Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.520
Filtrar
Mais filtros

Temas
Intervalo de ano de publicação
1.
Cell ; 186(10): 2044-2061, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172561

RESUMO

Phenotypic sex-based differences exist for many complex traits. In other cases, phenotypes may be similar, but underlying biology may vary. Thus, sex-aware genetic analyses are becoming increasingly important for understanding the mechanisms driving these differences. To this end, we provide a guide outlining the current best practices for testing various models of sex-dependent genetic effects in complex traits and disease conditions, noting that this is an evolving field. Insights from sex-aware analyses will not only teach us about the biology of complex traits but also aid in achieving the goals of precision medicine and health equity for all.


Assuntos
Modelos Genéticos , Caracteres Sexuais , Animais , Feminino , Masculino , Herança Multifatorial , Fenótipo , Controle de Qualidade , Estudo de Associação Genômica Ampla , Guias como Assunto , Interação Gene-Ambiente , Humanos
2.
Cell ; 184(16): 4237-4250.e19, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297924

RESUMO

The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of "minimalist" histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of "organisms" that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses.


Assuntos
Vírus de DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Amoeba/virologia , Corantes Fluorescentes/metabolismo , Histonas/química , Modelos Moleculares , Proteômica , Vírion/metabolismo
3.
Mol Cell Proteomics ; 23(9): 100824, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097268

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) suffers from a lack of an effective diagnostic method, which hampers improvement in patient survival. Carbohydrate antigen 19-9 (CA19-9) is the only FDA-approved blood biomarker for PDAC, yet its clinical utility is limited due to suboptimal performance. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a burgeoning technology in clinical proteomics for the discovery, verification, and validation of novel biomarkers. A plethora of protein biomarker candidates for PDAC have been identified using LC-MS, yet few has successfully transitioned into clinical practice. This translational standstill is owed partly to insufficient considerations of practical needs and perspectives of clinical implementation during biomarker development pipelines, such as demonstrating the analytical robustness of proposed biomarkers which is critical for transitioning from research-grade to clinical-grade assays. Moreover, the throughput and cost-effectiveness of proposed assays ought to be considered concomitantly from the early phases of the biomarker pipelines for enhancing widespread adoption in clinical settings. Here, we developed a fit-for-purpose multi-marker panel for PDAC diagnosis by consolidating analytically robust biomarkers as well as employing a relatively simple LC-MS protocol. In the discovery phase, we comprehensively surveyed putative PDAC biomarkers from both in-house data and prior studies. In the verification phase, we developed a multiple-reaction monitoring (MRM)-MS-based proteomic assay using surrogate peptides that passed stringent analytical validation tests. We adopted a high-throughput protocol including a short gradient (<10 min) and simple sample preparation (no depletion or enrichment steps). Additionally, we developed our assay using serum samples, which are usually the preferred biospecimen in clinical settings. We developed predictive models based on our final panel of 12 protein biomarkers combined with CA19-9, which showed improved diagnostic performance compared to using CA19-9 alone in discriminating PDAC from non-PDAC controls including healthy individuals and patients with benign pancreatic diseases. A large-scale clinical validation is underway to demonstrate the clinical validity of our novel panel.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Detecção Precoce de Câncer , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/sangue , Biomarcadores Tumorais/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Detecção Precoce de Câncer/métodos , Proteômica/métodos , Cromatografia Líquida , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Espectrometria de Massas/métodos
4.
Proc Natl Acad Sci U S A ; 120(11): e2218960120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877848

RESUMO

HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms of HIV post-treatment control will inform development of strategies aiming at achieving HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demographics or frequency of protective and susceptible human leukocyte antigen (HLA) alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activation, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis (sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell exhaustion level. These results provide insights into the key viral reservoir features and immunological profiles for HIV PTCs and have implications for future studies evaluating interventions to achieve an HIV functional cure.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Células Matadoras Naturais , Ativação Linfocitária , RNA , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Viremia
5.
J Biol Chem ; 300(9): 107624, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098532

RESUMO

Human complement factor H (CFH) plays a central role in regulating activated C3b to protect host cells. CFH contain 20 short complement regulator (SCR) domains and eight N-glycosylation sites. The N-terminal SCR domains mediate C3b degradation while the C-terminal CFH domains bind to host cell surfaces to protect these. Our earlier study of Pichia-generated CFH fragments indicated a self-association site at SCR-17/18 that comprises a dimerization site for human factor H. Two N-linked glycans are located on SCR-17 and SCR-18. Here, when we expressed SCR-17/18 without glycans in an Escherichia coli system, analytical ultracentrifugation showed that no dimers were now formed. To investigate this novel finding, full-length CFH and its C-terminal fragments were purified from human plasma and Pichia pastoris respectively, and their glycans were enzymatically removed using PNGase F. Using size-exclusion chromatography, mass spectrometry, and analytical ultracentrifugation, SCR-17/18 from Pichia showed notably less dimer formation without its glycans, confirming that the glycans are necessary for the formation of SCR-17/18 dimers. By surface plasmon resonance, affinity analyses interaction showed decreased binding of deglycosylated full-length CFH to immobilized C3b, showing that CFH glycosylation enhances the key CFH regulation of C3b. We conclude that our study revealed a significant new aspect of CFH regulation based on its glycosylation and its resulting dimerization.


Assuntos
Fator H do Complemento , Polissacarídeos , Fator H do Complemento/metabolismo , Fator H do Complemento/química , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/química , Glicosilação , Domínios Proteicos , Multimerização Proteica , Complemento C3b/metabolismo , Complemento C3b/química , Saccharomycetales/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
6.
J Biol Chem ; 300(7): 107458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857862

RESUMO

The function of endogenous cell-cell signaling peptides relies on their interactions with cognate receptors, which in turn are influenced by the peptides' structures, necessitating a comprehensive understanding of the suite of post-translational modifications of the peptide. Herein, we report the initial characterization of putative peptide isomerase enzymes extracted from R. norvegicus, A. californica, and B. taurus tissues. These enzymes are both tissue and substrate-specific across all three organisms. Notably, the lungs of the mammalian species, and the central nervous system of the mollusk displayed the highest isomerase activity among the examined tissues. In vitro enzymatic conversion was observed for several endogenous peptides, such as the tetrapeptide GFFD in A. californica, and mammalian neuropeptide FF in R. norvegicus and B. taurus. To understand their mode of action, we explored the effects of several inhibitors on these enzymes, which suggest common active site residues. While further characterization of these enzymes is required, the investigations emphasize a widespread and overlooked enzyme activity related to the creation of bioactive peptides.


Assuntos
Oligopeptídeos , Animais , Especificidade por Substrato , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Isomerases/metabolismo , Isomerases/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos
7.
J Biol Chem ; 300(1): 105452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949218

RESUMO

Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF-related protein family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE and that larger species are dispensable for BMP inhibition. Additionally, we used an in silico approach to identify a helix, termed the ligand-binding domain, that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the ligand-binding domain is crucial for activity through luciferase assays and surface plasmon resonance analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.


Assuntos
Proteínas Morfogenéticas Ósseas , Hormônios Peptídicos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Ligantes , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Hormônios Peptídicos/genética , Hormônios Peptídicos/isolamento & purificação , Hormônios Peptídicos/farmacologia , Multimerização Proteica/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Domínios Proteicos , Humanos
8.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36847692

