperatura Alta , Transporte Biológico , Temperatura , Termodinâmica , Canais de Cátion TRPV
2.
Proc Natl Acad Sci U S A ; 120(22): e2302509120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216549

RESUMO

Upon its mucosal transmission, HIV type 1 (HIV-1) rapidly targets genital antigen-presenting Langerhans cells (LCs), which subsequently transfer infectious virus to CD4+ T cells. We previously described an inhibitory neuroimmune cross talk, whereby calcitonin gene-related peptide (CGRP), a neuropeptide secreted by peripheral pain-sensing nociceptor neurons innervating all mucosal epithelia and associating with LCs, strongly inhibits HIV-1 transfer. As nociceptors secret CGRP following the activation of their Ca2+ ion channel transient receptor potential vanilloid 1 (TRPV1), and as we reported that LCs secret low levels of CGRP, we investigated whether LCs express functional TRPV1. We found that human LCs expressed mRNA and protein of TRPV1, which was functional and induced Ca2+ influx following activation with TRPV1 agonists, including capsaicin (CP). The treatment of LCs with TRPV1 agonists also increased CGRP secretion, reaching its anti-HIV-1 inhibitory concentrations. Accordingly, CP pretreatment significantly inhibited LCs-mediated HIV-1 transfer to CD4+ T cells, which was abrogated by both TRPV1 and CGRP receptor antagonists. Like CGRP, CP-induced inhibition of HIV-1 transfer was mediated via increased CCL3 secretion and HIV-1 degradation. CP also inhibited direct CD4+ T cells HIV-1 infection, but in CGRP-independent manners. Finally, pretreatment of inner foreskin tissue explants with CP markedly increased CGRP and CCL3 secretion, and upon subsequent polarized exposure to HIV-1, inhibited an increase in LC-T cell conjugate formation and consequently T cell infection. Our results reveal that TRPV1 activation in human LCs and CD4+ T cells inhibits mucosal HIV-1 infection, via CGRP-dependent/independent mechanisms. Formulations containing TRPV1 agonists, already approved for pain relief, could hence be useful against HIV-1.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Infecções por HIV , Humanos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Linfócitos T/metabolismo , Células de Langerhans/metabolismo , Mucosa/metabolismo , Capsaicina/farmacologia , Dor/metabolismo , Infecções por HIV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
3.
Am J Physiol Cell Physiol ; 326(2): C317-C330, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38073487

RESUMO

Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used 45Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum. Under apical glucose-free conditions, SCFAs (e.g., butyrate) stimulated the cecal calcium fluxes by approximately twofold, while having no effect on proximal colon. Since SCFAs could be absorbed into the circulation, we further determined whether basolateral SCFA exposure rendered some positive actions. It was found that exposure of duodenum and cecum on the basolateral side to acetate or butyrate increased calcium fluxes. Under butyrate-rich conditions, cecal calcium transport was partially diminished by Na+/H+ exchanger 3 (NHE3) inhibitor (tenapanor) and nonselective transient receptor potential vanilloid subfamily 6 (TRPV6) inhibitor (miconazole). To confirm the contribution of TRPV6 to SCFA-stimulated calcium transport, we synthesized another TRPV6 inhibitor that was demonstrated by in silico molecular docking and molecular dynamics to occlude TRPV6 pore and diminish the glucose- and butyrate-induced calcium fluxes. Therefore, besides corroborating the importance of luminal molecules in calcium absorption, our findings provided foundation for development of more effective calcium-rich nutraceuticals in combination with various absorptive enhancers, e.g., glucose and SCFAs.NEW & NOTEWORTHY Organic molecules in the intestinal lumen, e.g., glucose and short-chain fatty acids (SCFAs), the latter of which are normally produced by microfloral fermentation, can stimulate calcium absorption dependent on transient receptor potential vanilloid subfamily 6 (TRPV6) and Na+/H+ exchanger 3 (NHE3). A selective TRPV6 inhibitor synthesized and demonstrated by in silico docking and molecular dynamics to specifically bind to the pore domain of TRPV6 was used to confirm a significant contribution of this channel. Our findings corroborate physiological significance of nutrients and SCFAs in enhancing calcium absorption.


Assuntos
Cálcio , Ácidos Graxos Voláteis , Ratos , Animais , Trocador 3 de Sódio-Hidrogênio/metabolismo , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia , Proteínas de Transporte/metabolismo , Duodeno/metabolismo , Glucose/metabolismo , Absorção Intestinal
4.
Infect Immun ; : e0014624, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109830

RESUMO

Transmission is the first step for a microorganism to establish colonization in the respiratory tract and subsequent development of infectious disease. Streptococcus pneumoniae is a leading pathogen that colonizes the mucosal surfaces of the human upper respiratory tract and causes subsequent transmission and invasive infections especially in co-infection with influenza A virus. Host factors contributing to respiratory contagion are poorly understood. Transient receptor potential vanilloid (TRPV) channels have various roles in response to microoorganism. Inhibition of TRPV exacerbates invasive infection by Streptococcus pneumoniae, but it is unclear how TRPV channels influence pneumococcal transmission. Here, we describe the effect of inhibition of TRPV1 on pneumococcal transmission. We adopted a TRPV1-deficient infant mouse model of pneumococcal transmission during co-infection with influenza A virus. We also analyzed the expression of nasal mucin or pro-inflammatory cytokines. TRPV1 deficiency attenuated pneumococcal transmission and shedding during co-infection with influenza A virus. TRPV1 deficiency suppressed the expression of nasal mucin. In addition, there were increases in the expression of tumor necrosis factor-α and type I interferon, followed by the suppressed replication of influenza A virus in TRPV1-deficient mice. Inhibition of TRPV1 was shown to attenuate pneumococcal transmission by reducing shedding through the suppression of nasal mucin during co-infection with influenza A virus. Inhibition of TRPV1 suppressed nasal mucin by modulation of pro-inflammatory responses and regulation of replication of influenza A virus. TRPV1 could be a new target in preventive strategy against pneumococcal transmission.

5.
Glia ; 72(5): 938-959, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38362923

RESUMO

In the adult brain, the water channel aquaporin-4 (AQP4) is expressed in astrocyte endfoot, in supramolecular assemblies, called "Orthogonal Arrays of Particles" (OAPs) together with the transient receptor potential vanilloid 4 (TRPV4), finely regulating the cell volume. The present study aimed at investigating the contribution of AQP4 and TRPV4 to CNS early postnatal development using WT and AQP4 KO brain and retina and neuronal stem cells (NSCs), as an in vitro model of astrocyte differentiation. Western blot analysis showed that, differently from AQP4 and the glial cell markers, TRPV4 was downregulated during CNS development and NSC differentiation. Blue native/SDS-PAGE revealed that AQP4 progressively organized into OAPs throughout the entire differentiation process. Fluorescence quenching assay indicated that the speed of cell volume changes was time-related to NSC differentiation and functional to their migratory ability. Calcium imaging showed that the amplitude of TRPV4 Ca2+ transient is lower, and the dynamics are changed during differentiation and suppressed in AQP4 KO NSCs. Overall, these findings suggest that early postnatal neurodevelopment is subjected to temporally modulated water and Ca2+ dynamics likely to be those sustaining the biochemical and physiological mechanisms responsible for astrocyte differentiation during brain and retinal development.


Assuntos
Astrócitos , Canais de Cátion TRPV , Astrócitos/metabolismo , Canais de Cátion TRPV/metabolismo , Aquaporina 4/metabolismo , Neuroglia/metabolismo , Encéfalo/metabolismo
6.
Mol Pain ; 20: 17448069241258106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752471

RESUMO

Transient Receptor Potential Vanilloid 1 (TRPV1) is a nonselective cation channel expressed by pain-sensing neurons and has been an attractive target for the development of drugs to treat pain. Recently, Src homology region two domain-containing phosphatase-1 (SHP-1, encoded by Ptpn6) was shown to dephosphorylate TRPV1 in dorsal root ganglia (DRG) neurons, which was linked with alleviating different pain phenotypes. These previous studies were performed in male rodents only and did not directly investigate the role of SHP-1 in TRPV-1 mediated sensitization. Therefore, our goal was to determine the impact of Ptpn6 overexpression on TRPV1-mediated neuronal responses and capsaicin-induced pain behavior in mice of both sexes. Twelve-week-old male and female mice overexpressing Ptpn6 (Shp1-Tg) and their wild type (WT) littermates were used. Ptpn6 overexpression was confirmed in the DRG of Shp1-Tg mice by RNA in situ hybridization and RT-qPCR. Trpv1 and Ptpn6 were found to be co-expressed in DRG sensory neurons in both genotypes. Functionally, this overexpression resulted in lower magnitude intracellular calcium responses to 200 nM capsaicin stimulation in DRG cultures from Shp1-Tg mice compared to WTs. In vivo, we tested the effects of Ptpn6 overexpression on capsaicin-induced pain through a model of capsaicin footpad injection. While capsaicin injection evoked nocifensive behavior (paw licking) and paw swelling in both genotypes and sexes, only WT mice developed mechanical allodynia after capsaicin injection. We observed similar level of TRPV1 protein expression in the DRG of both genotypes, however, a higher amount of tyrosine phosphorylated TRPV1 was detected in WT DRG. These experiments suggest that, while SHP-1 does not mediate the acute swelling and nocifensive behavior induced by capsaicin, it does mediate a protective effect against capsaicin-induced mechanical allodynia in both sexes. The protective effect of SHP-1 might be mediated by TRPV1 dephosphorylation in capsaicin-sensitive sensory neurons of the DRG.


Assuntos
Capsaicina , Gânglios Espinais , Hiperalgesia , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Canais de Cátion TRPV , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Capsaicina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Feminino , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Transgênicos , Cálcio/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos
7.
Mol Pain ; 20: 17448069241233744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323375

RESUMO

Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite of glucose primarily formed during the glycolytic pathway, is a precursor of advanced glycation end-products (AGEs). Recently, numerous studies have shown that MGO accumulation can cause pain and hyperalgesia. However, the mechanism through which MGO induces pain in the spinal dorsal horn remains unclear. The present study investigated the effect of MGO on spontaneous excitatory postsynaptic currents (sEPSC) in rat spinal dorsal horn neurons using blind whole-cell patch-clamp recording. Perfusion of MGO increased the frequency and amplitude of sEPSC in spinal horn neurons in a concentration-dependent manner. Additionally, MGO administration increased the number of miniature EPSC (mEPSC) in the presence of tetrodotoxin, a sodium channel blocker. However, 6-cyano-7-nitroqiunocaline-2,3-dione (CNQX), an AMPA/kainate receptor antagonist, blocked the enhancement of sEPSC by MGO. HC-030031, a TRP ankyrin-1 (TRPA1) antagonist, and capsazepine, a TRP vanilloid-1 (TRPV1) antagonist, inhibited the action of MGO. Notably, the effects of MGO were completely inhibited by HC-030031 and capsazepine. MGO generates reactive oxygen species (ROS) via AGEs. ROS also potentially induce pain via TRPA1 and TRPV1 in the spinal dorsal horn. Furthermore, we examined the effect of MGO in the presence of N-tert-butyl-α-phenylnitrone (PBN), a non-selective ROS scavenger, and found that the effect of MGO was completely inhibited. These results suggest that MGO increases spontaneous glutamate release from the presynaptic terminal to spinal dorsal horn neurons through TRPA1, TRPV1, and ROS and could enhance excitatory synaptic transmission.


Assuntos
Acetanilidas , Capsaicina/análogos & derivados , Óxido de Magnésio , Purinas , Aldeído Pirúvico , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Ratos Sprague-Dawley , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Corno Dorsal da Medula Espinal/metabolismo , Células do Corno Posterior/metabolismo , Dor/metabolismo , Transmissão Sináptica/fisiologia
8.
Mol Pain ; 20: 17448069231225810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148592

RESUMO

The number of patients with neuropathic pain is increasing in recent years, but drug treatments for neuropathic pain have a low success rate and often come with significant side effects. Consequently, the development of innovative therapeutic strategies has become an urgent necessity. Kilohertz High Frequency Electrical Stimulation (KHES) offers pain relief without inducing paresthesia. However, the specific therapeutic effects of KHES on neuropathic pain and its underlying mechanisms remain ambiguous, warranting further investigation. In our previous study, we utilized the Gene Expression Omnibus (GEO) database to identify datasets related to neuropathic pain mice. The majority of the identified pathways were found to be associated with inflammatory responses. From these pathways, we selected the transient receptor potential vanilloid-1 (TRPV1) and N-methyl-D-aspartate receptor-2B (NMDAR2B) pathway for further exploration. Mice were randomly divided into four groups: a Sham group, a Sham/KHES group, a chronic constriction injury of the sciatic nerve (CCI) group, and a CCI/KHES stimulation group. KHES administered 30 min every day for 1 week. We evaluated the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL). The expression of TRPV1 and NMDAR2B in the spinal cord were analyzed using quantitative reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence assay. KHES significantly alleviated the mechanical and thermal allodynia in neuropathic pain mice. KHES effectively suppressed the expression of TRPV1 and NMDAR2B, consequently inhibiting the activation of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA1) in the spinal cord. The administration of the TRPV1 pathway activator partially reversed the antinociceptive effects of KHES, while the TRPV1 pathway inhibitor achieved analgesic effects similar to KHES. KHES inhibited the activation of spinal dorsal horn glial cells, especially astrocytes and microglia, by inhibiting the activation of the TRPV1/NMDAR2B signaling pathway, ultimately alleviating neuropathic pain.


Assuntos
Antineoplásicos , Neuralgia , Animais , Camundongos , Antineoplásicos/uso terapêutico , Constrição , Estimulação Elétrica , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Nervo Isquiático/lesões , Transdução de Sinais , Medula Espinal/metabolismo
9.
Biochem Biophys Res Commun ; 723: 150187, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850809

RESUMO

This study investigated the effects of far-infrared (FIR) irradiation on low-density lipoprotein cholesterol (LDL-C) uptake by human hepatocellular carcinoma G2 (HepG2) cells via the regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). FIR irradiation for 30 min significantly decreased PCSK9 expression (p < 0.01) in HepG2 cells. FIR irradiation substantially increased the low-density lipoprotein receptor (p < 0.0001) and LDL-C uptake (p < 0.01). Activation of transient receptor potential vanilloid (TRPV) channels mimicked the effects of FIR irradiation, significantly decreasing the protein expression of PCSK9 (p < 0.05). Conversely, inhibition of TRP channels using ruthenium red reversed the reduction in PCSK9 protein expression following FIR irradiation (p < 0.01). The specific activation of TRPV4 using 4α-PDD mimicked the effect of FIR irradiation (p < 0.01), whereas PCSK9 reduction by FIR irradiation was significantly reversed by the inhibition of TRPV4 using RN1734 (p < 0.05). These findings implied that FIR irradiation emitted from a ceramic lamp specifically increased TRPV4 activity. These findings provide insights into a novel therapeutic approach using FIR irradiation for LDL-C regulation and its implications for cardiovascular health.


Assuntos
LDL-Colesterol , Regulação para Baixo , Raios Infravermelhos , Pró-Proteína Convertase 9 , Canais de Cátion TRPV , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Células Hep G2 , Canais de Cátion TRPV/metabolismo , LDL-Colesterol/metabolismo , Regulação para Baixo/efeitos da radiação
10.
J Neuroinflammation ; 21(1): 218, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227967

RESUMO

Alzheimer's disease (AD) is the leading form of dementia, characterized by the accumulation and aggregation of amyloid in brain. Transient receptor potential vanilloid 2 (TRPV2) is an ion channel involved in diverse physiopathological processes, including microglial phagocytosis. Previous studies suggested that cannabidiol (CBD), an activator of TRPV2, improves microglial amyloid-ß (Aß) phagocytosis by TRPV2 modulation. However, the molecular mechanism of TRPV2 in microglial Aß phagocytosis remains unknown. In this study, we aimed to investigate the involvement of TRPV2 channel in microglial Aß phagocytosis and the underlying mechanisms. Utilizing human datasets, mouse primary neuron and microglia cultures, and AD model mice, to evaluate TRPV2 expression and microglial Aß phagocytosis in both in vivo and in vitro. TRPV2 was expressed in cortex, hippocampus, and microglia.Cannabidiol (CBD) could activate and sensitize TRPV2 channel. Short-term CBD (1 week) injection intraperitoneally (i.p.) reduced the expression of neuroinflammation and microglial phagocytic receptors, but long-term CBD (3 week) administration (i.p.) induced neuroinflammation and suppressed the expression of microglial phagocytic receptors in APP/PS1 mice. Furthermore, the hyper-sensitivity of TRPV2 channel was mediated by tyrosine phosphorylation at the molecular sites Tyr(338), Tyr(466), and Tyr(520) by protein tyrosine kinase JAK1, and these sites mutation reduced the microglial Aß phagocytosis partially dependence on its localization. While TRPV2 was palmitoylated at Cys 277 site and blocking TRPV2 palmitoylation improved microglial Aß phagocytosis. Moreover, it was demonstrated that TRPV2 palmitoylation was dynamically regulated by ZDHHC21. Overall, our findings elucidated the intricate interplay between TRPV2 channel regulated by tyrosine phosphorylation/dephosphorylation and cysteine palmitoylation/depalmitoylation, which had divergent effects on microglial Aß phagocytosis. These findings provide valuable insights into the underlying mechanisms linking microglial phagocytosis and TRPV2 sensitivity, and offer potential therapeutic strategies for managing AD.


Assuntos
Peptídeos beta-Amiloides , Lipoilação , Camundongos Transgênicos , Microglia , Fagocitose , Canais de Cátion TRPV , Tirosina , Animais , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fagocitose/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Tirosina/metabolismo , Lipoilação/efeitos dos fármacos , Células Cultivadas , Doença de Alzheimer/metabolismo , Canabidiol/farmacologia , Camundongos Endogâmicos C57BL , Canais de Cálcio
11.
Basic Res Cardiol ; 119(2): 329-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38236300

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid that plays a crucial role in cardiovascular diseases. Here, we question whether LPA contributes to myocardial ischemia/reperfusion (I/R) injury by acting on transient receptor potential vanilloid 1 (TRPV1) in spinal cord. By ligating the left coronary artery to establish an in vivo I/R mouse model, we observed a 1.57-fold increase in LPA level in the cerebrospinal fluid (CSF). The I/R-elevated CSF LPA levels were reduced by HA130, an LPA synthesis inhibitor, compared to vehicle treatment (4.74 ± 0.34 vs. 6.46 ± 0.94 µg/mL, p = 0.0014). Myocardial infarct size was reduced by HA130 treatment compared to the vehicle group (26 ± 8% vs. 46 ± 8%, p = 0.0001). To block the interaction of LPA with TRPV1 at the K710 site, we generated a K710N knock-in mouse model. The TRPV1K710N mice were resistant to LPA-induced myocardial injury, showing a smaller infarct size relative to TRPV1WT mice (28 ± 4% vs. 60 ± 7%, p < 0.0001). Additionally, a sequence-specific TRPV1 peptide targeting the K710 region produced similar protective effects against LPA-induced myocardial injury. Blocking the K710 region through K710N mutation or TRPV1 peptide resulted in reduced neuropeptides release and decreased activity of cardiac sensory neurons, leading to a decrease in cardiac norepinephrine concentration and the restoration of intramyocardial pro-survival signaling, namely protein kinase B/extracellular regulated kinase/glycogen synthase kinase-3ß pathway. These findings suggest that the elevation of CSF LPA is strongly associated with myocardial I/R injury. Moreover, inhibiting the interaction of LPA with TRPV1 by blocking the K710 region uncovers a novel strategy for preventing myocardial ischemic injury.


Assuntos
Lisofosfolipídeos , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Canais de Cátion TRPV/genética , Peptídeos/metabolismo , Medula Espinal/metabolismo
12.
Osteoarthritis Cartilage ; 32(7): 881-894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604493

RESUMO

OBJECTIVE: Transient receptor potential vanilloid 4 (TRPV4) is a multi-modally activated cation channel that mediates mechanotransduction pathways by which musculoskeletal tissues respond to mechanical load and regulate tissue health. Using conditional Trpv4 knockout mice, we investigated the role of Trpv4 in regulating intervertebral disc (IVD) health and injury-induced IVD degeneration. METHODS: Col2-Cre;Trpv4fl/f (Trpv4 KO) mice were used to knockout Trpv4 in all type 2 collagen-expressing cells. Effects of gene targeting alone was assessed in lumbar spines, using vertebral bone length measurement, histological, immunohistochemistry and gene expression analyses, and mechanical testing. Disc puncture was performed on caudal IVDs of wild-type (WT) and Trpv4 KO mice at 2.5- and 6.5-months-of-age. Six weeks after puncture (4- and 8-months-of-age at sacrifice), caudal spines were assessed using histological analyses. RESULTS: While loss of Trpv4 did not significantly alter vertebral bone length and tissue histomorphology compared to age-matched WT mice, Trpv4 KO mice showed decreased proteoglycan and PRG4 staining in the annulus fibrosus compared to WT. At the gene level, Trpv4 KO mice showed significantly increased expression of Acan, Bgn, and Prg4 compared to WT. Functionally, loss of Trpv4 was associated with significantly increased neutral zone length in lumbar IVDs. Following puncture, both Trpv4 KO and WT mice showed similar signs of degeneration at the site of injury. Interestingly, loss of Trpv4 prevented mechanically-induced degeneration in IVDs adjacent to sites of injury. CONCLUSION: These studies suggest a role for Trpv4 in regulating extracellular matrix synthesis and mediating the response of IVD tissues to mechanical stress.


Assuntos
Modelos Animais de Doenças , Matriz Extracelular , Degeneração do Disco Intervertebral , Camundongos Knockout , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Camundongos , Matriz Extracelular/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Vértebras Lombares , Suporte de Carga/fisiologia , Colágeno Tipo II/metabolismo , Mecanotransdução Celular/fisiologia , Agrecanas/metabolismo , Estresse Mecânico , Proteoglicanas/metabolismo , Proteoglicanas/genética
13.
Exp Eye Res ; 244: 109950, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815789

RESUMO

Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.


Assuntos
Capsaicina , Sobrevivência Celular , Epitélio Corneano , Lipopolissacarídeos , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Antioxidantes/farmacologia , Células Cultivadas , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/patologia , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
14.
Exp Eye Res ; 239: 109781, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184223

RESUMO

In addition to regulating cholesterol synthesis, statins have neuroprotective effects. Apoptosis of retinal ganglion cells (RGCs) causes a gradual loss of visual function in glaucoma. This study aimed to investigate the neuroprotective effect of statins on the RGC apoptosis induced by activated Müller glia. Primary Müller cells and RGCs were cultured from the retina of C57BL6 mice. Müller cells were activated with GSK101, a transient receptor potential vanilloid 4 (TRPV4) agonist, and tumor necrosis factor-alpha (TNF-α) released to the medium was measured using an enzyme-linked immunosorbent assay. Cells were pretreated with simvastatin or lovastatin before GSK101. RGCs were treated with conditioned media from Müller glia cultures, and apoptosis was determined using flow cytometry. TRPV4 activation through GSK101 treatment induced gliosis of Müller cells, and the conditioned media from activated Müller cells was potent to induce RGC apoptosis. Statins suppress both gliosis in Müller cells and subsequent RGC apoptosis. TNF-α release to the media was increased in GSK101-treated Müller cells, and TNF-α in the conditioned media was the critical factor causing RGC apoptosis. The increase in TRPV4-mediated TNF-α expression occurred through the nuclear factor kappa-light chain enhancer of activated B cell pathway activation, which was inhibited by statins. Herein, we showed that statins can modulate gliosis and TNF-α expression in Müller cells, protecting RGCs. These data further support the neuroprotective effect of statins, promoting them as a potential treatment for glaucoma.


Assuntos
Antineoplásicos , Glaucoma , Inibidores de Hidroximetilglutaril-CoA Redutases , Fármacos Neuroprotetores , Animais , Camundongos , Antineoplásicos/farmacologia , Apoptose , Meios de Cultivo Condicionados/farmacologia , Células Ependimogliais/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Gliose/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Neurochem Res ; 49(9): 2423-2439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38847909

RESUMO

Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.


Assuntos
Ácidos Araquidônicos , Caenorhabditis elegans , Endocanabinoides , Alcamidas Poli-Insaturadas , Canais de Cátion TRPV , Animais , Caenorhabditis elegans/metabolismo , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Canais de Cátion TRPV/metabolismo , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Receptores de Canabinoides/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Temperatura Alta , Analgésicos/farmacologia
16.
Neurochem Res ; 49(4): 935-948, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141130

RESUMO

Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.


Assuntos
Proteínas de Caenorhabditis elegans , Canabidiol , Canabinoides , Humanos , Animais , Canabidiol/farmacologia , Dronabinol/farmacologia , Caenorhabditis elegans , Proteômica , Dor , Analgésicos/farmacologia , Mamíferos , Receptores Acoplados a Proteínas G
17.
Bioorg Med Chem Lett ; 101: 129656, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355061

RESUMO

To discover mode-selective TRPV1 antagonists as thermoneutral drug candidates, the previous potent antagonist benzopyridone 2 was optimized based on the pharmacophore A- and C-regions. The structure activity relationship was investigated systematically by modifying the A-region by incorporating a polar side chain on the pyridone and then by changing the C-region with a variety of substituted pyridine and pyrazole moieties. The 3-t-butyl and 3-(1-methylcyclopropyl) pyrazole C-region analogs provided high potency as well as mode-selectivity. Among them, 51 and 54 displayed potent and capsaicin-selective antagonism with IC50 = 2.85 and 3.27 nM to capsaicin activation and 28.5 and 31.5 % inhibition at 3 µM concentration toward proton activation, respectively. The molecular modeling study of 51 with our homology model indicated that the hydroxyethyl side chain in the A-region interacted with Arg557 and Glu570, the urea B-region engaged in hydrogen bonding with Tyr511 and Thr550, respectively, and the pyrazole C-region made two hydrophobic interactions with the receptor. Optimization of antagonist 2, which has full antagonism for activators of all modes, lead to mode-selective antagonists 51 and 54. These observations will provide insight into the future development of clinical TRPV1 antagonists without target-based side effects.


Assuntos
Capsaicina , Ureia , Ureia/química , Capsaicina/farmacologia , Relação Estrutura-Atividade , Modelos Moleculares , Pirazóis/farmacologia , Canais de Cátion TRPV
18.
Bioorg Med Chem Lett ; 106: 129735, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588785

RESUMO

A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.


Assuntos
Benzoxazinas , Canais de Cátion TRPV , Ureia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Relação Estrutura-Atividade , Benzoxazinas/química , Benzoxazinas/farmacologia , Benzoxazinas/síntese química , Ureia/análogos & derivados , Ureia/química , Ureia/farmacologia , Ureia/síntese química , Humanos , Estrutura Molecular , Animais , Capsaicina/farmacologia , Capsaicina/química , Descoberta de Drogas , Relação Dose-Resposta a Droga
19.
Scand J Gastroenterol ; 59(5): 518-523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38343278

RESUMO

Reflux hypersensitivity (RH) is a subtype of gastroesophageal reflux disease. The Rome IV criteria separated RH from the original nonerosive reflux disease subgroup and classified it as a new functional oesophageal disease. Recently, the pathogenesis of RH has become the focus of research. According to the latest research reports, upregulation of acid-sensitive receptors, distribution of calcitonin gene-related peptide-positive nerve fibres, and psychiatric comorbidity have key roles in the pathogenesis of RH. This work reviews the latest findings regarding RH mechanisms.


Assuntos
Refluxo Gastroesofágico , Humanos , Refluxo Gastroesofágico/fisiopatologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo
20.
Biol Pharm Bull ; 47(2): 350-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296549

RESUMO

Traumatic brain injury (TBI) is severe damage to the head caused by traffic accidents, falls, and sports. Because TBI-induced disruption of the blood-brain barrier (BBB) causes brain edema and neuroinflammation, which are major causes of death or serious disabilities, protection and recovery of BBB function may be beneficial therapeutic strategies for TBI. Astrocytes are key components of BBB integrity, and astrocyte-derived bioactive factors promote and suppress BBB disruption in TBI. Therefore, the regulation of astrocyte function is essential for BBB protection. In the injured cerebrum of TBI model mice, we found that the endothelin ETB receptor, histamine H2 receptor, and transient receptor potential vanilloid 4 (TRPV4) were predominantly expressed in reactive astrocytes. We also showed that repeated administration of an ETB receptor antagonist, H2 receptor agonist, and TRPV4 antagonist alleviated BBB disruption and brain edema in a TBI mouse model. Furthermore, these drugs decreased the expression levels of astrocyte-derived factors promoting BBB disruption and increased the expression levels of astrocyte-derived protective factors in the injured cerebrum after TBI. These results suggest that the ETB receptor, H2 receptor, and TRPV4 are molecules that regulate astrocyte function, and might be attractive candidates for the development of therapeutic drugs for TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Camundongos , Animais , Astrócitos/metabolismo , Edema Encefálico/etiologia , Canais de Cátion TRPV/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Barreira Hematoencefálica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA