Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 568: 136-142, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34214877

RESUMO

Vibrio species are prevalent in the aquatic environments and can infect humans and aquatic organisms. Vibrio parahaemolyticus counteracts ß-lactam antibiotics and enhances virulence using a regulation mechanism mediated by a two-component regulatory system (TCS) consisting of the VbrK histidine kinase and the VbrR response regulator. The periplasmic sensor domain of VbrK (VbrKSD) detects ß-lactam antibiotics or undergoes S-nitrosylation in response to host nitrites. Although V. parahaemolyticus VbrKSD (vpVbrKSD) has recently been characterized through structural studies, it is unclear whether its structural features that are indispensable for biological functions are conserved in other VbrK orthologs. To structurally define the functionally critical regions of VbrK and address the structural dynamics of VbrK, we determined the crystal structures of Vibrio rotiferianus VbrKSD (vrVbrKSD) in two crystal forms and performed a comparative analysis of diverse VbrK structures. vrVbrKSD folds into a curved rod-shaped two-domain structure as observed in vpVbrKSD. The membrane-distal end of the vrVbrKSD structure, including the α3 helix and its neighboring loops, harbors both S-nitrosylation and antibiotic-sensing sites and displays high structural flexibility and diversity. Noticeably, the distal end is partially stabilized by a disulfide bond, which is formed by the cysteine residue that is S-nitrosylated in response to nitrite. Therefore, the distal end of VbrKSD plays a key role in initiating the VbrK-VbrR TCS pathway activation, and it is involved in the nitrosylation-mediated regulation of the structural dynamics of VbrK.


Assuntos
Proteínas de Bactérias/química , Histidina Quinase/química , Vibrio/química , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Histidina Quinase/metabolismo , Modelos Moleculares , Nitritos/metabolismo , Domínios Proteicos , Vibrio/metabolismo
2.
J Fish Dis ; 42(5): 623-630, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851004

RESUMO

Vibrio rotiferianus is an important marine pathogen of various aquatic organisms and can be found widely distributed in the marine environment. To further characterize this pathogen, the pathogenic properties and genome of V. rotiferianus SSVR1601 isolated from Sebastes schlegelii with skin ulcer were analysed. SSVR1601 was shown to be short rod-shaped cell with a single polar flagellum. Different degrees of pathological changes in fish kidney, intestine, gills and liver were observed after SSVR1601 challenge. The SSVR1601 genome consists of two chromosomes and two plasmids with a total of 5,717,113 bp, 42.04%-44.93% GC content, 5,269 predicted CDSs, 134 tRNAs and 40 rRNAs. The common virulence factors including OMPs, haemolysin, flagellin, DNase, entF, algU, tcpI, acfB and rfaD were found in strain SSVR1601. Furthermore, factors responsible for iron uptake (fur, fepC and ccmC) and types II, IV and VI secretion systems were detected, which are likely responsible for the pathogenicity of SSVR1601. The antimicrobial resistance genes, bacA, tet34 and norM, were detected based on Antibiotic Resistance Genes Database. The phylogenetic analysis revealed SSVR1601 to be most closely related to V. rotiferianus strains CAIM577 and B64D1.


Assuntos
Doenças dos Peixes/patologia , Peixes , Genoma Bacteriano , Úlcera Cutânea/veterinária , Vibrioses/veterinária , Vibrio/genética , Vibrio/patogenicidade , Animais , Doenças dos Peixes/microbiologia , Filogenia , Análise de Sequência de DNA/veterinária , Úlcera Cutânea/microbiologia , Úlcera Cutânea/patologia , Vibrio/classificação , Vibrioses/microbiologia , Vibrioses/patologia
3.
Water Res ; 211: 117942, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042073

RESUMO

Warming sea-surface temperature has led to an increase in the prevalence of Vibrio species in marine environments. This can be observed particularly in temperate regions where conditions for their growth has become more favourable. The increased prevalence of pathogenic Vibrio species has resulted in a worldwide surge of Vibriosis infections in human and aquatic animals. This study uses sea-surface temperature data around the English and Welsh coastlines to identify locations where conditions for the presence and growth of Vibrio species is favourable. Shellfish samples collected from three locations that were experiencing an increase in sea-surface temperature were found to be positive for the presence of Vibrio species. We identified important aquaculture pathogens Vibrio rotiferianus and Vibrio jasicida from these sites that have not been reported in UK waters. We also isolated human pathogenic Vibrio species including V. parahaemolyticus from these sites. This paper reports the first isolation of V. rotiferianus and V. jasicida from UK shellfish and highlights a growing diversity of Vibrio species inhabiting British waters.


Assuntos
Vibrio , Animais , Humanos , Prevalência , Frutos do Mar , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA