Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Xenotransplantation ; 31(3): e12851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747130

RESUMO

BACKGROUND: The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS: A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS: Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION: Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.


Assuntos
Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Suínos , Humanos , Vírus/isolamento & purificação , Laboratórios , Alemanha , Viroses/diagnóstico , Transplante de Coração , Xenoenxertos/virologia
2.
Biotechnol Bioeng ; 120(10): 2917-2924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37337932

RESUMO

Cell-based manufacturing processes have occasionally been exposed to adventitious viruses, leading to manufacturing interruptions and unstable supply situations. The rapid progress of advanced therapy medicinal products needs innovative approaches to avoid any unwelcome reminder of the universal presence of viruses. Here, we investigated upstream virus filtration as a clearance step for any product too complex for downstream interventions. Culture media virus filtration was investigated with respect to virus clearance capacities under extreme conditions such as high process feed loading (up to ~19,000 L/m²), long duration (up to 34 days), and multiple process interruptions (up to 21 h). The small nonenveloped Minute virus of mice was used as relevant target virus, and as worse-case challenge for the investigated virus filters with a stipulated pore-size of about 20 nm. Certain filters-especially of the newer second generation-were capable of effective virus clearance despite the harsh regimen they were subjected to. The biochemical parameters for un-spiked control runs showed the filters to have no measurable impact on the composition of the culture media. Based on these findings, this technology seems to be quite feasible for large volume premanufacturing process culture media preparations.


Assuntos
Filtração , Vírus , Animais , Camundongos , Filtração/métodos , Técnicas de Cultura de Células , Contaminação de Medicamentos/prevenção & controle , Meios de Cultura
3.
Xenotransplantation ; : e12835, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088083

RESUMO

BACKGROUND: The porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV), is widely distributed in pig populations. It has been shown that PCMV/PRV was transmitted by pig xenotransplants to non-human primates, and significantly reduced the survival time of the recipient. PCMV/PRV was also transmitted during the first transplantation of a pig heart into a human patient. PCMV/PRV establishes a lifelong persistent infection (latency) in the host, is difficult to detect in this stage, and consequential poses a threat to future clinical xenotransplantations. Therefore, sensitive and specific methods and goal-oriented strategies how, when, and where to test should be used for screening donor pigs. METHODS: In this study we compared experimentally the PCMV/PRV detection methods including PCR-based (real-time PCR, nested PCR) and immunological methods (Western blot assay, ELISA) recently published by Halecker et al. (Sci. Rep. 2022;12(1):21545) and Fischer et al. (Xenotransplantation 2023:e12803). We also compared the antigens used for antibody detection (a recombinant protein and synthetic peptides corresponding to a conserved region of the glycoprotein B, gB). RESULTS: The published methods can be used for screening donor pigs, with the results being similar. The antigens used for the detection of PCMV/PRV-specific antibodies are almost identical and give comparable results. Overall, the optimal diagnostic tests, the samples used for testing and the time of sampling play a crucial role in preventing the transmission of PCMV/PRV during xenotransplantation. CONCLUSION: Sensitive methods are available to screen donor pigs for PCMV/PRV, but a rational application of a combination of PCR-based and immunological methods as well as rational detection strategies are important for the detection of the virus during latency.

4.
Transfus Med Hemother ; 49(4): 192-204, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36159956

RESUMO

West Nile virus (WNV) is an arthropod-borne virus (arbovirus). It circulates in an enzootic cycle between ornithophilic mosquitoes as vectors and reservoirs and avian host species for amplification, but humans can be infected as accidental hosts. In most individuals, WNV infection remains silent, while 20% develop mild symptoms of West Nile fever, and only 1% develop neuroinvasive disease (WNND). Human WNV cases have been identified in Southern and Eastern Europe for more than 20 years, but until 2018, Germany was considered to be a non-endemic country. This changed when in the exceptionally warm summer of 2018, conditions for viral replication in mosquitoes were ideal, and the first WNV cases among birds and horses were identified. The widespread domestic Culex mosquitoes are efficient vectors for WNV. Autochthonous mosquito-borne WNV infections in humans were reported in all following years, indicating a continuous circulation in the affected areas of Central-East Germany. So far, no clear expansion of the affected areas is discernible but may develop. WNV is a transfusion-transmissible-infection, and donor deferral or testing of donations after a stay in an affected area are effective means to ensure transfusion safety. WNV transmissions via blood products often result in WNND due to the predisposing underlying medical conditions of transfusion recipients. From 2020 onwards, roughly 80% of all blood establishments in Germany tested their donations for WNV using nucleic acid amplification techniques in the transmission season. Altogether, 19 confirmed WNV infections were identified from 2020-2021. As long as effective and affordable pathogen reduction is not available for all blood components, WNV testing or donor deferral will be essential. In order to timely identify affected areas, combined results of human and veterinary surveillance are needed. Partnerships between public health experts, transfusion medicine specialists, veterinarians, and entomologists should be strengthened to ensure a One Health approach.

5.
Transfus Med Hemother ; 48(3): 154-160, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34177419

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic has challenged many of our current routine practices in the treatment and care of patients. Given the critical importance of blood donation and transfusion we analyzed 92 blood samples of individuals infected with SARS-CoV-2 stratified by symptoms. STUDY DESIGN AND METHODS: We therefore tested blood samples for SARS-CoV-2 via RT-PCR targeting the E gene. In addition, we tested each blood sample for anti-SARS-CoV-2 IgG antibodies via ELISA and performed plaque reduction neutralization tests. RESULTS: SARS-CoV-2 RNA was absent in the blood of mild to asymptomatic patients (57 individuals) and only detectable in individuals with severe COVID-19 who were admitted to the intensive care unit (35 individuals) (n = 6/92 [6.5%]; p = 0.023 Fisher's exact test). Interestingly, anti-spike IgG antibodies were not significantly higher in intensive care unit patients compared to mild patients, but we found that their neutralizing capacity was disproportionately increased (p < 0.001). CONCLUSION: Our observations support the hypothesis that there are no potential hazards from blood or plasma transfusion of SARS-CoV-2-positive individuals with mild flu-like symptoms and more importantly of asymptomatic individuals.

6.
Transfus Med Hemother ; 48(1): 12-22, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708048

RESUMO

BACKGROUND: Although transmission of pathogenic viruses through human tissue grafts is rare, it is still one of the most serious dreaded risks of transplantation. Therefore, in addition to the detailed medical and social history, a comprehensive serologic and molecular screening of the tissue donors for relevant viral markers for human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) is necessary. In the case of reactive results in particular, clear decisions regarding follow-up testing and the criteria for tissue release must be made. METHODS: Based on the clinical relevance of the specific virus markers, the sensitivity of the serological and molecular biological methods used and the application of inactivation methods, algorithms for tissue release are suggested. RESULTS: Compliance with the preanalytical requirements and assessment of a possible hemodilution are mandatory requirements before testing the blood samples. While HIV testing follows defined algorithms, the procedures for HBV and HCV diagnostics are under discussion. Screening and decisions for HBV are often not as simple, e.g., due to cases of occult HBV infection, false-positive anti-HBc results, or early window period positive HBV NAT results. In the case of HCV diagnostics, modern therapies with direct-acting antivirals, which are often associated with successful treatment of the infection, should be included in the decision. CONCLUSION: In HBV and HCV testing, a high-sensitivity virus genome test should play a central role in diagnostics, especially in the case of equivocal serology, and it should be the basis for the decision to release the tissue. The proposed test algorithms and decisions are also based on current European recommendations and standards for safety and quality assurance in tissue and cell banking.

7.
Xenotransplantation ; 27(2): e12565, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31692126

RESUMO

BACKGROUND: Decellularized human pulmonary heart valve (dhHV) scaffolds have been shown to be the gold standard especially for younger, adolescent patients. However, human heart valves are limited in availability. Xenogeneic decellularized pig heart valves (dpHV) may serve as alternative. METHODS: The efficacy of DNA reduction processes upon decellularization of heart valves from German Landrace pigs was analyzed by measurements of remaining nucleic acids including proviral porcine endogenous retrovirus (PERV) sequences. Porcine pulmonary heart valves (pPHV) were decellularized by three different protocols and further treated with DNaseI or Benzonase, at varying incubation times. DNA isolated from valve associated muscle (m), valve cusp (c), and pulmonary artery (pa) was monitored by PCR and qRT-PCR using GAPDH and the PERV polymerase (pol) for read-out. RESULTS: Decellularization of pPHV led to a significant reduction of DNA (>99%) which could be further significantly increased for (m) and (pa) by nuclease treatment, reducing proviral PERV pol from approximately 5 × 107 to 5 × 103  copies/mg in nuclease treated tissues. CONCLUSIONS: Both nucleases demonstrated comparable activities. But DNaseI revealed to be less consistent for PERV, especially at muscular tissue. Noteworthy, remaining proviral sequences are still detectable by PCR; however, due to the absence of the cellular replication machinery the production of infectious particles is not expected. Decellularization and nuclease treatment of pPHV is an efficient procedure to reduce the DNA content including PERV, thus represents a valuable option to increase virus safety independently from the source animal background.


Assuntos
Retrovirus Endógenos/patogenicidade , Próteses Valvulares Cardíacas/virologia , Valvas Cardíacas/patologia , Ácidos Nucleicos/metabolismo , Provírus/patogenicidade , Animais , Bioprótese/efeitos adversos , Linhagem Celular , Suínos , Transplante Heterólogo/efeitos adversos
8.
Xenotransplantation ; : e12594, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32304138

RESUMO

Xenotransplantation of pig cells, tissues, or organs may be associated with transmission of porcine microorganisms, first of all of viruses, to the transplant recipient, potentially inducing a disease (zoonosis). I would like to define detection systems as the complex of sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls along with the specific detection methods, either PCR-based, cell-based, or immunological methods. Some xenotransplantation-relevant viruses have already been defined; others are still unknown. The PCR-based methods include PCR and real-time PCR for DNA viruses, and RT-PCR and real-time RT-PCR for RNA viruses as well as for virus expression studies at the RNA level. Furthermore, droplet digital PCR (ddPCR) can be used for the determination of virus and provirus copies. To detect expression at the protein level, immunofluorescence, immunohistochemistry, and Western blot analyses can be used. To detect virus production and to detect infectious viruses, electron microscopy and infection assays can be used. Furthermore, immunological methods such as Western blot analysis or ELISA can be used to detect virus-specific antibodies. Detection of antiviral antibodies is a reliable and sensitive indirect detection method. For these immunological methods, purified viruses, recombinant viral proteins, or synthetic peptides are used as antigens and control sera and control antigens are needed. All these methods have been used in the past for the characterization of different pig breeds including genetically modified pigs generated for xenotransplantation and for the screening of recipients in preclinical and clinical xenotransplantations. Whereas in preclinical trials a few porcine viruses have been transmitted to the non-human primate recipients, in first clinical trials no such transmissions to humans were observed. Further improvement of the detection systems and their application in virus elimination programs will lead to clean donor animals and a safe xenotransplantation.

9.
Biotechnol Bioeng ; 116(9): 2292-2302, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31112283

RESUMO

Continuous bioprocessing holds the potential to improve product consistency, accelerate productivity, and lower cost of production. However, switching a bioprocess from traditional batch to continuous mode requires surmounting business and regulatory challenges. A key regulatory requirement for all biopharmaceuticals is virus safety, which is assured through a combination of testing and virus clearance through purification unit operations. For continuous processing, unit operations such as capture chromatography have aspects that could be impacted by a change to continuous multicolumn operation, for example, do they clear viruses as well as a traditional batch single column. In this study we evaluate how modifying chromatographic parameters including the linear velocity and resin capacity utilization could impact virus clearance in the context of moving from a single column to multicolumn operation. A Design of Experiment (DoE) approach was taken with two model monoclonal antibodies (mAbs) and two bacteriophages used as mammalian virus surrogates. The DoE enabled the identification of best and worst-case scenario for virus clearance overall. Using these best and worst-case conditions, virus clearance was tested in single column and multicolumn modes and found to be similar as measured by Log Reduction Values (LRV). The parameters identified as impactful for viral clearance in single column mode were predictive of multicolumn modes. Thus, these results support the hypothesis that the viral clearance capabilities of a multicolumn continuous Protein A system may be evaluated using an appropriately scaled-down single mode column and equipment.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Modelos Químicos , Vírus/química , Cromatografia Líquida , Humanos
10.
Biologicals ; 60: 85-92, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31105022

RESUMO

Different parvoviruses are used interchangeably as models in validation studies to demonstrate effective clearance of small viruses by filtration in the manufacturing of biotherapeutics. The aim of these experiments was to determine if filtration of different parvoviruses (canine parvovirus [CPV], minute virus of mice [MVM], and porcine parvovirus [PPV]) results in similar virus retention. While filtration with a Planova™ 20 N filter (mean pore size: 19 ±â€¯2 nm) completely removed PPV and MVM from the filtrate (mean log reduction factors [LRFs] ≥5.8 to ≥7.3 log10), CPV was only partly retained (3.6 log10) in a series of single and co-spike experiments. Additional co-spike experiments in 2 different feedstreams using 10 commercially available small pore filters confirmed these results; the LRF for CPV was around 2 log10 lower than for MVM and PPV. A sizing study using filters with mean pore sizes between 16.5 and 19 nm resulted in complete removal of CPV only with smaller pore sizes (17 and 16.5 nm). CPV behaves differently to MVM and PPV in viral filtration due to its apparent smaller size, suggesting CPV represents a worst-case model for other parvoviruses. Interpretation of efficacy and robustness of virus filtration thus depends on the choice of model virus.


Assuntos
Filtração , Parvovirus/química , Inativação de Vírus , Animais , Cães , Camundongos , Suínos
11.
Transfus Med Hemother ; 46(2): 87-93, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31191194

RESUMO

Transfusion-transmitted infections remain a permanent threat in medicine. It keeps the burden of the past, marked by serious infections transmitted by transfusion, and is constantly threatened by emerging viruses. The global rise of immunosuppression among patients undergoing frequent transfusions exacerbates this problem. Over the past decade, criteria for donor selection have become increasingly more stringent. Although routine nucleic acid testing (NAT) for virus-specific detection has become more sensitive, these safety measures are only valuable for a limited number of select viruses. The scientific approach to this is however changing, with the goal of trying to identify infectious agents in donor units as early as possible to mitigate the risk of a clinically relevant infection. To this end, and in addition to an epidemiological surveillance of the general population, researchers are adopting new methods to discover emerging infectious agents, while simultaneously screening for an extended number of viruses in donors. Next-generation sequencing (NGS) offers the opportunity to explore the entire viral landscape in blood donors, the so-called metagenomics, to investigate severe transfusion reactions of unknown etiology. In the not too distant future, one could imagine this platform being used for routine testing of donated blood products.

13.
Xenotransplantation ; 25(4): e12445, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30264881

RESUMO

BACKGROUND: Porcine endogenous retroviruses (PERVs) may pose a risk of xenotransplantation using porcine cells, tissues, or organs. PERVs are integrated in the genome of all pigs, and some can infect certain human cells. The copy number of PERVs in different pig breeds has been determined by using different methods, with varying results. METHODS: To determine the PERV copy number in pig cell lines and in animals, a new method, droplet digital polymerase chain reaction (ddPCR) was used. DNA was isolated from pig cell lines (PK15 and PTK75 cells), from Aachen, Göttingen, and Black minipigs, and from genetically modified and non-modified German landrace pigs. Primers specific for the polymerase gene (pol) were used for the ddPCR. RESULTS: The median copy number of integrated proviruses was found between 46 and 70 copies in three different PK15 cell lines, 49 copies in PTK75 cells, 64 copies in Göttingen minipigs, 69 copies in Aachen minipigs, 117 copies in Black minipigs, and 59 copies in genetically modified pigs generated for xenotransplantation. PERV copy numbers varied between different organs from a single pig, indicating proviral amplification. The study also revealed that different PK15 cell lines from different laboratories which had been used as virus source for infection experiments carry different PERV copies. Furthermore, different copy numbers of cellular reference genes (GAPDH, ACTB) were detected in different cell lines and pigs. CONCLUSION: The determination of the PERV copy number using ddPCR extended previous data showing differences between the pig breeds and between different organs of a single animal. The determination of PERV copy numbers can be used to select animals less likely to transmit PERVs during xenotransplantation. In addition, this method will be of special value when PERV proviruses are to be inactivated by CRISPR/Cas9.


Assuntos
Retrovirus Endógenos/patogenicidade , Provírus/patogenicidade , Porco Miniatura/virologia , Transplante Heterólogo , Animais , Linhagem Celular , Humanos , Órgãos em Risco , Suínos , Doenças dos Suínos/virologia , Porco Miniatura/genética
14.
Xenotransplantation ; 25(4): e12427, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30264882

RESUMO

BACKGROUND: Recent advances in xenotransplantation have produced organs from pigs that are well tolerated in primate models because of genetic changes engineered to delete major antigens from donor animals. To ensure the safety of human transplant recipients, it will be essential to understand both the spectrum of infectious agents in donor pigs and their potential to be transmitted to immunocompromised transplant recipients. Equally important will be the development of new highly sensitive diagnostic methods for use in the detection of these agents in donor animals and for the monitoring of transplant recipients. METHODS: Herein, we report the development of a panel of 30 quantitative polymerase chain reaction (qPCR) assays for infectious agents with the potential to be transmitted to the human host. The reproducibility, sensitivity and specificity of each assay were evaluated and were found to exhibit analytic sensitivity that was similar to that of quantitative assays used to perform viral load testing of human viruses in clinical laboratories. RESULTS: This analytical approach was used to detect nucleic acids of infectious agents present in specimens from 9 sows and 22 piglets derived by caesarean section. The most commonly detected targets in adult animals were Mycoplasma species and two distinct herpesviruses, porcine lymphotrophic herpesvirus 2 and 3. A total of 14 piglets were derived from three sows infected with either or both herpesviruses, yet none tested positive for the viruses indicating that vertical transmission of these viruses is inefficient. CONCLUSIONS: The data presented demonstrate that procedures in place are highly sensitive and can specifically detect nucleic acids from target organisms in the panel, thus ensuring the safety of organs for transplantation as well as the monitoring of patients potentially receiving them.


Assuntos
Herpesviridae/patogenicidade , Xenoenxertos/virologia , Doenças dos Suínos/virologia , Transplante Heterólogo/efeitos adversos , Animais , Citomegalovirus/genética , Humanos , Reprodutibilidade dos Testes , Suínos , Doenças dos Suínos/diagnóstico
15.
Xenotransplantation ; 25(4): e12449, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30264883

RESUMO

For clinical xenotransplantation, transplants must be free of porcine cytomegalovirus (PCMV). Piglets become infected primarily in the perinatal period by the mother sow. While individual donor animals can be protected from infection by isolation husbandry, success is not guaranteed and this strategy poses the risk of undetected infections and raises animal welfare questions. Here, we present the establishment of a completely PCMV-negative pig herd for breeding donor animals for xenotransplantation. Eleven pregnant DanAvl Basic hybrid sows were purchased from a designated pathogen-free (DPF), PCMV-positive colony and transferred to a new pig facility at the Centre for Innovative Medical Models (CiMM) 4 weeks prior to farrowing. At the age of 24 hours, piglets were early-weaned and transferred to a commercially available Rescue Deck system dedicated to motherless rearing of piglets. Sows were removed from the facility. The PCMV status of F1-generation animals was determined at regular intervals over a period of 14 months by a sensitive real-time PCR-based detection method testing blood, nasal swabs and cultured peripheral blood mononuclear cells (PBMCs). F1 sows were used as recipients of genetically modified embryos to generate a xenotransplant donor herd. Offspring were tested for PCMV accordingly. All offspring have remained PCMV negative over the whole observation period of 14 months. A completely PCMV-negative pig herd for xenotransplantation has thus been successfully established.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus/genética , Leucócitos Mononucleares/virologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Citomegalovirus/isolamento & purificação , Xenoenxertos/virologia , Suínos , Doadores de Tecidos , Desmame
16.
Protein Expr Purif ; 129: 94-100, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27620499

RESUMO

Turoctocog alfa is a B-domain-truncated recombinant factor VIII protein produced in a Chinese hamster ovary (CHO) cell line. The aim of this study was to evaluate the virus clearance capacity and robustness of the turoctocog alfa purification process. Virus clearance evaluation studies were conducted utilising a scaled-down version of the manufacturing process. Total virus clearance was evaluated using the ecotropic murine leukaemia virus (eMuLV) as a model for non-infectious retrovirus-like particles (RVLPs) and certain enveloped viruses. Other viruses utilised included: infectious bovine rhinotracheitis (IBRV), minute virus of mice (MVM), bovine enterovirus (BEV) and Reo-3 virus (Reo-3). Robust clearance of all model viruses was demonstrated with either new or reused resins. Overall, virus reduction factors were: >18.0 log10 (eMuLV); 11.0 log10 (MVM); >11.8 log10 (Reo-3; >5.0 log10 using nanofiltration); >15.3 log10 (BEV) and >12.7 log10 (IBRV). Taken together, these values demonstrate that the purification process for turoctocog alfa effectively removes a range of enveloped and non-enveloped viruses of different physicochemical properties and sizes.


Assuntos
Enterovirus Bovino , Fator VIII/isolamento & purificação , Herpesvirus Bovino 1 , Vírus da Leucemia Murina , Vírus Miúdo do Camundongo , Inativação de Vírus , Animais , Células CHO , Bovinos , Cricetinae , Cricetulus , Fator VIII/biossíntese , Fator VIII/genética , Camundongos , Proteínas Recombinantes
18.
Xenotransplantation ; 23(2): 159-67, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26991265

RESUMO

BACKGROUND: To alleviate the shortage of human donor organs or tissues for the treatment of organ and tissue failure including diabetes, pigs are considered suitable donor animals. As organs from conventional pigs are usually too large, those from minipigs may be better suited. We recently characterized the Göttingen Minipigs, a breed well characterized concerning the presence of zoonotic microorganisms and found hepatitis E virus (HEV) and porcine cytomegalovirus (PCMV) in some animals. Here, we characterize another minipig, the Aachen Minipig (AaMP), a pig breed recently established close to the town Aachen in Germany. METHODS: The animals were tested for the prevalence and expression of porcine endogenous retroviruses (PERVs) and the presence of some selected microorganisms, among them HEV, PCMV, and porcine lymphotropic herpesviruses (PLHVs) using highly sensitive and specific PCR and RT-PCR methods. In addition, we screened for antibodies against HEV and PLHV. RESULTS: PERV-A, PERV-B, and PERV-C sequences were found in the genome of all Aachen Minipigs. HEV RNA was found by real-time RT-PCR in most, and DNA of PCMV, PLHV-2, and PLHV-3 was found by PCR in some animals. The animals were free of eight other microorganisms tested, but some were seropositive for porcine circovirus 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV). CONCLUSION: Based on medical examinations by veterinarians, the AaMP are in a good health status and seem to harbor only few microorganisms. To improve their status for use as donor pigs in xenotransplantation, the viruses detected might be eliminated by selection of negative animals, Cesarean section, and vaccination.


Assuntos
Doenças dos Suínos/virologia , Animais , Retrovirus Endógenos , Feminino , Vírus da Hepatite E , Herpesviridae , Vírus da Diarreia Epidêmica Suína , Gravidez , Suínos , Porco Miniatura
19.
Transfus Med Hemother ; 43(3): 177-82, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27403089

RESUMO

BACKGROUND: The performance of the multiplex Procleix Ultrio Elite assay as individual donor nucleic acid test (ID-NAT) for the detection of HIV-1, HIV-2, HCV, and HBV was evaluated in a retrospective, single center study. METHODS: ID-NAT results of 21,181 blood donors, 984 tissue donors, 293 hematopoietic stem cell donors and 4 organ donors were reviewed in synopsis with results of serological screening and additional discriminatory and repetitive NAT in case of positive donors. RESULTS: Specificity of the initial Procleix Ultrio Elite assay was 99.98% and after discriminatory testing 100.00%. Initially invalid results were observed in 75 of 21,181 blood donors (0.35%) but 16 of 984 tissue donors (1.62%, p < 0.001) which included non-heart-beating ('cadaveric') donors. All these had valid negative ID-NAT results after repeated testing or testing of 1:5 diluted specimens in case of tissue donors. Occult hepatitis B (defined here as HBV DNAemia without HBsAg detection) was demonstrated by ID-NAT in two anti-HBc-positive tissue donors and suspected in two other tissue donors, where a definite diagnosis was not achieved due to the insufficient sample volumes available. CONCLUSION: The Procleix Ultrio Elite assay proved to be specific, robust and rapid. Therefore, routine ID-NAT may also be feasible for organ and granulocyte donors.

20.
Biotechnol Bioeng ; 112(3): 633-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25220795

RESUMO

The role of virus filtration in assuring the safety of biopharmaceutical products has gained importance in recent years. This is due to the fundamental advantages of virus filtration, which conceptually can remove all pathogens as long as their size is larger than the biomolecule of commercial interest, while at the same time being neutral to the biological activity of biopharmaceutical compound(s). Major progress has been made in the development of adequate filtration membranes that can remove even smaller viruses, or possibly even all. Establishing down-scaled models for virus clearance studies that are fully equivalent with respect to operating parameters at manufacturing scale is a continuing challenge. This is especially true for virus filtration procedures where virus clearance studies at small-scale determine the operating parameters, which can be used at manufacturing scale. This has limited volume-to-filter-area-ratios, with significant impact on process economics. An advanced small-scale model of virus filtration, which allows the investigation of the full complexity of these processes, is described here. It includes the automated monitoring and control of all process parameters, as well as an electronic data acquisition system, which is fully compliant with current regulatory requirements for electronic records in a pharmaceutical environment.


Assuntos
Produtos Biológicos/normas , Filtração/instrumentação , Filtração/métodos , Proteínas Recombinantes/normas , Vírus/isolamento & purificação , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA