RESUMO
To evaluate the change of total antioxidant capacity (TAC) and ascorbic acid (AA) between femtosecond laser in situ keratomileusis (FS-LASIK) and laser-assisted lenticule extraction (LALEX). A prospective non-randomized study was conducted, and 33 and 75 eyes that had undergone FS-LASIK or LALEX surgeries were enrolled, respectively. The tear films near corneal incisions were collected, and the concentrations of TAC and AA were determined. The generalized linear mixed model was adopted to calculate the adjusted odds ratio (aOR) with 95% confidence interval (CI) of TAC and AA between the two groups. The AA reduction was significant 1 month after the LALEX and FS-LASIK procedures (both p < 0.05), and the decrement in AA level was significantly larger in the FS-LASIK group compared to the LALEX group (p = 0.0002). In the subgroup analysis, the LALEX group demonstrated a lower decrement in TAC level in the individuals with dry eye disease (DED) than the FS-LASIK group (p = 0.0424), and the LALEX group demonstrated a significantly lower AA decrement in the participants with high myopia (p = 0.0165) and DED (p = 0.0043). The LALEX surgery causes lesser AA decrement compared to FS-LASIK surgery especially for the patients with DED.
Assuntos
Ceratomileuse Assistida por Excimer Laser In Situ , Humanos , Ceratomileuse Assistida por Excimer Laser In Situ/métodos , Antioxidantes , Estudos Prospectivos , Lasers de Excimer/uso terapêutico , Córnea/cirurgiaRESUMO
Recent advancements in the treatment of melanoma are encouraging, but there remains a need to identify additional therapeutic targets. We identify a role for microsomal glutathione transferase 1 (MGST1) in biosynthetic pathways for melanin and as a determinant of tumor progression. Knockdown (KD) of MGST1 depleted midline-localized, pigmented melanocytes in zebrafish embryos, while in both mouse and human melanoma cells, loss of MGST1 resulted in a catalytically dependent, quantitative, and linear depigmentation, associated with diminished conversion of L-dopa to dopachrome (eumelanin precursor). Melanin, especially eumelanin, has antioxidant properties, and MGST1 KD melanoma cells are under higher oxidative stress, with increased reactive oxygen species, decreased antioxidant capacities, reduced energy metabolism and ATP production, and lower proliferation rates in 3D culture. In mice, when compared to nontarget control, Mgst1 KD B16 cells had less melanin, more active CD8+ T cell infiltration, slower growing tumors, and enhanced animal survival. Thus, MGST1 is an integral enzyme in melanin synthesis and its inhibition adversely influences tumor growth.
Assuntos
Glutationa Transferase , Melaninas , Melanoma , Animais , Humanos , Camundongos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Melaninas/biossíntese , Melanoma/genética , Melanoma/imunologia , Melanoma/fisiopatologia , Peixe-Zebra/metabolismo , Oxirredução , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Proliferação de Células/genéticaRESUMO
This study was carried out to investigate the effects of melatonin applications on postharvest quality changes of organic and conventionally grown plum fruit. Melatonin was applied in 0, 50, and 100 µmol L- 1 for organic and conventional samples. The fruits were stored at + 2.0 °C and 90% relative humidity for 28 days. During the storage period, the color, weight loss, firmness, Soluble solids concentration (SSC), titratable acidity (TA), pH, total antioxidant content, and total phenolics were evaluated at 7-day intervals. While no effect of melatonin applications on weight loss of organically grown plums was observed, it was determined that weight loss decreased as the dose of melatonin increased in conventionally grown plums. The lowest weight loss during storage was determined in conventionally grown plums treated with 100 µmolL- 1 melatonin. It was observed that the firmness values decreased as the storage period increased in both cultivation methods. The firmness decreased as the dose of melatonin application increased in organically grown plums, while the firmness increased as the dose of melatonin application increased in conventional cultivation. Melatonin application did not positively affect SSC, pH, and color values. However, it was determined that the mean TA values decreased as the dose of melatonin increased in both cultivation methods. When the total phenol content of organic and conventional plums was examined, it was determined that melatonin application decreased the number of phenolic compounds. The highest phenolic content was determined in the control samples. The total amount of antioxidants was 1.71 µmol TE g- 1 on the 28th day in the highest (100 µmol L- 1) melatonin-treated conventionally grown plums.
Assuntos
Armazenamento de Alimentos , Frutas , Melatonina , Prunus domestica , Melatonina/farmacologia , Armazenamento de Alimentos/métodos , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/química , Prunus domestica/efeitos dos fármacos , Prunus domestica/crescimento & desenvolvimento , Antioxidantes/metabolismo , Fenóis/metabolismo , Agricultura Orgânica/métodosRESUMO
BACKGROUND: Boron (B) is a micronutrient, but excessive levels can cause phytotoxicity, impaired growth, and reduced photosynthesis. B toxicity arises from over-fertilization, high soil B levels, or irrigation with B-rich water. Conversely, silicon (Si) is recognized as an element that mitigates stress and alleviates the toxic effects of certain nutrients. In this study, to evaluate the effect of different concentrations of Si on maize under boron stress conditions, a factorial experiment based on a randomized complete block design was conducted with three replications in a hydroponic system. The experiment utilized a nutrient solution for maize var. Merit that contained three different boron (B) concentrations (0.5, 2, and 4 mg L-1) and three Si concentrations (0, 28, and 56 mg L-1). RESULTS: Our findings unveiled that exogenous application of B resulted in a substantial escalation of B concentration in maize leaves. Furthermore, B exposure elicited a significant diminution in fresh and dry plant biomass, chlorophyll index, chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids, and membrane stability index (MSI). As the B concentration augmented, malondialdehyde (MDA) content and catalase (CAT) enzyme activity exhibited a concomitant increment. Conversely, the supplementation of Si facilitated an amelioration in plant fresh and dry weight, total carbohydrate, and total soluble protein. Moreover, the elevated activity of antioxidant enzymes culminated in a decrement in hydrogen peroxide (H2O2) and MDA content. In addition, the combined influence of Si and B had a statistically significant impact on the leaf chlorophyll index, total chlorophyll (a + b) content, Si and B accumulation levels, as well as the enzymatic activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and H2O2 levels. These unique findings indicated the detrimental impact of B toxicity on various physiological and biochemical attributes of maize, while highlighting the potential of Si supplementation in mitigating the deleterious effects through modulation of antioxidant machinery and biomolecule synthesis. CONCLUSIONS: This study highlights the potential of Si supplementation in alleviating the deleterious effects of B toxicity in maize. Increased Si consumption mitigated chlorophyll degradation under B toxicity, but it also caused a significant reduction in the concentrations of essential micronutrients iron (Fe), copper (Cu), and zinc (Zn). While Si supplementation shows promise in counteracting B toxicity, the observed decrease in Fe, Cu, and Zn concentrations warrants further investigation to optimize this approach and maintain overall plant nutritional status.
Assuntos
Boro , Clorofila , Hidroponia , Silício , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/metabolismo , Boro/toxicidade , Boro/metabolismo , Silício/farmacologia , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Malondialdeído/metabolismo , Carotenoides/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismoRESUMO
BACKGROUND: The global growth of pistachio production has prompted exploration into sustainable agricultural practices, on the application of humic substances such as fulvic acid in enhancing the quality of horticultural crops. The present study was carried out in Qom province, Iran, on 20 years old pistachio (Pistacia vera L. cv. Kaleh-Ghoochi) trees and investigated the impact of foliar spraying of fulvic acid at varying concentrations (1.5, 3, and 4.5 g L- 1) on the antioxidant and quality properties of pistachio. The different concentrations of fulvic acid were applied at two key stages: at the initiation of pistachio kernel formation (late June) and the development stage of pistachio kernel (late August), as well as at both time points. Following harvest at the horticulturally mature phase, various parameters, including total phenols, flavonoids, soluble proteins, soluble carbohydrate content, antioxidant capacity, and antioxidant enzyme activity, were assessed. RESULTS: Results indicated that foliar application of fulvic acid, particularly at 1.5 g L- 1 during both late June and August, effectively increased phenolic compounds (31.8%) and flavonoid content (24.53%). Additionally, this treatment also augmented antioxidant capacity and heightened the activity of catalase (CAT) (37.56%), ascorbate peroxidase (APX) (63.86%), and superoxide dismutase (SOD) (76.45%). Conversely, peroxidase (POX) (41.54%) activity was reduced in fulvic acid-treated nuts compared with controls. Moreover, the content of chlorophyll (45%) and carotenoids (46.7%) was enhanced using this organic fertilizer. In terms of mineral elements, the increment was observed in zinc (Zn) (58.23%) and potassium (K) (28.12%) amounts in treated nuts. Additionally, foliar application of fulvic acid led to elevated levels of soluble carbohydrates and proteins in treated nuts. CONCLUSIONS: In the present study, application of fulvic acid resulted in enhancement of antioxidant activity and quality traits of pistachio nut through an increase in total phenol, flavonoids, chlorophyll, carotenoids, K, Zn, and also activity of antioxidant enzymes. Therefore, use of fulvic acid emerges as a promising strategy to enhance the quality and nutritional attributes of pistachios, contributing to sustainable agricultural practices and improved crop outcomes.
Assuntos
Antioxidantes , Benzopiranos , Pistacia , Antioxidantes/análise , Flavonoides/análise , Fenóis , Carotenoides , Valor Nutritivo , ClorofilaRESUMO
Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.
Assuntos
Antioxidantes , Gases em Plasma , Plântula , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Gases em Plasma/farmacologia , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismoRESUMO
BACKGROUND: The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS: The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 µmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS: Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.
Assuntos
Ocimum basilicum , Fotoperíodo , Fotossíntese , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Metabolismo Secundário , GenótipoRESUMO
BACKGROUND: Vermicompost contains humic acids, nutrients, earthworm excretions, beneficial microbes, growth hormones, and enzymes, which help plants to tolerate a variety of abiotic stresses. Effective microorganisms (EM) include a wide range of microorganisms' e.g. photosynthetic bacteria, lactic acid bacteria, yeasts, actinomycetes, and fermenting fungi that can stimulate plant growth and improve soil fertility. To our knowledge, no study has yet investigated the possible role of vermicompost and EM dual application in enhancing plant tolerance to water scarcity. METHODS: Consequently, the current study investigated the effectiveness of vermicompost and EM in mitigating drought-induced changes in wheat. The experiment followed a completely randomized design with twelve treatments. The treatments included control, as well as individual and combined applications of vermicompost and EM at three different irrigation levels (100%, 70%, and 30% of field capacity). RESULTS: The findings demonstrated that the application of vermicompost and/or EM significantly improved wheat growth and productivity, as well as alleviated drought-induced oxidative damage with decreased the generation of superoxide anion radical and hydrogen peroxide. This was achieved by upregulating the activities of several antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. Vermicompost and/or EM treatments also enhanced the antioxidant defense system by increasing the content of antioxidant molecules such as ascorbate, glutathione, phenolic compounds, and flavonoids. Additionally, the overproduction of methylglyoxal in water-stressed treated plants was controlled by the enhanced activity of the glyoxalase system enzymes; glyoxalase I and glyoxalase II. The treated plants maintained higher water content related to the higher content of osmotic regulatory substances like soluble sugars, free amino acids, glycinebetaine, and proline. CONCLUSIONS: Collectively, we offer the first report that identifies the underlying mechanism by which the dual application of vermicompost and EM confers drought tolerance in wheat by improving osmolyte accumulation and modulating antioxidant defense and glyoxalase systems.
Assuntos
Antioxidantes , Secas , Triticum , Triticum/fisiologia , Triticum/metabolismo , Antioxidantes/metabolismo , Lactoilglutationa Liase/metabolismo , Compostagem , Osmorregulação , Oligoquetos/fisiologia , Oligoquetos/metabolismo , Regulação para Cima , Microbiologia do Solo , Animais , Solo/química , Resistência à Seca , Tioléster HidrolasesRESUMO
Cold stress negatively impacts the growth, development, and quality of Camellia sinensis (Cs, tea) plants. CBL-interacting protein kinases (CIPK) comprise a pivotal protein family involved in plant development and response to multiple environmental stimuli. However, their roles and regulatory mechanisms in tea plants (Camellia sinensis (L.) O. Kuntze) remain unknown. Here we show that CsCBL-interacting protein kinase 11 (CsCIPK11), whose transcript abundance was significantly induced at low temperatures, interacts and phosphorylates tau class glutathione S-transferase 23 (CsGSTU23). CsGSTU23 was also a cold-inducible gene and has significantly higher transcript abundance in cold-resistant accessions than in cold-susceptible accessions. CsCIPK11 phosphorylated CsGSTU23 at Ser37, enhancing its stability and enzymatic activity. Overexpression of CsCIPK11 in Arabidopsis thaliana resulted in enhanced cold tolerance under freezing conditions, while transient knockdown of CsCIPK11 expression in tea plants had the opposite effect, resulting in decreased cold tolerance and suppression of the C-repeat-binding transcription factor (CBF) transcriptional pathway under freezing stress. Furthermore, the transient overexpression of CsGSTU23 in tea plants increased cold tolerance. These findings demonstrate that CsCIPK11 plays a central role in the signaling pathway to cold signals and modulates antioxidant capacity by phosphorylating CsGSTU23, leading to improved cold tolerance in tea plants.
RESUMO
BACKGROUND: Hyperglycemia-induced oxidative stress is a well-established pathological mediator of vascular complications in diabetes. We assessed plasma oxidant and antioxidant levels in response to acute and chronic hyperglycemia in relation to vascular stiffness and varying degrees of kidney disease in type 1 diabetes individuals. METHODS: The acute hyperglycemia study included 22 type 1 diabetic individuals with normal albumin excretion rate (AER) and 13 non-diabetic controls. These individuals received an acute glucose challenge during a 120-minute hyperglycemic clamp. The chronic hyperglycemia study included 118 type 1 diabetic individuals with chronically low (n = 60) or high (n = 58) HbA1c concentrations and varying degrees of diabetic kidney disease (DKD) classified as normal, moderate, or severe albuminuria (AER). Levels of malondialdehyde (MDA), reactive oxygen metabolites (ROMs), total antioxidant capacity (TAC), biological antioxidant potential (BAP) and superoxide dismutase (SOD) were measured from plasma or serum samples in the FinnDiane study. RESULTS: Levels of MDA (p < 0.01) and ROMs (p < 0.01) were elevated in type 1 diabetes individuals compared to non-diabetic controls at baseline. Acute hyperglycemia further increased MDA levels (p < 0.05) and sustained the elevation of ROMs in type 1 diabetes individuals. Acute hyperglycemic challenge impaired TAC in both non-diabetic (p < 0.05) and type 1 diabetes (p < 0.01) individuals compared to baseline whereas BAP was increased (p < 0.05) with no difference observed in non-diabetic controls. There was a positive association between high circulating MDA and AIx (r2 = 0.611, p = 0.05), and between delta ROMs and delta AIx (r2 = 0.955, p = 0.014) in combined analysis of individuals with type 1 diabetes and non-diabetic controls. Type 1 diabetes individuals with varying status of DKD, showed elevated levels of ROMs in those with high HbA1c compared to their counterpart with low HbA1c (p < 0.05). Individuals with severe albuminuria showed elevated ROM levels (p < 0.01) and depressed antioxidant capacity (p < 0.01) compared to those with normal AER of comparable HbA1c concentrations. CONCLUSIONS: Biomarkers of oxidative stress are associated with vascular stiffness and DKD following acute and chronic hyperglycemic exposure and may provide added value to HbA1c in understanding disease pathology, predicting risk and assessing the status of secondary complications of type 1 diabetes.
Assuntos
Antioxidantes , Biomarcadores , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Hiperglicemia , Estresse Oxidativo , Rigidez Vascular , Humanos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Masculino , Feminino , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/etiologia , Hiperglicemia/sangue , Hiperglicemia/diagnóstico , Hiperglicemia/fisiopatologia , Antioxidantes/metabolismo , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Pessoa de Meia-Idade , Glicemia/metabolismo , Malondialdeído/sangue , Hemoglobinas Glicadas/metabolismo , Espécies Reativas de Oxigênio/sangue , Espécies Reativas de Oxigênio/metabolismo , Finlândia/epidemiologia , Doença Aguda , Oxidantes/sangue , Albuminúria/sangue , Albuminúria/diagnóstico , Albuminúria/fisiopatologia , Albuminúria/etiologia , Superóxido Dismutase/sangue , Doença CrônicaRESUMO
Koumine (KM) has anxiolytic, anti-inflammatory and growth-promoting effects in pigs and sheep. Based on the growth-promoting and immunological effects of koumine, the present study was conducted on Cyprinus carpio (C. carpio) with four KM concentrations: 0 mg/kg, 0.2 mg/kg, 2 mg/kg, and 20 mg/kg for 10 weeks, followed by a 1-week Aeromonas hydrophila (A. hydrophila) infection experiment. The effect of KM on the immunity of A. hydrophila infected carp was analyzed by histopathology, biochemical assay, and qRT-PCR to assess the feasibility of KM in aquaculture. The results showed that the presence of KM alleviated pathogen damage to carp tissues. At 2 mg/kg and 20 mg/kg concentrations of KM successively and significantly elevated (p < 0.05) the SOD activities in the intestinal tract, hepatopancreas and kidney of carp. The expression levels of hepatopancreatic antioxidant genes Nrf2 and IGF-1 were significantly up-regulated in the same group (p < 0.05), while the expression levels of immune genes IL-8 and IL-10 were down-regulated. In summary, KM at concentrations of 2 mg/kg and 20 mg/kg could regulate the expression of antioxidant and immune genes in various tissues in an orderly and rapid manner, and significantly improve the antioxidant and immune abilities of carp, which is conducive to the improvement of the resilience of carp.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Ovinos , Suínos , Antioxidantes/metabolismo , Imunidade Inata/genética , Carpas/metabolismo , Aeromonas hydrophila/metabolismo , Doenças dos Peixes/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais/análiseRESUMO
Keratoconus (KC) is characterized by the predominant primary ectatic disease, affecting the cornea, necessitating corneal transplants in some cases. While some loci associated with KC risk have been identified, the understanding of the disease remains limited. Superoxide dismutase (SOD) enzymes play a crucial role in countering the reactive oxygen species and providing protection against oxidative stress (OS). Accordingly, the objective of this study was to investigate a potential association of a 50 nucleotide base pairs (bp) insertion/deletion (I/D) within the SOD1 promoter, and the located 1684 bp upstream of the SOD1 ATG, with KC in the Iranian population. Additionally, an assessment was conducted on SOD activity and the total antioxidant capacity (TAC), as determined by the ferric reducing-antioxidant power assay, along with malondialdehyde (MDA) levels. In this case-control study, genomic DNA was extracted from the blood cells of KC (n = 402) and healthy (n = 331) individuals. The genotype of this gene was determined using the PCR technique. Furthermore, the amount of SOD enzyme activity and the MDA and TAC levels were measured in the serum of the study groups. The (I/I) genotype was present in 84.23%, the (I/D) genotype in 15.06%, and the (D/D) genotype in 0.69% of both groups. A statistically significant relationship was seen between different genotypes and TAC, MDA, and SOD1 activity indices (P < 0.05). Individuals with the D/D genotype exhibited a decrease in total antioxidant capacity, an increase in the amount of MDA, and a decrease in SOD1 enzyme activity (P < 0.05). Moreover, the logistic regression analysis of KC development indicated that elevated levels of MDA increased the risk of KC incidence in the patient group compared to the healthy group, while a higher activity of SOD1 and greater values of TAC decreased the KC risk. The removal of the 50 bp fragment reduced SOD1 activity and elevated OS levels, thereby impacting the oxidant-antioxidant balance. This could potentially play a significant role in individuals afflicted by KC.
Assuntos
Ceratocone , Estresse Oxidativo , Superóxido Dismutase-1 , Ceratocone/epidemiologia , Ceratocone/genética , Ceratocone/terapia , Estudos de Casos e Controles , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Superóxido Dismutase-1/genética , Modelos Logísticos , Curva ROC , Mutação INDELRESUMO
BACKGROUND: Malaria, a severe health threat, significantly affects total antioxidant status (TAS) levels, leading to considerable oxidative stress. This systematic review and meta-analysis aimed to delineate differences in TAS levels between malaria patients and healthy controls, and assess correlations between disease severity and parasite density. METHODS: The systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO) under registration number CRD42023448761. A comprehensive literature search was conducted in databases such as Embase, MEDLINE, Journals@Ovid, PubMed, Scopus, ProQuest, and Google Scholar to identify studies reporting data on TAS levels in malaria patients. Data from the included studies were analysed both qualitatively and quantitatively. Differences in TAS levels between malaria patients and controls were pooled using a random effects model, with Hedges' g as the effect size measure. RESULTS: Of 1796 identified records, 20 studies met the inclusion criteria. The qualitative synthesis of these studies revealed a marked decrease in TAS levels in patients with malaria compared to non-malaria cases. The meta-analysis results showed a significant decrease in TAS levels in patients with malaria compared to non-malaria cases (P < 0.01, Hedges' g: - 2.75, 95% CI - 3.72 to -1.78, I2: 98.16%, 13 studies), suggesting elevated oxidative stress in these patients. Subgroup analyses revealed that TAS level variations were significantly influenced by geographical region, age group, Plasmodium species, and method for measuring TAS. Notably, TAS levels were significantly lower in severe malaria cases and those with high parasite density, indicating a potential relationship between oxidative stress and disease severity. CONCLUSION: This study highlights the potential utility of TAS as a biomarker for disease risk and severity in malaria. The significant decrease in TAS levels in malaria patients compared to controls implies increased oxidative stress. Further well-designed, large-scale studies are warranted to validate these findings and elucidate the intricate mechanisms linking TAS and malaria.
Assuntos
Antioxidantes , Malária , Estresse Oxidativo , Antioxidantes/metabolismo , Antioxidantes/análise , HumanosRESUMO
The compound known as effective microorganisms (EMs) is widely used in aquaculture to improve water quality, but how they affect the health of Chinese mitten crab (Eriocheir sinensis) is unclear, especially in terms of intestinal microbiota and serum metabolites. In this study, we fed juvenile crabs with an EM-containing diet to explore the effects of EM on the physiological status, intestinal microbiome, and metabolites of E. sinensis. The activities of alanine aminotransferase and alkaline phosphatase were significantly enhanced by EM, indicating that EM supplementation effectively enhanced the antioxidant capacity of E. sinensis. Proteobacteria, Tenericutes, Firmicutes, Bacteroidetes, and Actinobacteria were the main intestinal microbes in both the control and EM groups. Linear discriminant effect size analysis showed that Fusobacteriaceae, Desulfovibrio, and Morganella were biomarkers in the control group, and Exiguobacterium and Rhodobacteraceae were biomarkers in the EM group. Metabolomics analysis revealed that EM supplementation increased cellular energy sources and decreased protein consumption, and oxidative stress. Together, these results indicate that EM can optimize the intestinal microbiome and serum metabolites, thereby benefiting the health of E. sinensis.
Assuntos
Microbioma Gastrointestinal , Imunidade Inata , Antioxidantes/farmacologia , Dieta , BiomarcadoresRESUMO
A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3-4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.
Assuntos
Bass , Clostridium butyricum , Humanos , Animais , Antioxidantes/metabolismo , Bass/metabolismo , Clostridium butyricum/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , RNA Ribossômico 16S/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Dieta/veterinária , CarboidratosRESUMO
This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.
Assuntos
Antioxidantes , Enterococcus faecium , Suínos , Animais , Antioxidantes/metabolismo , Bacillus subtilis/genética , Enterococcus faecium/genética , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/metabolismo , LipídeosRESUMO
A ten-week culture trial in juvenile large yellow croaker (Larimichthys crocea) (10.80 ± 0.10 g) was conducted to assess the impact of supplementing heat-killed Lactobacillus acidophilus (HLA) on growth performance, intestinal digestive enzyme activity, antioxidant capacity and inflammatory response. Five iso-nitrogenous (42 % crude protein) and iso-lipidic (12 % crude lipid) experimental feeds with different levels of HLA (0.0 %, 0.1 %, 0.2 %, 0.4 %, or 0.8 %) were prepared. They were named FO (control group), HLA0.1, HLA0.2, HLA0.4 and HLA0.8, respectively. The results indicated that HLA addition had no impact on survival (P > 0.05). In this experiment, the final body weight, weight gain rate and specific growth rate showed a quadratic regression trend, initially increasing and subsequently decreasing with the increasing in HLA levels, and attained the peak value at 0.2 % HLA supplemental level (P < 0.05). In contrast to the control group, in terms of digestive ability, amylase, lipase and trypsin exhibited a notable linear and quadratic pattern, demonstrating a substantial increase when 0.1% 0.2 % HLA was added in the diets (P < 0.05). Notably, elevated levels of catalase (CAT) activity, superoxide dismutase (SOD) activity, and total antioxidant capacity (T-AOC) were observed in the liver when adding 0.1%-0.2 % HLA, and the level of malondialdehyde (MDA) was significantly decreased and the liver exhibited a notable upregulation in the mRNA expression levels of nrf2, cat, sod2, and sod3 (P < 0.05). Additionally, the mRNA levels of genes associated with tight junctions in the intestines (zo-1, zo-2 and occludin) exhibited a significant upregulation when 0.2 % HLA was added in the feed (P < 0.05). Furthermore, the levels of mRNA expression for proinflammatory genes in the intestines including tnf-α, il-1ß, il-6 and il-8 exhibited a quadratic regression trend, characterized by an initial decline followed by subsequent growth (P < 0.05). Meanwhile, the levels of mRNA expression for genes linked to anti-inflammatory responses in the intestines (including il-10, tgf-ß, and arg1) exhibited a quadratic regression pattern, initially increasing and subsequently decreasing (P < 0.05). Compare with the control group, the levels of tnf-α, il-1ß and il-8 expression were notably downregulated in all HLA addition groups (P < 0.05). When 0.2 % HLA was added, the expression levels of il-10, tgf-ß and arg1 in the intestinal tract were markedly increased (P < 0.05). Overall, the supplementation of 0.2 % HLA in the feed has been shown to enhance the growth performance. The enhancement was attributed to HLA's capacity to improve antioxidant function, intestinal barrier integrity, and mitigate inflammatory responses. This research offers a scientific foundation for the utilization of HLA in aquaculture.
Assuntos
Ração Animal , Antioxidantes , Dieta , Lactobacillus acidophilus , Perciformes , Probióticos , Animais , Perciformes/imunologia , Perciformes/crescimento & desenvolvimento , Perciformes/genética , Dieta/veterinária , Ração Animal/análise , Antioxidantes/metabolismo , Probióticos/administração & dosagem , Probióticos/farmacologia , Lactobacillus acidophilus/imunologia , Suplementos Nutricionais/análise , Digestão , Distribuição Aleatória , Inflamação/veterinária , Inflamação/imunologia , Temperatura AltaRESUMO
This experiment was conducted to explore the effects of dietary vitamin C supplementation on non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab (Scylla paramamosain). Mud crabs with an initial weight of 14.67 ± 0.13 g were randomly divided into 6 treatments and fed diets with 0.86 (control), 44.79, 98.45, 133.94, 186.36 and 364.28 mg/kg vitamin C, respectively. The experiment consisted of 6 treatments, each treatment was designed with 4 replicates and each replicate was stocked with 8 crabs. After 42 days of feeding experiment, 2 crabs were randomly selected from each replicate, and a total of 8 crabs in each treatment were carried out 72 h low-temperature challenge experiment. The results showed that crabs fed diets with 186.36 and 364.28 mg/kg vitamin C significantly improved the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in hemolymph and hepatopancreas (P < 0.05). Crabs fed diet with 133.94 mg/kg vitamin C significantly decreased the concentration of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in hemolymph (P < 0.05). Diet with 133.94 mg/kg vitamin C was improved the activity of polyphenol oxidase (PPO) and the concentration of albumin (ALB) in hemolymph. Crabs fed diet with 133.94 mg/kg vitamin C showed lower concentration of malondialdehyde (MDA) in hemolymph and hepatopancreas than those fed the other diets. Meanwhile, crabs fed diet with 98.45 mg/kg vitamin C showed higher activity of total superoxide dismutase (T-SOD) in hemolymph, and crabs fed diet with 133.94 mg/kg vitamin C showed higher activity of T-SOD in hepatopancreas. Crabs fed diet with 186.36 mg/kg vitamin C significantly decreased the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GSH-PX) in hepatopancreas (P < 0.05). In normal temperature, crabs fed diets with 133.94 mg/kg vitamin C significantly up-regulated the expression levels of gpx (glutathione peroxidase) and trx (thioredoxin) in hepatopancreas compared with the control treatment (P < 0.05). The highest expression levels of relish, il16 (interleukin 16), caspase 2 (caspase 2), p38 mapk (p38 mitogen-activated protein kinases) and bax (bcl-2 associated x protein) in hepatopancreas were found at crabs fed control diet (P < 0.05). Moreover, crabs fed diet with 133.94 mg/kg vitamin C showed higher expression levels of alf-3 (anti-lipopolysaccharide factor 3) and bcl-2 (B-cell lymphoma 2) in hepatopancreas than those fed the other diets (P < 0.05). Under low-temperature stress, crabs fed diet with 133.94 mg/kg vitamin C significantly improved the expression levels of hsp90 (heat shock protein 90), cat (catalase), gpx, prx (thioredoxin peroxidase) and trx in hepatopancreas (P < 0.05). In addition, dietary with 133.94 vitamin C significantly up-regulated the expression levels of alf-3 and bcl-2 (P < 0.05). Based on two slope broken-line regression analysis of activity of PPO against the dietary vitamin C level, the optimal dietary vitamin C requirement was estimated to be 144.81 mg/kg for juvenile mud crab. In conclusion, dietary 133.94-144.81 mg/kg vitamin C significantly improved the non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab.
Assuntos
Ração Animal , Antioxidantes , Ácido Ascórbico , Braquiúros , Temperatura Baixa , Dieta , Suplementos Nutricionais , Imunidade Inata , Animais , Braquiúros/imunologia , Braquiúros/efeitos dos fármacos , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Ração Animal/análise , Dieta/veterinária , Imunidade Inata/efeitos dos fármacos , Suplementos Nutricionais/análise , Antioxidantes/metabolismo , Distribuição Aleatória , Estresse Fisiológico/efeitos dos fármacos , Relação Dose-Resposta a DrogaRESUMO
Lactic acid bacteria (LAB) have beneficial effects on aquatic animals, improving their immune system and intestinal microbiota. Nevertheless, the probiotic effects of LAB on the Manila clam Ruditapes philippinarum remain poorly understood. Herein, the effects of administering Lactobacillus plantarum at final doses of 1 × 105 CFU/L (T5 group), 1 × 107 CFU/L (T7 group), and 1 × 109 CFU/L (T9 group) in the rearing water for eight weeks were evaluated for the antioxidant capacity, non-specific immunity, resistance to Vibrio parahaemolyticus infection, and intestinal microbiota of R. philippinarum. The rearing water without the addition of L. plantarum served as a control. The results showed that the T7 and T9 groups demonstrated a significant elevation in the disease resistance of clams against V. parahaemolyticus, in the activities of alkaline phosphatase and lysozyme in the hepatopancreas, and in the expression of antioxidant- and immune-related genes, including SOD, GPx, and GST. Meanwhile, the T7 group showed a significant enhancement in superoxide dismutase and catalase activities and CAT expression, while the T9 group experienced a remarkable elevation in reduced glutathione content. Only catalase activity was markedly elevated in the T5 group. The expression of SOD, CAT, GPx, and GST was significantly elevated in three treatment groups following the V. parahaemolyticus challenge. The T7 group exhibited a significant increase in intestinal microbiota richness. Significant increases were noted in Firmicutes abundance across all three treatment groups and in Actinobacteriota in the T5 and T7 groups. Additionally, the opportunistic pathogen Escherichia-Shigella abundance significantly decreased in three treatment groups. Furthermore, administration of 1 × 107 CFU/L L. plantarum enhanced the stability of the intestinal microecosystem, whereas a dose of 1 × 109 CFU/L might have a negative effect. The application of three doses of L. plantarum significantly enhanced intestinal microbiota functions related to the immune response and oxidative stress regulation, while a higher dose (1 × 109 CFU/L) might inhibit several functions. In conclusion, the application of L. plantarum in the rearing water exerted beneficial effects on the antioxidant capacity, non-specific immunity, resistance to V. parahaemolyticus, and the intestinal microbiota stability and functions of R. philippinarum. The beneficial effects of L. plantarum on R. philippinarum were dose-dependent, and the final dose of 1 × 107 CFU/L exhibited the optimal effects.
RESUMO
The present study explored the effects of different lipid sources on growth performance, lipid deposition, antioxidant capacity, inflammatory response and disease resistance of largemouth bass (Micropterus salmoides). Four isonitrogenous (crude protein 50.46 %) and isolipidic (crude lipid 11.12 %) diets were formulated to contain 7 % of different oil sources including fish oil (FO) (control), soybean oil (SO), linseed oil (LO) and coconut oil (CO). Largemouth bass with initial body weight of 36.0 ± 0.2 g were randomly distributed into 12 tanks, with 30 fish per tank and 3 tanks per treatment. The fish were fed with the experiment diets twice daily for 8 weeks. The results indicated that the weight gain of largemouth bass fed the FO diet was significantly higher than that of fish fed the LO and CO diets. The liver crude lipid content in FO group was significantly higher than other groups, while the highest liver triglyceride content was showed in SO group and the lowest was detected in LO group. At transcriptional level, expression of lipogenesis related genes (pparγ, srebp1, fas, acc, dgat1 and dgat2) in the SO and CO group were significantly higher than the FO group. However, the expression of lipolysis and fatty acids oxidation related genes (pparα, cpt1, and aco) in vegetable oils groups were significantly higher than the FO group. As to the antioxidant capacity, vegetable oils significantly reduced the malondialdehyde content of largemouth bass. Total antioxidant capacity in the SO and LO groups were significantly increased compared with the FO group. Catalase in the LO group was significantly increased compared with the FO group. Furthermore, the ER stress related genes, such as grp78, atf6α, atf6ß, chop and xbp1 were significantly enhanced in the vegetable oil groups compared with the FO group. The activity of serum lysozyme in vegetable oil groups were significantly higher than in FO group. Additionally, the relative expression of non-specific immune related genes, including tlr2, mapk11, mapk13, mapk14, rela, tgf-ß1, tnfα, 5lox, il-1ß and il10, were all significantly increased in SO and CO groups compared to the other groups. In conclusion, based on the indexes including growth performance, lipid deposition, antioxidant capacity and inflammatory response, SO and LO could be alternative oil sources for largemouth bass.