RESUMO
The drug delivery potential of liquid crystals (LCs) for ascorbyl palmitate (AP) was assessed, with the emphasis on the AP stability and release profile linked to microstructural rearrangement taking place along the dilution line being investigated by a set of complementary techniques. With high AP degradation observed after 56 days, two stabilization approaches, i.e., the addition of vitamin C or increasing AP concentration, were proposed. As a rule, LC samples with the lowest water content resulted in better AP stability (up to 52% of nondegraded AP in LC1 after 28 days) and faster API release (~18% in 8 h) as compared to the most diluted sample (29% of nondegraded AP in LC8 after 28 days, and up to 12% of AP released in 8 h). In addition, LCs exhibited a skin barrier-strengthening effect with up to 1.2-fold lower transepidermal water loss (TEWL) and 1.9-fold higher skin hydration observed in vitro on the porcine skin model. Although the latter cannot be linked to LCs' composition or specific microstructure, the obtained insight into LCs' microstructure contributed greatly to our understanding of AP positioning inside the system and its release profile, also influencing the overall LCs' performance after dermal application.
Assuntos
Ácido Ascórbico , Cristais Líquidos , Fosfolipídeos , Pele , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Cristais Líquidos/química , Animais , Suínos , Pele/metabolismo , Pele/efeitos dos fármacos , Fosfolipídeos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Sistemas de Liberação de MedicamentosRESUMO
Ascorbyl palmitate, an ascorbic acid ester, is an important amphipathic antioxidant that has several applications in foods, pharmaceuticals, and cosmetics. The enzymatic synthesis of ascorbyl palmitate is very attractive, but few efforts have been made to address its process scale-up and implementation. This study aimed at evaluating the enzymatic synthesis of ascorbyl palmitate in a rotating basket reactor operated in sequential batches. Different commercial immobilized lipases were tested, and the most suitable reaction conditions were established. Among those lipases studied were Amano Lipase PS, Lipozyme® TL IM, Lipozyme® Novo 40086, Lipozyme® RM IM and Lipozyme® 435. Initially, the enzymes were screened based on previously defined synthesis conditions, showing clear differences in behavior. Lipozyme® 435 proved to be the best catalyst, reaching the highest values of initial reaction rate and yield. Therefore, it was selected for the following studies. Among the solvents assayed, 2-methyl-2-butanol and acetone showed the highest yields, but the operational stability of the catalyst was better in 2-methyl-2-butanol. The tests in a basket reactor showed great potential for large-scale application. Yields remained over 80% after four sequential batches, and the basket allowed for easy catalyst recycling. The results obtained in basket reactor are certainly a contribution to the enzymatic synthesis of ascorbyl palmitate as a competitive alternative to chemical synthesis. This may inspire future cost-effectiveness studies of the process to assess its potential as a viable alternative to be implemented.
Assuntos
Ácido Ascórbico , Pentanóis , Solventes , Enzimas ImobilizadasRESUMO
Fighting malignant neoplasms via repurposing existing drugs could be a welcome move for prosperous cancer remediations. In the current work, nanovehiculation and optimization of the repositioned itraconazole (ITZ) utilizing ascorbyl palmitate (AP) aspasomes would be an auspicious approach. Further, the optimized aspasomes were incorporated in a cream and tracked for skin deposition. The in vivo efficacy of aspasomal cream on mice subcutaneous Ehrlich carcinoma model was also assessed. The optimized aspasomes revealed nano size (67.83 ± 6.16 nm), negative charge (-79.40 ± 2.23 mV), > 95% ITZ entrapment and high colloidal stability. AP yielded substantial antioxidant capacity and pushed the ITZ cytotoxicity forward against A431 cells (IC50 = 5.3±0.27 µg/mL). An appealing privilege was the aspasomal cream that corroborated spreadability, contemplated skin permeation and potentiated in vivo anticancer competence, reflected in 62.68% reduction in the tumor weight. Such synergistic tumor probes set the foundation for futuristic clinical translation and commercialization.
Assuntos
Itraconazol , Neoplasias Cutâneas , Animais , Ácido Ascórbico/análogos & derivados , Itraconazol/farmacologia , Camundongos , Absorção Cutânea , Neoplasias Cutâneas/tratamento farmacológicoRESUMO
Surface charge polarity and density influence the immune clearance and cellular uptake of intravenously administered lipid nanoparticles (LNPs), thus determining the efficiency of their delivery to the target. Here, we modified the surface charge with ascorbyl palmitate (AsP) used as a negatively charged lipid. AsP-PC-LNPs were prepared by dispersion and ultrasonication of AsP and phosphatidylcholine (PC) composite films at various ratios. AsP inserted into the PC film with its polar head outward. The pKa for AsP was 4.34, and its ion form conferred the LNPs with negative surface charge. Zeta potentials were correlated with the amount and distribution of AsP on the LNPs surface. DSC, Raman and FTIR spectra, and molecular dynamics simulations disclosed that AsP distributed homogeneously in PC at 1−8% (w/w), and there were strong hydrogen bonds between the polar heads of AsP and PC (PO2−), which favored LNPs' stability. But at AsP:PC > 8% (w/w), the excessive AsP changed the interaction modes between AsP and PC. The AsP−PC composite films became inhomogeneous, and their phase transition behaviors and Raman and FTIR spectra were altered. Our results clarified the mechanism of surface charge modification by AsP and provided a rational use of AsP as a charged lipid to modify LNP surface properties in targeted drug delivery systems. Furthermore, AsP−PC composites were used as phospholipid-based biological membranes to prepare paclitaxel-loaded LNPs, which had stable surface negative charge, better tumor targeting and tumor inhibitory effects.
Assuntos
Nanopartículas , Neoplasias , Ácido Ascórbico/análogos & derivados , Humanos , Lipossomos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fosfatidilcolinas , RNA Interferente PequenoRESUMO
Fluorescence quenching is widely used to obtain association constants between proteins and ligands. This methodology is based on assumption that ground-state complex between protein and ligand is responsible for quenching. Here, we call the attention about the risk of using the temperature criterion for decision of applying or not fluorescence quenching data to measure association constants. We demonstrated that hydrophobic effect can be the major force involved in the interaction and, as such, superposes the well-established rationalization that host/guest complexation is weakened at higher temperatures due to loss of translational and rotational degrees of freedom. To do so, the complexation of bovine serum albumin with octyl gallate was studied by steady-state, time-resolved fluorescence spectroscopy and isothermal titration calorimetry. The results clearly demonstrated the complexation, even though the Stern-Volmer constant increased at higher temperatures (1.6 × 104 and 4.1 × 105 mol-1 L at 20°C and 40°C), which could suggest a simple dynamic process and not complexation. The entropy-driven feature of the interaction was demonstrated by the unfavorable enthalpy (∆H° = 104.4 kJmol-1 ) but favorable entropy (∆S° = 447.5 Jmol-1 K-1 ). The relevance of the ligand hydrophobicity was also evaluated by comparing ascorbic acid and its ester ascorbyl palmitate. Docking simulations showed a higher number of hydrophobic contacts and lower energy poses for the esters, confirming the experimental results. In conclusion, the well-established rationalization that host/guest complexation is weakened at higher temperatures is not straightforward for protein-ligand interactions. Hence, the temperature effect for a decision between static and dynamic quenching and its use to decide if a complexation at ground state is taking place between ligand and protein should not be used.
Assuntos
Albuminas/química , Ácido Gálico/análogos & derivados , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Entropia , Ácido Gálico/química , Interações Hidrofóbicas e Hidrofílicas , Temperatura , TermodinâmicaRESUMO
Vitamin C (L-Ascorbic acid) has many favourable effects on the skin such as antioxidant, anti-aging and whitening effects. Its instability and low permeability limit its pharmaceutical use in cosmetic and dermatological products. Instead, Mg ascorbyl phosphate (MAP), an ascorbic acid derivative, has the same effect with higher stability is being used. In this work, a vesicular system, aspasomes, containing MAP was developed and evaluated. Aspasomes are multilayered vesicles formed by amphiphiles molecules, Ascorbyl palmitate (ASP), in combination with cholesterol and charged lipids for drug encapsulation. Here, we investigated the use of lecithin instead of the charged lipid dicetyl phosphate for aspasomes development. Nine formulations were prepared and evaluated for their entrapment efficiency, particle size, polydispersity index (PDI) and zeta potential. Their entrapment efficiency ranged from 33.00 ± 2.27 to 95.18 ± 1.06, while their particle size was from 373.34 ± 60.85 to 464.37 ± 93.46 nm with acceptable PDI (from 0.212 ± 0.068 to 0.351 ± 0.061) and zeta potential (from -37.52 ± 2.42 to -50.36 ± 1.82). Three formulations were selected and evaluated for their drug release, permeation and retention into skin. One formulation was selected to be formulated as aspasomal topical cream and gel. The aspasomal cream was found to have enhanced drug permeation and skin retention over the aspasomal gel as well as the aspasomes formulation. MAP aspasomal cream was evaluated clinically as an effective treatment for melasma against 15% trichloroacetic acid (TCA) and the results recorded that the aspasomal cream showed the greatest degree of improvement regarding the hemi-MASI scores with 35% of patients rating it as excellent treatment. The study showed that MAP aspasomal cream can be considered a novel treatment of melasma which is free of side effects. Its efficacy as a monotherapy is superior to that of chemical peeling using 15% TCA.
Assuntos
Antineoplásicos/química , Ácido Ascórbico/análogos & derivados , Colesterol/química , Lecitinas/química , Lipossomos/química , Melanose/tratamento farmacológico , Administração Cutânea , Animais , Antineoplásicos/administração & dosagem , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/química , Transporte Biológico , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Magnésio/química , Masculino , Ratos Wistar , Pele/metabolismo , Absorção Cutânea , Resultado do TratamentoRESUMO
BACKGROUND: Localized adiposity (AL) is the accumulation of subcutaneous adipose tissue, placed in definite anatomic areas, building up an alteration of the body silhouette. The aim of the present clinical and histological study is to assess the effectiveness of an injectable solution containing sodium salt of ascorbic acid 0.24% and surfactant agent at 0.020% ascorbyl-palmitate (SAP) for treating local adiposity. METHODS: Eighty healthy female adult patients were selected, suffering from local adiposity in the abdominal region. The patients underwent a cycle of 6 sessions, with biweekly treatments, without the addition of any active ingredient. Direct infiltration of pharmacologically active SAP solutions into the adipose tissue with a long needle, very similar to the needles used for spinal anesthesia, was performed. This procedure is quick and painless (does not require any anesthesia) with moderate infiltration speed. RESULTS: All the patients treated showed good results with good satisfaction of the circumferential reductions. Before treatment: Waist (cm) 78.8 ± 10.6 and hip 93.6 ± 9.0 with WHR 0.84 ± 0.07. After treatment: Waist (cm) 70.8 ± 9.6 and hip 92.6 ± 8.0 with WHR 0.76 ± 0.06. Indeed, signs of adipocyte apoptosis were observed in subcutaneous skin after injection of SAP. CONCLUSION: The results showed in the present study suggest that the SAP utilized induces apoptosis of adipocytes and could be of use as a safe and effective method with which to eliminate subcutaneous abdominal fat. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Assuntos
Adiposidade , Obesidade , Adulto , Ácido Ascórbico , Feminino , Humanos , Palmitatos , Resultado do TratamentoRESUMO
Astaxanthin is a carotenoid extracted from several seaweeds with ascertained therapeutic activity. With specific reference, astaxanthin is widely used in clinical practice to improve ocular tissue health and skin protection from UV ray damages. Despite its well-documented pleiotropic actions and demonstrated clinical efficacy, its bioavailability in humans is low and limited because of its hydrophobicity and poor dissolution in enteric fluids. Furthermore, astaxanthin is very unstable molecule and very sensitive to light exposure and thermal stress. Taken together, these pharmacological and chemical-physical features strongly limit pharmaceutical and nutraceutical development of astaxanthin-based products and as a consequence its full clinical usage. This work describes the preliminary in vitro investigation of sublingual absorption of astaxanthin through a novel ascorbyl palmitate (ASP) based nanoemulsion.
Assuntos
Emulsões/química , Nanopartículas/química , Palmitatos/química , Disponibilidade Biológica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados Preliminares , Alga Marinha/química , Solubilidade/efeitos dos fármacos , Xantofilas/administração & dosagem , Xantofilas/químicaRESUMO
The class of lipophilic compounds coming from vegetal source represents a perspective in the adjuvant treatment of several human diseases, despite their poor bioavailability in humans. These compounds are generally soluble in fats and poorly soluble in water. The major reason for the poor bioavailability of lipophilic natural compounds after oral uptake in humans is related to their reduced solubility in enteric water-based fluids, leading to an ineffective contact with absorbing epithelium. The main goal to ensure efficacy of such compounds is then creating technological conditions to deliver them into the first enteric tract as hydro-dispersible forms to maximize epithelial absorption. The present work describes and characterizes a new technological matrix (Lipomatrix, Labomar Research, Istrana, TV, Italy) based on a molten fats core in which Ascorbyl Palmitate is embedded, able to deliver lipophilic compounds in a well-dispersed and emulsified form once exposed to duodenal fluids. Authors describe and quantify Lipomatrix delivery of Serenoa repens oil through an innovative in vitro model of human gastro-enteric digestion, reporting results of its improved bioaccessibility, enteric absorption and efficacy compared with not formulated Serenoa repens oil-containing commercial products using in vitro models of human intestine and prostatic tissue.
Assuntos
Ácido Ascórbico/análogos & derivados , Sistemas de Liberação de Medicamentos , Absorção Intestinal , Óleos de Plantas/administração & dosagem , Disponibilidade Biológica , Linhagem Celular , Humanos , Óleos de Plantas/metabolismo , Óleos de Plantas/farmacocinética , Serenoa/químicaRESUMO
Ascorbyl palmitate is a fatty acid ester endowed with antioxidant properties, used as a food additive and cosmetic ingredient, which is presently produced by chemical synthesis. Ascorbyl palmitate was synthesized from ascorbic acid and palmitic acid with a Pseudomonas stutzeri lipase immobilized on octyl silica, and also with the commercial immobilized lipase Novozym 435. The latter was selected for optimizing the reaction conditions because of its high reactivity and stability in the solvent 2-methyl-2-butanol used as reaction medium. The reaction of the synthesis was studied considering temperature and molar ratio of substrates as variables and synthesis yield as response parameter. The highest yield in the synthesis of ascorbyl palmitate was 81%, obtained at 55 °C and an ascorbic acid to palmitic acid molar ratio of 1:8, both variables having a strong effect on yield. The synthesized ascorbyl palmitate was purified to 94.4%, with a purification yield of 84.2%. The use of generally recognized as safe (GRAS) certified solvents with a polarity suitable for the solubilization of the compounds made the process a viable alternative for the synthesis and downstream processing of ascorbyl palmitate.
Assuntos
Antineoplásicos/síntese química , Ácido Ascórbico/análogos & derivados , Enzimas Imobilizadas , Lipase/química , Antineoplásicos/química , Ácido Ascórbico/síntese química , Ácido Ascórbico/química , Técnicas de Química Sintética , Estabilidade de Medicamentos , Enzimas Imobilizadas/química , SolventesRESUMO
Aspasomes of methotrexate with antioxidant, ascorbyl palmitate, were developed and optimized using factorial design by varying parameters such as lipid molar ratio, drug to lipid molar ratio, and type of hydration buffer for transdermal delivery for disease modifying activity in rheumatoid arthritis (RA). Aspasomes were characterized by drug-excipients interaction, particle size analysis, determination of zeta potential, entrapment efficiency, and surface properties. The best formulation was loaded into hydrogel for evaluation of in vitro drug release and tested in vivo against adjuvant induced arthritis model in wistar rats, by assessing various physiological, biochemical, hematological, and histopathological parameters. Optimized aspasome formulation exhibited smooth surface with particle size 386.8 nm, high drug loading (19.41%), negative surface potential, and controlled drug release in vitro over 24 h with a steady permeation rate. Transdermal application of methotrexate-loaded aspasome hydrogel for 12 days reduced rat paw diameter (21.25%), SGOT (40.43%), SGPT (54.75%), TNFα (33.99%), IL ß (34.79%), cartilage damage (84.41%), inflammation (82.37%), panus formation (84.38%), and bone resorption (80.52%) as compared to arthritic control rats. Free methotrexate-treated group showed intermediate effects. However, drug-free aspasome treatment did not show any effect. The experimental results indicate a positive outcome in development of drug-loaded therapeutically active carrier system which presents a non-invasive controlled release transdermal formulation with good drug loading, drug permeation rate, and having better disease modifications against RA than the free drug, thereby providing a more attractive therapeutic strategy for rheumatoid disease management.
Assuntos
Antirreumáticos/administração & dosagem , Artrite Experimental/tratamento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Metotrexato/administração & dosagem , Administração Cutânea , Animais , Antirreumáticos/química , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lipossomos , Masculino , Metotrexato/química , Tamanho da Partícula , Ratos , Ratos Wistar , Absorção Cutânea/efeitos dos fármacosRESUMO
The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p < 0.05) and lack of fit was insignificant (p > 0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.
RESUMO
Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine+ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5×10(5) and a ΔGp=-6.7kcal·mol(-1). The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug.
Assuntos
Ácido Ascórbico/análogos & derivados , Dimiristoilfosfatidilcolina/química , Reologia , Eletricidade Estática , Adsorção , Ácido Ascórbico/química , Concentração de Íons de Hidrogênio , CinéticaRESUMO
In celiac disease, intestinal transglutaminase (TG2) produces immunogenic peptides by deamidation of gluten proteins. These products drive the celiac immune response. We have previously identified an interaction between gliadin and a food additive, E304i, which prevents gliadin processing (both deamidation and transamidation) by TG2, in vitro. In this study, we investigated if E304i could prevent TG2 processing of gluten in flours and if the effect was evident after simulated gastrointestinal digestion. We also confirmed the outcome in vivo in a human cross-over intervention study in healthy non-celiac participants. TG2 transamidation experiments (in vitro) of digested wheat and rye flours supplemented with E304i at 30 mg/g indicated full prevention of TG2 processing. In the intervention study, participant serum levels of deamidated gliadin peptides (dGDPs) increased after the intake of reference wheat rolls (80 g per day for a week; 41% ± 4% compared to washout), while the intake of the intervention E304i/zinc sulfate wheat rolls generated a modest response (80 g per day for a week; 8 ± 10% of control). The difference between the groups (32.8 ± 15.6%) was significant (p = 0.00003, n = 9), confirming that E304i /zinc addition to wheat rolls prevented TG2 deamidation of gluten. In conclusion, this study shows that E304i /zinc addition to wheat rolls prevents TG2 deamidation of gluten in non-celiac participants. Clinical trial registration: clinicaltrials.gov, identifier (NCT06005376).
RESUMO
L-ascorbic acid represents one of the most potent antioxidant, photoprotective, anti-aging, and anti-pigmentation cosmeceutical agents, with a good safety profile. However, the main challenge is the formulation of stable topical formulation products, which would optimize the penetrability of L-ascorbic acid through the skin. The aim of our research was to evaluate the performance of ascorbyl palmitate on the skin, incorporated in creams and emulgels (2%) as carriers, as well as to determine the impact of its incorporation into liposomes on the penetration profile of this ingredient. Tape stripping was used to study the penetration of ascorbyl palmitate into the stratum corneum. In addition, the sensory and textural properties of the formulations were determined. The liposomal formulations exhibited a better penetration profile (p < 0.05) of the active substance compared to the non-liposomal counterpart, leading to a 1.3-fold and 1.2 fold-increase in the total amount of penetrated ascorbyl palmitate in the stratum corneum for the emulgel and cream, respectively. Encapsulation of ascorbyl palmitate into liposomes led to an increase in the adhesiveness and density of the prepared cream and emulgel samples. The best spreadability and absorption during application were detected in liposomal samples. The obtained results confirmed that liposomal encapsulation of ascorbyl palmitate improved dermal penetration for both the cream and emulgel formulations.
RESUMO
A high-payload ascorbyl palmitate (AP) nanosuspension (NS) was designed to improve skin delivery following topical application. The AP-loaded NS systems were prepared using the bead-milling technique, and softly thickened into NS-loaded gel (NS-G) using hydrophilic polymers. The optimized NS-G system consisted of up to 75 mg/mL of AP, 0.5% w/v of polyoxyl-40 hydrogenated castor oil (Kolliphor® RH40) as the suspending agent, and 1.0% w/v of sodium carboxymethyl cellulose (Na.CMC 700 K) as the thickening agent, in citrate buffer (pH 4.5). The NS-G system was embodied as follows: long and flaky nanocrystals, 493.2 nm in size, -48.7 mV in zeta potential, and 2.3 cP of viscosity with a shear rate of 100 s-1. Both NS and NS-G provided rapid dissolution of the poorly water-soluble antioxidant, which was comparable to that of the microemulsion gel (ME-G) containing AP in solubilized form. In an ex vivo skin absorption study using the Franz diffusion cell mounted on porcine skin, NS-G exhibited faster absorption in skin, providing approximately 4, 3, and 1.4 times larger accumulation than that of ME-G at 3, 6, and 12 h, respectively. Therefore, the high-payload NS makes it a promising platform for skin delivery of the lipid derivative of ascorbic acid.
RESUMO
The cryopreservation reduces ram sperm quality, decreasing the pregnancy rate of ewes inseminated with thawed sperm. Hence, we aimed to improve the post-thaw quality of ram sperm replacing egg yolk on Tris-Glucose extender with different concentrations of LDL (2 or 8%), associated with the addition of 10 mM non-enzymatic antioxidants (ascorbic acid, hydroxytoluene butylate, ascorbyl palmitate, and trehalose). Semen samples were collected from six rams, split into different treatments, and frozen. After thawing, kinematic (CASA), structural (propidium iodide and carboxyfluorescein diacetate) and functional (hypoosmotic test) sperm membrane integrity was assessed. Total motility, VCL, and LIN were also assessed in thawed samples during 3 h of incubation (38 °C). The results showed that hydroxytoluene butylate at 10 mM in Tris-Glucose extender with 8% LDL improved velocity parameters immediately post-thaw compared with Tris-Glucose egg yolk extender, as well as prevented the reduction of total motility and VCL after incubation. There was no benefit of adding ascorbic acid and trehalose. Moreover, for the first time, it was shown the motility impairment promoted by ascorbyl palmitate to ram sperm.
RESUMO
Molecular mobility of ascorbyl palmitate and α-tocopherol in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were determined by NMR relaxation technique. Synergistic effects of DOPC on the antioxidative capacities of ascorbyl palmitate were evaluated in DPPH radical scavenging assay and bulk oil matrix. NMR relaxation technique can provide information on the mobility of protons. Molecular mobility of two protons in hydroxyl group of ascorbyl palmitate decreased by 85 and 78% in the presence of DOPC compared to those without DOPC. However, proton mobility of α-tocopherol increased by 41% when DOPC was present. DOPC significantly enhanced the DPPH reactivity in medium chain triacylglycerol, while this effect was not observed in α-tocopherol. Mixture of ascorbyl palmitate with DOPC showed synergistic antioxidant properties in corn oil at 60 °C. DOPC may make protons of ascorbyl palmitate in more rigid state, which can enhance hydrogen donating ability and antioxidant properties of ascorbyl palmitate in bulk oils.
Assuntos
Antioxidantes , alfa-Tocoferol , Antioxidantes/química , alfa-Tocoferol/química , Fosfolipídeos , Prótons , Ácido Ascórbico/química , ÓleosRESUMO
The aim of this study was to evaluate the influence of l-ascorbyl palmitate (LAP) as an additive to liposome formulations by self-assembling with soy lecithin to form hybrid liposomes, in order to enhance the physical stability and bioactivator-loaded retention ratio of the LAP incorporated liposomes (LAP-LP). The addition of LAP significantly increased its surface negative charge and strong hydrophobic interactions occurred between the hydrophobic tails of LAP and phospholipids resulting in more compactly ordered, rigid and hydrophobic phospholipid bilayers as indicated by surface tension, fluorescence probes and DSC. These changes enhanced the stability of hydrophobic polyphenol loaded LAP-LP during storage. Particularly, after four weeks storage at 37 °C for naringenin loaded liposomes, the retention ratio of pure liposome decreased dramatically to 12.5 %, while the LAP-LP remained above 74.5 %. This study opens up the potential for the LAP-LP to be developed as a food-grade multifunctional formulation for encapsulating and delivering bioactivators.
Assuntos
Lipossomos , Fosfolipídeos , Ácido Ascórbico/análogos & derivados , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Fosfolipídeos/química , PolifenóisRESUMO
This study aimed to investigate the inhibitory effects of hydroxytyrosol, α-tocopherol and ascorbyl palmitate on lipid peroxidation in squid, hoki and prawn during deep-fat frying and refrigerated storage. Fatty acid analysis using gas chromatography (GC) showed that the seafood had a high omega-3 polyunsaturated fatty acid (n-3 PUFAs) content, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The total content of n-3 fatty acids in their lipids was 46% (squid), 36% (hoki) and 33% (prawn), although they all had low lipid contents. The oxidation stability test results showed that deep-fat frying significantly increased the peroxide value (POV), p-anisidine value (p-AV) and the value of thiobarbituric acid reactive substances (TBARS) in squid, hoki and prawn lipids. Meanwhile, antioxidants delayed the lipid oxidation in fried seafood and sunflower oil (SFO) used for frying, albeit in different ways. The least effective of all the antioxidants was α-tocopherol, as the POV, p-AV and TBARS values obtained with this antioxidant were significantly higher. Ascorbyl palmitate was better than α-tocopherol but was not as effective as hydroxytyrosol in suppressing lipid oxidation in the frying medium (SFO) and in the seafood. However, unlike the ascorbyl palmitate-treated oil, hydroxytyrosol-treated oil could not be used for multiple deep-fat frying of seafood. Hydroxytyrosol appeared to be absorbed in the seafood during multiple frying, thus leaving a low concentration in the SFO and making it susceptible to oxidation.