RESUMO

Single-cell ribonucleic acid (RNA)-sequencing (scRNA-seq) is a powerful tool to study cellular heterogeneity. The high dimensional data generated from this technology are complex and require specialized expertise for analysis and interpretation. The core of scRNA-seq data analysis contains several key analytical steps, which include pre-processing, quality control, normalization, dimensionality reduction, integration and clustering. Each step often has many algorithms developed with varied underlying assumptions and implications. With such a diverse choice of tools available, benchmarking analyses have compared their performances and demonstrated that tools operate differentially according to the data types and complexity. Here, we present Integrated Benchmarking scRNA-seq Analytical Pipeline (IBRAP), which contains a suite of analytical components that can be interchanged throughout the pipeline alongside multiple benchmarking metrics that enable users to compare results and determine the optimal pipeline combinations for their data. We apply IBRAP to single- and multi-sample integration analysis using primary pancreatic tissue, cancer cell line and simulated data accompanied with ground truth cell labels, demonstrating the interchangeable and benchmarking functionality of IBRAP. Our results confirm that the optimal pipelines are dependent on individual samples and studies, further supporting the rationale and necessity of our tool. We then compare reference-based cell annotation with unsupervised analysis, both included in IBRAP, and demonstrate the superiority of the reference-based method in identifying robust major and minor cell types. Thus, IBRAP presents a valuable tool to integrate multiple samples and studies to create reference maps of normal and diseased tissues, facilitating novel biological discovery using the vast volume of scRNA-seq data available.


Assuntos
Benchmarking , Software , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Perfilação da Expressão Gênica/métodos
9.
Hum Genomics ; 18(1): 72, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937848

RESUMO

BACKGROUND: Wastewater surveillance (WWS) acts as a vigilant sentinel system for communities, analysing sewage to protect public health by detecting outbreaks and monitoring trends in pathogens and contaminants. To achieve a thorough comprehension of present and upcoming practices and to identify challenges and opportunities for standardisation and improvement in WWS methodologies, two EU surveys were conducted targeting over 750 WWS laboratories across Europe and other regions. The first survey explored a diverse range of activities currently undertaken or planned by laboratories. The second survey specifically targeted methods and quality controls utilised for SARS-CoV-2 surveillance. RESULTS: The findings of the two surveys provide a comprehensive insight into the procedures and methodologies applied in WWS. In Europe, WWS primarily focuses on SARS-CoV-2 with 99% of the survey participants dedicated to this virus. However, the responses highlighted a lack of standardisation in the methodologies employed for monitoring SARS-CoV-2. The surveillance of other pathogens, including antimicrobial resistance, is currently fragmented and conducted by only a limited number of laboratories. Notably, these activities are anticipated to expand in the future. Survey replies emphasise the collective recognition of the need to enhance the accuracy of results in WWS practices, reflecting a shared commitment to advancing precision and effectiveness in WWS methodologies. CONCLUSIONS: These surveys identified a lack of standardised common procedures in WWS practices and the need for quality standards and reference materials to enhance the accuracy and reliability of WWS methods in the future. In addition, it is important to broaden surveillance efforts beyond SARS-CoV-2 to include other emerging pathogens and antimicrobial resistance to ensure a comprehensive approach to protecting public health.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , Águas Residuárias/virologia , Águas Residuárias/microbiologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Europa (Continente)/epidemiologia , Inquéritos e Questionários , Esgotos/virologia , Esgotos/microbiologia , Resistência Microbiana a Medicamentos
10.
Mol Cell Proteomics ; 22(6): 100562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142056

RESUMO

Modern mass spectrometers routinely allow deep proteome coverage in a single experiment. These methods are typically operated at nanoflow and microflow regimes, but they often lack throughput and chromatographic robustness, which is critical for large-scale studies. In this context, we have developed, optimized, and benchmarked LC-MS methods combining the robustness and throughput of analytical flow chromatography with the added sensitivity provided by the Zeno trap across a wide range of cynomolgus monkey and human matrices of interest for toxicological studies and clinical biomarker discovery. Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) data-independent acquisition (DIA) experiments with Zeno trap activated (Zeno SWATH DIA) provided a clear advantage over conventional SWATH DIA in all sample types tested with improved sensitivity, quantitative robustness, and signal linearity as well as increased protein coverage by up to 9-fold. Using a 10-min gradient chromatography, up to 3300 proteins were identified in tissues at 2 µg peptide load. Importantly, the performance gains with Zeno SWATH translated into better biological pathway representation and improved the ability to identify dysregulated proteins and pathways associated with two metabolic diseases in human plasma. Finally, we demonstrate that this method is highly stable over time with the acquisition of reliable data over the injection of 1000+ samples (14.2 days of uninterrupted acquisition) without the need for human intervention or normalization. Altogether, Zeno SWATH DIA methodology allows fast, sensitive, and robust proteomic workflows using analytical flow and is amenable to large-scale studies.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Humanos , Espectrometria de Massas em Tandem/métodos , Macaca fascicularis , Proteômica/métodos , Software , Cromatografia Líquida/métodos , Proteoma
11.
Proc Natl Acad Sci U S A ; 119(18): e2201922119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486696

RESUMO

SignificanceThe electroconversion of CO2 to value-added products is a promising path to sustainable fuels and chemicals. However, the microenvironment that is created during CO2 electroreduction near the surface of heterogeneous Cu electrocatalysts remains unknown. Its understanding can lead to the development of ways to improve activity and selectivity toward multicarbon products. This work introduces a method called on-stream substitution of reactant isotope that provides quantitative information of the CO intermediate species present on Cu surfaces during electrolysis. An intermediary CO reservoir that contains more CO molecules than typically expected in a surface adsorbed configuration was identified. Its size was shown to be a factor closely associated with the formation of multicarbon products.

12.
Proc Natl Acad Sci U S A ; 119(44): e2203150119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306328

RESUMO

This study explores how researchers' analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers' expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team's workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers' results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.


Assuntos
Análise de Dados , Pesquisadores , Humanos , Incerteza , Reprodutibilidade dos Testes
13.
Nano Lett ; 24(29): 9088-9095, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979827

RESUMO

Hydrogels consist of three-dimensional (3D) and complicated polymer networks that determine their physical properties. Among the methods for structural analyses of hydrogels, the real-space imaging of a polymer network of hydrogels on a nanometer scale is one of the optimal methods; however, it is highly challenging. In this study, we propose a direct observation method for cationic polymer networks using transmission electron microscopy (TEM). By combining the double network strategy and the mineral staining technique, we overcame the challenges of polymer aggregation and the low electron density of the polymer. An objective cationic network was incorporated into a neutral skeleton network to suppress shrinkage during subsequent staining. Titania mineralization along the cationic polymer strands provided sufficient electron density for the objective polymer network for TEM observation. This observation method enables the visualization of local structures in real space and plays a complementary role to scattering methods for soft matter structure analysis.

14.
Nano Lett ; 24(13): 3882-3889, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527217

RESUMO

We develop analytical models of optical-field-driven electron tunneling from the edge and surface of free-standing two-dimensional (2D) materials. We discover a universal scaling between the tunneling current density (J) and the electric field near the barrier (F): In(J/|F|ß) ∝ 1/|F| with ß values of 3/2 and 1 for edge emission and vertical surface emission, respectively. At ultrahigh values of F, the current density exhibits an unexpected high-field saturation effect due to the reduced dimensionality of the 2D material, which is absent in the traditional bulk material. Our calculation reveals the dc bias as an efficient method for modulating the optical-field tunneling subcycle emission characteristics. Importantly, our model is in excellent agreement with a recent experiment on graphene. Our results offer a useful framework for understanding optical-field tunneling emission from 2D materials, which are helpful for the development of optoelectronics and emerging petahertz vacuum nanoelectronics.

15.
Proteomics ; 24(1-2): e2300100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37287406

RESUMO

Increased throughput in proteomic experiments can improve accessibility of proteomic platforms, reduce costs, and facilitate new approaches in systems biology and biomedical research. Here we propose combination of analytical flow rate chromatography with ion mobility separation of peptide ions, data-independent acquisition, and data analysis with the DIA-NN software suite, to achieve high-quality proteomic experiments from limited sample amounts, at a throughput of up to 400 samples per day. For instance, when benchmarking our workflow using a 500-µL/min flow rate and 3-min chromatographic gradients, we report the quantification of 5211 proteins from 2 µg of a mammalian cell-line standard at high quantitative accuracy and precision. We further used this platform to analyze blood plasma samples from a cohort of COVID-19 inpatients, using a 3-min chromatographic gradient and alternating column regeneration on a dual pump system. The method delivered a comprehensive view of the COVID-19 plasma proteome, allowing classification of the patients according to disease severity and revealing plasma biomarker candidates.


Assuntos
COVID-19 , Proteômica , Animais , Humanos , Proteômica/métodos , Peptídeos/análise , Proteoma/análise , Cromatografia Líquida/métodos , Mamíferos/metabolismo
16.
Med Res Rev ; 44(1): 23-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246889

RESUMO

Cytokines are compounds that belong to a special class of signaling biomolecules that are responsible for several functions in the human body, being involved in cell growth, inflammatory, and neoplastic processes. Thus, they represent valuable biomarkers for diagnosing and drug therapy monitoring certain medical conditions. Because cytokines are secreted in the human body, they can be detected in both conventional samples, such as blood or urine, but also in samples less used in medical practice such as sweat or saliva. As the importance of cytokines was identified, various analytical methods for their determination in biological fluids were reported. The gold standard in cytokine detection is considered the enzyme-linked immunosorbent assay method and the most recent ones have been considered and compared in this study. It is known that the conventional methods are accompanied by a few disadvantages that new methods of analysis, especially electrochemical sensors, are trying to overcome. Electrochemical sensors proved to be suited for the elaboration of integrated, portable, and wearable sensing devices, which could also facilitate cytokines determination in medical practice.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Saliva/química , Técnicas Biossensoriais/métodos
17.
J Proteome Res ; 23(1): 16-24, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37985371

RESUMO

α-Synuclein (α-Syn) misfolding and its presence in Lewy bodies are observed in almost all Parkinson's disease (PD) patients. Basic biomedical research would benefit from a quick, low-cost approach to purifying α-Syn and developing in vitro and in vivo models for PD. Several research groups utilize PFF-based models, yet the production of α-Syn PFFs is inconsistent, resulting in nonconclusive findings. Some research laboratories prepare recombinant α-Syn (r α-Syn) by molecular cloning to overexpress α-Syn with various purifying techniques. Laboratory-to-laboratory protocols cause considerable variability and sometimes contradictory findings. PD researchers spend more on protein than solving α-Syn's riddles. This article uncovered a novel method for expressing and purifying r α-Syn validated through gage reproducibility and repeatability (Gage R&R). For the production of r α-Syn, we have employed the ability of a high-cell-density-based expression system to overexpress protein in BL21(DE3). A simple, high-throughput, nonchromatographical purification protocol has been devised to facilitate research with higher reproducibility, which was validated through Gage R&R. A crossover experimental design was utilized, and the purified protein was characterized using orthogonal high-end analytical methods, which displayed higher similarity between the isolated r α-Syn. Batch-to-batch variability was the least for produced protein and hence can be utilized for exploring the iceberg of PD.


Assuntos
Pesquisa Biomédica , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Reprodutibilidade dos Testes , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Corpos de Lewy
18.
J Biol Chem ; 299(2): 102874, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623730

RESUMO

Enzymes of the mixed lineage leukemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases are critical for cellular differentiation and development and are regulated by interaction with a conserved subcomplex consisting of WDR5, RbBP5, Ash2L, and DPY30. While pairwise interactions between complex subunits have been determined, the mechanisms regulating holocomplex assembly are unknown. In this investigation, we systematically characterized the biophysical properties of a reconstituted human MLL1 core complex and found that the MLL1-WDR5 heterodimer interacts with the RbBP5-Ash2L-DPY30 subcomplex in a hierarchical assembly pathway that is highly dependent on concentration and temperature. Surprisingly, we found that the disassembled state is favored at physiological temperature, where the enzyme rapidly becomes irreversibly inactivated, likely because of complex components becoming trapped in nonproductive conformations. Increased protein concentration partially overcomes this thermodynamic barrier for complex assembly, suggesting a potential regulatory mechanism for spatiotemporal control of H3K4 methylation. Together, these results are consistent with the hypothesis that regulated assembly of the MLL1 core complex underlies an important mechanism for establishing different H3K4 methylation states in mammalian genomes.


Assuntos
Histonas , Leucemia , Multimerização Proteica , Temperatura , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína
19.
J Biol Chem ; 299(10): 105204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660926

RESUMO

Enzymes that regulate the degree of histone H3 lysine 4 (H3K4) methylation are crucial for proper cellular differentiation and are frequently mutated in cancer. The Mixed lineage leukemia (MLL) family of enzymes deposit H3K4 mono-, di-, or trimethylation at distinct genomic locations, requiring precise spatial and temporal control. Despite evidence that the degree of H3K4 methylation is controlled in part by a hierarchical assembly pathway with key subcomplex components, we previously found that the assembled state of the MLL1 core complex is not favored at physiological temperature. To better understand this paradox, we tested the hypothesis that increasing the concentration of subunits in a biomolecular condensate overcomes this thermodynamic barrier via mass action. Here, we demonstrate that MLL1 core complex phase separation stimulates enzymatic activity up to 60-fold but not primarily by concentrating subunits into droplets. Instead, we found that stimulated activity is largely due to the formation of an altered oligomeric scaffold that greatly reduces substrate Km. We posit that phase separation-induced scaffolding of the MLL1 core complex is a potential "switch-like" mechanism for spatiotemporal control of H3K4 methylation through the rapid formation or dissolution of biomolecular condensates within RNA Pol II transcription factories.


Assuntos
Histonas , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide , Subunidades Proteicas , Humanos , Histonas/metabolismo , Metilação , Proteína de Leucina Linfoide-Mieloide/metabolismo , Separação de Fases , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Estrutura Quaternária de Proteína , Termodinâmica , Ativação Enzimática
20.
J Biol Chem ; 299(11): 105337, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838175

RESUMO

Heavy chain-only antibodies can offer advantages of higher binding affinities, reduced sizes, and higher stabilities than conventional antibodies. To address the challenge of SARS-CoV-2 coronavirus, a llama-derived single-domain nanobody C5 was developed previously that has high COVID-19 virus neutralization potency. The fusion protein C5-Fc comprises two C5 domains attached to a glycosylated Fc region of a human IgG1 antibody and shows therapeutic efficacy in vivo. Here, we have characterized the solution arrangement of the molecule. Two 1443 Da N-linked glycans seen in the mass spectra of C5-Fc were removed and the glycosylated and deglycosylated structures were evaluated. Reduction of C5-Fc with 2-mercaptoethylamine indicated three interchain Cys-Cys disulfide bridges within the hinge. The X-ray and neutron Guinier RG values, which provide information about structural elongation, were similar at 4.1 to 4.2 nm for glycosylated and deglycosylated C5-Fc. To explain these RG values, atomistic scattering modeling based on Monte Carlo simulations resulted in 72,737 and 56,749 physically realistic trial X-ray and neutron structures, respectively. From these, the top 100 best-fit X-ray and neutron models were identified as representative asymmetric solution structures, similar to that of human IgG1, with good R-factors below 2.00%. Both C5 domains were solvent exposed, consistent with the functional effectiveness of C5-Fc. Greater disorder occurred in the Fc region after deglycosylation. Our results clarify the importance of variable and exposed C5 conformations in the therapeutic function of C5-Fc, while the glycans in the Fc region are key for conformational stability in C5-Fc.


Assuntos
Anticorpos Antivirais , Cadeias Pesadas de Imunoglobulinas , SARS-CoV-2 , Humanos , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/química , Modelos Moleculares , Polissacarídeos , Anticorpos Antivirais/química , Anticorpos de Domínio Único/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA