Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(19): 9011-9019, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676743

RESUMO

Freeze-casting has been wildly exploited to construct porous ceramics but usually requires costly and demanding freeze-drying (high vacuum, size limit, and supercooled chamber), which can be avoided by the ambient pressure drying (APD) technique. However, applying APD to freeze-cast ceramic based on an aqueous suspension is still challenging due to inert surface chemistry. Herein, a modified APD strategy is developed to improve the drying process of freeze-cast ceramics by exploiting the simultaneous ice etching, ionic cross-linking, and solvent exchange under mild conditions (-10-0 °C, ambient pressure). This versatile strategy is applicable to various ceramic species, metal ions, and freezing techniques. The incorporated metal ions not only enhance liquid-phase sintering, producing ceramics with higher density and mechanical properties than freeze-cast counterparts, but also render customizable coloration and antibacterial property. The cost-/time-efficient APD is promising for mass production and even successive production of large-size freeze-cast ceramics that exceed the size of commercial freeze-dryers.

2.
Molecules ; 23(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518083

RESUMO

Owing to their ultra-low thermal conductivity, silica aerogels are promising thermal insulators; however, their extensive application is limited by their high production cost. Thus, scientists have started to explore low-cost and easy preparation processes of silica aerogels. In this work, a low-cost method was proposed to prepare silica aerogels with industrial silica hydrosol and a subsequent ambient pressure drying (APD) process. Various surfactants (cationic, amphoteric, or anionic) were added to avoid solvent exchange and surface modification during the APD process. The effects of various surfactants on the microstructure, thermal conductivity, and thermal stability of the silica aerogels were studied. The results showed that the silica aerogels prepared with a cationic or anionic surfactant have better thermal stability than that prepared with an amphoteric surfactant. After being heated at 600 °C, the silica aerogel prepared with a cationic surfactant showed the highest specific surface area of 131 m²âˆ™g-1 and the lowest thermal conductivity of 0.038 W∙m-1∙K-1. The obtained low-cost silica aerogel with low thermal conductivity could be widely applied as a thermal insulator for building and industrial energy-saving applications.


Assuntos
Géis/química , Dióxido de Silício/química , Tensoativos/química , Solventes/química , Condutividade Térmica
3.
Molecules ; 23(8)2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072663

RESUMO

The silica aerogels were prepared via a sol-gel technique and ambient pressure drying by using industrial solid wastes, dislodged sludges, as raw materials. A strategy was put forward to reduce the corrosion of equipment during the drying procedure. The pore structure, hydrophobicity, and thermal insulation property of the obtained samples were investigated in detail. The results show that the corrosion can be effectively avoided by using an equimolar mixture of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDS) as silylation agents. At a Si:TMCS:HMDS molar ratio of 1:0.375:0.375, the silica aerogels possess a desirable pore structure with a pore volume of 3.3 ± 0.1 cm³/g and a most probable pore size of 18.5 nm, a high hydrophobicity with a water contact angle of 144.2 ± 1.1°, and a low thermal conductivity of 0.031 ± 0.001 W/(m∙K).


Assuntos
Dessecação , Pressão , Dióxido de Silício/síntese química , Adsorção , Corrosão , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Porosidade , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Condutividade Térmica , Volatilização , Difração de Raios X
4.
Molecules ; 23(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762470

RESUMO

This paper reports the preparation of cast-in-situ, large-sized monolithic silica xerogels by a two-step acid⁻base catalyzed approach under ambient pressure drying. Low-cost industrial silica sol and deionized water were used as the silicon source and the solvent, respectively. Hexadecetyltrimethylammonium bromide (CTAB) was used as a modification agent. Different amounts of polyethylene glycol 400 (PEG400) was added as a pore-forming agent. The prepared silica xerogels under ambient pressure drying have a mesoporous structure with a low density of 221 mg·cm-3 and a thermal conductivity of 0.0428 W·m-1·K-1. The low-cost and facile preparation process, as well as the superior performance of the monolithic silica xerogels make it a promising candidate for industrial thermal insulation materials.


Assuntos
Géis/química , Dióxido de Silício/química , Solventes/química , Polietilenoglicóis/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Condutividade Térmica
5.
Int J Biol Macromol ; 273(Pt 2): 132811, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825282

RESUMO

Atmospheric drying method for fabricating aerogels is considered the most promising way for casting aerogels on a large scale. However, the organic solvent exchange, remaining environmental pollution risk, is a crucial step in mitigating the impact of surface tension during the atmospheric drying process, especially for wet gel formed through the alkoxy-derived sol-gel process, such as melamine-formaldehyde resin (MF) aerogel. Herein, a tough polymer-assisted in situ polymerization was proposed to fabricate MF resin aerogel with a combination of mechanical toughness and strength, enabling it to withstand the capillary force during water evaporation. The monolithic MF resin aerogel through the sol-gel method can be directly prepared without additional network strengthening or organic solvent exchange. The resulting MF resin aerogel exhibits a homogeneous as well as hierarchical structure with macropores and mesopores (~6 µm and ~5 nm), high compressive modulus of 31.8 MPa, self-extinguishing property, and high-temperature thermal insulation with 97 % heat decrease for butane flame combustion. This work presents a straightforward and environmentally friendly method for fabricating MF resin aerogels with nanostructures and excellent performance in open conditions, exhibiting various applications.


Assuntos
Retardadores de Chama , Géis , Triazinas , Triazinas/química , Géis/química , Pressão , Solventes/química , Resinas Sintéticas/química , Dessecação/métodos , Porosidade , Polimerização
6.
Materials (Basel) ; 17(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893905

RESUMO

Ambient pressure drying (APD) of silica aerogels has emerged as an attractive method adapting to large-scale production. Spring-back is a unique phenomenon during APD of silica aerogels with volume expansion after its shrinkage under capillary force. We attribute the intense spring-back at elevated drying temperatures to a dense structure formed on the surface and the formation of positive internal pressure. Furthermore, an APD-assisted foaming method with an in situ introduction of NH4HCO3 was proposed. NH4HCO3 decomposing at drying temperatures hastened the emergence of positive pressure, thereby increasing the expansion volume. Compared to the previous method, the porosity of silica aerogel increased from 82.2% to 92.6%, and mesopore volume from 1.79 cm3 g-1 to 4.54 cm3 g-1. By adjusting the amount of the silicon source, silica aerogels prepared by the APD-assisted foaming method generated higher volume expansion and lower thermal conductivity. After calcination to remove undecomposed ammonium salts, the hydrophobic silica aerogel with a density of 0.112 g cm-3 reached a mesopore volume of 5.07 cm3 g-1 and a thermal conductivity of 18.9 mW m-1·K-1. This strategy not only improves the thermal insulation properties, but also offers a significant advancement in tailoring silica aerogels with specific porosity and mesopore volume for various applications.

7.
Polymers (Basel) ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891539

RESUMO

Thermally stable high-performance phenolic resin aerogels (PRAs) are of great interest for thermal insulation because of their light weight, fire retardancy and low thermal conductivity. However, the drawbacks of PRA synthesis, such as long processing time, inherent brittleness and significant shrinkage during drying, greatly restrict their wide applications. In this work, PRAs were synthesized at ambient pressure through a near-net shape manufacturing technique, where boron-containing thermosetting phenolic resin (BPR) was introduced into the conventional linear phenolic resin (LPR) to improve the pore characteristics, mechanical properties and thermal performances. Compared with the traditional LPR-synthesized aerogel, the processing time and the linear shrinkage rate during the drying of the PRAs could be significantly reduced, which was attributed to the enhanced rigidity and the unique bimodal pore size distribution. Furthermore, no catastrophic failure and almost no mechanical degradation were observed on the PRAs, even with a compressive strain of up to 60% at temperatures ranging from 25 to 200 °C, indicating low brittleness and excellent thermo-mechanical stability. The PRAs also showed outstanding fire retardancy. On the other hand, the PRAs with a density of 0.194 g/cm3 possessed a high Young's modulus of 12.85 MPa and a low thermal conductivity of 0.038 W/(m·K).

8.
Materials (Basel) ; 17(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612128

RESUMO

This study focuses on using activated fly ash to preparate silica aerogel by the acid solution-alkali leaching method and ambient pressure drying. Additionally, to improve the performance of silica aerogel, C6H16O3Si (KH-570) and CH3Si(CH3O)3 (MTMS) modifiers were used. Finally, this paper investigated the factors affecting the desilication rate of fly ash and analyzed the structure and performance of silica aerogel. The experimental results show that: (1) The factors affecting the desilication rate are ranked as follows: hydrochloric acid concentration > solid-liquid ratio > reaction temperature > reaction time. (2) KH-570 showed the best performance, and when the volume ratio of the silica solution to it was 10:1, the density of silica aerogel reached a minimum of 183 mg/cm3. (3) The optimal process conditions are a hydrochloric acid concentration of 20 wt%, a solid-liquid ratio of 1:4, a reaction time of two hours, and a reaction temperature of 100 °C. (4) The optimal performance parameters of silica aerogel were the thermal conductivity, specific surface area, pore volume, average pore size, and contact angle values, with 0.0421 W·(m·K)-1, 487.9 m2·g-1, 1.107 cm3·g-1, 9.075 nm, and 123°, respectively. This study not only achieves the high-value utilization of fly ash, but also facilitates the effective recovery and utilization of industrial waste.

9.
ACS Appl Mater Interfaces ; 16(11): 13611-13621, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456377

RESUMO

Cellulose foams are considered an effective alternative to plastic foam, because of their advantages of low density, high porosity, low thermal conductivity, and renewable nature. However, they still suffer from complex processing, poor mechanical properties, and flammability. As an agricultural waste, bagasse is rich in cellulose, which has attracted much attention. Inspired by the fact that borate ions can effectively enhance the strength of plant tissue by their cross-linking with polysaccharides, the present work designs and fabricates a series of multifunctional bagasse foams with robust strength and improved thermal insulation and flame retardancy via a unique borax-induced self-assembly and atmospheric pressure drying route using bagasse as a raw material, borate as a cross-linking agent, and chitosan as an additive. As a result, the optimized foam exhibits a high porosity (93.5%), a high hydrophobic water contact angle (150.4°), a low thermal conductivity (63.4 mW/(m·K) at 25 °C), and an outstanding flame retardancy. The present study provides a novel and inspiring idea for large-scale production of cellulose foams through an environmentally friendly and cost-effective approach.

10.
Gels ; 9(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36661837

RESUMO

In this study, we present a detailed comparison between a conventional supercritical drying process and an evaporative drying technique for hierarchically organized porous silica gel monoliths. These gels are based on a model system synthesized by the aqueous sol-gel processing of an ethylene-glycol-modified silane, resulting in a cellular, macroporous, strut-based network comprising anisotropic, periodically arranged mesopores formed by microporous amorphous silica. The effect of the two drying procedures on the pore properties (specific surface area, pore volume, and pore widths) and on the shrinkage of the monolith is evaluated through a comprehensive characterization by using nitrogen physisorption, electron microscopy, and small-angle X-ray scattering. It can clearly be demonstrated that for the hierarchically organized porous solids, the evaporative drying procedure can compete without the need for surface modification with the commonly applied supercritical drying in terms of the material and textural properties, such as specific surface area and pore volume. The thus obtained materials deliver a high specific surface area and exhibit overall comparable or even improved pore characteristics to monoliths prepared by supercritical drying. Additionally, the pore properties can be tailored to some extent by adjusting the drying conditions, such as temperature.

11.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904528

RESUMO

Composite hydrogels samples consisting of poly(methyl methacrylate/butyl acrylate/2-hydroxyethylmethacrylate) (poly-OH) and up to 60% reduced graphene oxide (rGO) containing rGO were synthesized. The method of coupled thermally induced self-assembly of graphene oxide (GO) platelets within a polymer matrix and in situ chemical reduction of GO was applied. The synthesized hydrogels were dried using the ambient pressure drying (APD) and freeze-drying (FD) methods. The effects of the weight fraction of rGO in the composites and the drying method on the textural, morphological, thermal, and rheological properties were examined for the dried samples. The obtained results indicate that APD leads to the formation of non-porous xerogels (X) of high bulk density (D), while FD results in the formation of highly porous aerogels (A) with low D. An increase in the weight fraction of rGO in the composite xerogels leads to an increase in D, specific surface area (SA), pore volume (Vp), average pore diameter (dp), and porosity (P). With an increase in the weight fraction of rGO in A-composites, the D values increase while the values of SP, Vp, dp, and P decrease. Thermo-degradation (TD) of both X and A composites takes place through three distinct steps: dehydration, decomposition of residual oxygen functional group, and polymer chain degradation. The thermal stabilities (TS) of the X-composites and X-rGO are higher than those of the A-composites and A-rGO. The values of the storage modulus (E') and the loss modulus (E") of the A-composites increase with the increase in their weight fraction of rGO.

12.
Gels ; 9(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36826330

RESUMO

Ambient pressure drying (APD) can prospectively reduce the costs of aerogel fabrication and processing. APD relies solely on preventing shrinkage or making it reversible. The latter, i.e., the aerogel re-expansion after drying (so-called springback effect-SBE), needs to be controlled for reproducible aerogel fabrication by APD. This can be achieved by an appropriate surface functionalization of aerogel materials (e.g., SiO2). This work addresses the fabrication of monolithic SiO2 aerogels and xerogels by APD. The effect of several silylation agents, i.e., trimethylchlorosilane, triethylchlorosilane, and hexamethyldisilazane on the SBE is studied in detail, applying several complementary experimental techniques, allowing the evaluation of the macroscopic and microscopic morphology as well as the composition of SiO2 aerogels. Here, we show that some physical properties, e.g., the bulk density, the macroscopic structure, and pore sizes/volumes, were significantly affected by the re-expansion. However, silylation did not necessarily lead to full re-expansion. Therefore, similarities in the molecular composition could not be equated to similarities in the SBE. The influences of steric hindrance and reactivity are discussed. The impact of silylation is crucial in tailoring the SBE and, as a result, the APD of monolithic aerogels.

13.
Int J Biol Macromol ; 202: 632-643, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35065136

RESUMO

Carboxymethyl cellulose/ graphene composite aerogel beads (CMC/GAs) were prepared by the easily scaling-up method, i.e., wet spinning- environmental pressure drying method. The influences of the type and concentration of coagulating bath on the formation of aerogel beads were discussed, and the forming mechanism was analyzed. The CMC/GAs was characterized through SEM, XRD, FI-IR, Raman, XPS, electronic universal testing machine and other methods. The CMC/GAs-30 has an average particle size and a mean pore diameter of 3.83 mm and 82 µm, respectively. The analysis results indicated that the adsorption mechanisms of CMC/GAs on methylene blue (MB) are mainly through the electrostatic interaction. The adsorption process conforms to the Langmuir model (R2 = 0.9964) and pseudo-second-order kinetic model (R2 is higher than 0.99). When the particle size of CMC/GAs-30 decreases, the equilibrium adsorption capacity for MB increases. Under the experimental conditions explored, the Langmuir maximum adsorption capacity of CMC/GAs-30 for MB is 222.72 mg.g-1. The CMC/GAs-30 show good recycle performance in MB adsorption. The removal rate of MB from water by CMC/GAs-30 remained at about 90% after 30-times adsorption- regeneration cycles.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Carboximetilcelulose Sódica , Cinética , Azul de Metileno
14.
Materials (Basel) ; 15(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207993

RESUMO

In this paper, we report a new and convenient method for the synthesis of insulating aerogel by recycling solid waste coal gangue, which can reduce the industrial production cost of silica aerogels and realize high value-added utilization of solid waste. Sodium silicate was prepared from a cheap industrial waste coal gangue as the precursor for silica aerogels, which was used for silica wet gel preparation by a one pot method; this method of solvent exchange/surface modification was carried out quickly by mechanical stirring process, and the wet gels derived from coal gangue were dried under ambient pressure condition. A high surface area (~748 m2/g) nanostructured aerogel with a 3D open porous microstructure was synthesized, which exhibits a low density (~0.18 g/cm3) and a superior thermal insulation performance (~0.033 W·m-1·K-1). More significantly, the synthetic yield of silica aerogel powder by recycling coal gangue can reach 92%.

15.
Materials (Basel) ; 14(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34300901

RESUMO

To further reduce the manufacturing cost and improve safety, silica aerogel composites (SAC) with low density and low thermal conductivity synthesized via ambient pressure drying (APD) technology have gradually become one of the most focused research areas. As a solvent, ethanol is flammable and needs to be replaced by other low surface tension solvents, which is dangerous and time-consuming. Therefore, the key steps of solvent replacement and surface modification in the APD process need to be simplified. Here, we demonstrate a facile strategy for preparing high strength mullite fiber reinforced SAC, which is synthesized by APD using water as a solvent, rather than using surface modification or solvent replacement. The effects of the fiber density on the physical properties, mechanical properties, and thermal conductivities of SAC are discussed in detail. The results show that when the fiber density of SAC is 0.24 g/cm3, the thermal conductivity at 1100 °C is 0.127 W/m·K, and the compressive strength at 10% strain is 1.348 MPa. Because of the simple synthesis process and excellent thermal-mechanical performance, the SAC is expected to be used as an efficient and economical insulation material.

16.
J Colloid Interface Sci ; 600: 764-774, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34051464

RESUMO

Methyltriethoxysilane based aerogel monoliths with excellent mechanical properties, an ultra-low density, and a highly efficient thermal insulating property were prepared by an improved simple and environmental-friendly ambient pressure drying process. The morphology, particle size, and nano-pore volume of aerogel monoliths were characterized by scanning electron microscope and nitrogen gas adsorption-desorption analyzer. The elastic modulus of particles in aerogel monoliths and the compressive stress-strain response of aerogel monoliths were estimated based upon experimental data obtained via atomic force microscope and materials testing machine. A structural model is proposed to estimate the critical compressive stress with a structural coefficient being introduced to manifest the microstructural integrity of aerogel monoliths. The mechanism for the low bulk density aerogel monoliths to exhibit a linear stress-strain response and a non-buckling failure mode under the uniaxial compression is discussed.

17.
Ultrason Sonochem ; 73: 105476, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581468

RESUMO

Silica xerogels were prepared by the sol-gel method under ultrasonic irradiation, using tetraethylorthosilicate (TEOS) as the starting material. Hexamethyldisiloxane (HMDSO) was used as the hydrophobizing agent. When preparing silica xerogel, it is necessary to perform aging and hydrophobization to suppress shrinkage during ambient pressure drying, however, such treatments are time-consuming. In this study, the semi-solid hydrogel was irradiated with ultrasonic for the first time in order to accelerate aging and hydrophobic treatment, and the effect of ultrasonic frequency on structure was investigated. Firstly, ultrasonic irradiation was performed at frequencies of 100 kHz and 500 kHz, followed by hydrophobic treatment at a frequency of 500 kHz, in order to promote aging. The results identify optimum conditions for ultrasonic irradiation to promote aging and hydrophobization reactions, and it was found to be possible to prepare silica xerogels in less than 1/5 of the conventional time. The silica xerogels had a low density and the shrinkage was suppressed. In this study, it was found that ultrasonic irradiation of semi-solid hydrogel was very effective for promoting the reaction.

18.
J Hazard Mater ; 408: 124858, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385720

RESUMO

Silica aerogels are ultra-porous materials with three-dimensional cage-like morphology that makes these materials ideal for separation applications. However, their hydrophilic behavior and shrinkage of the porous network during drying makes them impractical for such applications. Therefore, conducting a proper modification strategy is crucial both in imparting a hydrophobic behavior to aerogels and in preserving the porous network during drying. This study evaluated the performance of silica aerogels silylated with mono (TMCS), tri (MTMS, MTES), or organofunctional silanes (MEMO, GLYMO) as potential adsorbing materials for oil pollution remediation. Silica aerogels were prepared by the sol-gel method under ambient conditions and were characterized by conducting Si-NMR, BET, TGA, and contact angle measurements. Among the samples, silica aerogels modified with TMCS and MTMS exhibited good hydrophobicity (θ > 140°), well-constructed solid network with mesoporous structure, high porosity (94%, 89%), and low density (0.13 g/cm3 and 0.24 g/cm3). These samples also can selectively separate oil or organic solvents from water and the adsorption capacity can reach 12.5 g/g and 8.7 g/g for S-TMCS and S-MTMS, respectively. They displayed enduring adsorption property for organic solvents after 7 cycles, which shows that silica aerogels modified with TMCS and MTMS can be promising candidates for oil/organic solvent clean up practices.

19.
ACS Nano ; 15(1): 1436-1444, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33405895

RESUMO

Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or "xerogels" that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (>400 m2 g-1) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06-0.07 W m-1 K-1), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.

20.
Nanomaterials (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498246

RESUMO

The article presents the synthesis of silica aerogel from a much cheaper precursor of water glass that was reinforced with short pitch carbon fiber by way of ambient pressure drying. Before being added to the silica gel, the carbon fibers were surface modified to increase adhesion at the interfacial border. We were able to obtain stable structures of the composite with the amount of fibers above 10% by volume. The presence of fibers in the silica matrix resulted in lower synthesis time of the composite, improved adhesion of fibers to the aerogel nanostructure, and increased mechanical and structural parameters. An additional effect of the presence of fibers in excess of 10% by volume was a new function of the nanocomposite-the ability to conduct electric current. The most optimal parameters of the composite, however, were obtained for silica aerogel reinforced with 10 vol.% of carbon fibers. This material indicated relatively low density and good physical parameters. The paper also analyzes the results on the synthesis of fiber-reinforced silica aerogels that have appeared in recent years and compares these to the results gained in presented work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA