Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 52(3): 486-502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873823

RESUMO

BACKGROUND/AIMS: Cross-talk between different pancreatic islet cell types regulates islet function and somatostatin (SST) released from pancreatic delta cells inhibits insulin secretion from pancreatic beta cells. In other tissues SST exhibits both protective and pro-apoptotic properties in a tissue-specific manner, but little is known about the impact of the peptide on beta cell survival. Here we investigate the specific role of SST in the regulation of beta cell survival in response to physiologically relevant inducers of cellular stress including palmitate, cytokines and glucose. METHODS: Pancreatic MIN6 beta cells and primary mouse islet cells were pre-treated with SST with or without the Gi/o signalling inhibitor, pertussis toxin, and exposed to different cellular stress factors. Apoptosis and proliferation were assessed by measurement of caspase 3/7 activity, TUNEL and BrdU incorporation, respectively, and expression of target genes was measured by qPCR. RESULTS: SST partly alleviated upregulation of cellular stress markers (Hspa1a and Ddit3) and beta cell apoptosis in response to factors such as lipotoxicity (palmitate), pro-inflammatory cytokines (IL1ß and TNFα) and low glucose levels. This effect was mediated via a Gi/o protein-dependent pathway, but did not modify transcriptional upregulation of the specific NFκB-dependent genes, Nos2 and Ccl2, nor was it associated with transcriptional changes in SST receptor expression. CONCLUSION: Our results suggest an underlying protective effect of SST which modulates the beta cell response to ER stress and apoptosis induced by a range of cellular stressors associated with type 2 diabetes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glucose/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Toxina Pertussis/antagonistas & inibidores , Somatostatina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica , Glucose/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Palmítico/antagonistas & inibidores , Ácido Palmítico/farmacologia , Toxina Pertussis/farmacologia , Técnicas de Cultura de Tecidos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
2.
Bioorg Med Chem ; 24(12): 2621-30, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27157393

RESUMO

The C/EBP-homologous protein (CHOP) acts as a mediator of endoplasmic reticulum (ER) stress-induced pancreatic insulin-producing ß cell death, a key element in the pathogenesis of diabetes. Chemicals that inhibit the expression of CHOP might therefore protect ß cells from ER stress-induced apoptosis and prevent or ameliorate diabetes. Here, we used high-throughput screening to identify a series of 1,2,3-triazole amide derivatives that inhibit ER stress-induced CHOP-luciferase reporter activity. Our SAR studies indicate that compounds with an N,1-diphenyl-5-methyl-1H-1,2,3-triazole-4-carboxamide backbone potently protect ß cell against ER stress. Several representative compounds inhibit ER stress-induced up-regulation of CHOP mRNA and protein, without affecting the basal level of CHOP expression. We further show that a 1,2,3-triazole derivative 4e protects ß cell function and survival against ER stress in a CHOP-dependent fashion, as it is inactive in CHOP-deficient ß cells. Finally, we show that 4e significantly lowers blood glucose levels and increases concomitant ß cell survival and number in a streptozotocin-induced diabetic mouse model. Identification of small molecule inhibitors of CHOP expression that prevent ER stress-induced ß cell dysfunction and death may provide a new modality for the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Fator de Transcrição CHOP/antagonistas & inibidores , Triazóis/química , Triazóis/uso terapêutico , Animais , Glicemia/análise , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Regulação para Baixo/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Células HEK293 , Humanos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , RNA Mensageiro/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Triazóis/farmacologia , Regulação para Cima/efeitos dos fármacos
3.
Biometals ; 29(2): 287-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26867900

RESUMO

Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granules whereas ZNT3 knockout negatively affects beta cell function and survival. Here, we describe for the first time the sub-cellular localization of ZNT3 by immuno-gold electron microscopy and supplement previous data from knockout experiments with investigations of the effect of ZNT3 in a pancreatic beta cell line, INS-1E overexpressing ZNT3. In INS-1E cells, we found that ZNT3 was abundant in insulin containing granules located close to the plasma membrane. The level of ZNT8 mRNA was significantly decreased upon over-expression of ZNT3 at different glucose concentrations (5, 11 and 21 mM glucose). ZNT3 over-expression decreased insulin content and insulin secretion whereas ZNT3 over-expression improved the cell survival after 24 h at varying glucose concentrations (5, 11 and 21 mM). Our data suggest that ZNT3 and ZNT8 (known to regulate insulin secretion) have opposite effects on insulin synthesis and secretion possibly by a transcriptional co-regulation since mRNA expression of ZNT3 was inversely correlated to ZNT8 and ZNT3 over-expression reduced insulin synthesis and secretion in INS-1E cells. ZNT3 over-expression improved cell survival.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Sobrevivência Celular , Expressão Gênica , Humanos , Secreção de Insulina , Fatores de Proteção , Transporte Proteico , Ratos , Transportador 8 de Zinco
4.
J Diabetes ; 15(10): 817-837, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522521

RESUMO

Type 2 diabetes (T2DM) is a complex metabolic disorder manifested by hyperglycemia, insulin resistance, and deteriorating beta-cell function. A way to prevent progression of the disease might be to enhance beta-cell function and insulin secretion. However, most previous studies examined beta-cell function while patients were using glycemia-lowering agents without an adequate period off medications (washout). In the present review we focus on studies with a washout period. We performed a literature search (2010 to June 2021) using beta-cell function and enhancement. The evidence shows that beta-cell function can be enhanced. Bariatric surgery and very low calorie diets show improvement in beta-cell function in many individuals. In addition, use of glucagon-like peptide-1 receptor agonists for prolonged periods (3 years or more) can also lead to improvement of beta-cell function. Further research is needed to understand the mechanisms leading to improved beta-cell function and identify agents that could enhance beta-cell function in patients with T2DM.

5.
Cell Rep ; 42(6): 112615, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294632

RESUMO

Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Células Secretoras de Insulina/metabolismo
6.
Chem Biol Drug Des ; 95(3): 388-393, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755655

RESUMO

Endoplasmic reticulum (ER) stress-induced pancreatic ß-cell dysfunction and death play important roles in the development of diabetes. The 1,2,3-triazole derivative 1 is one of only a few structures that have thus far been identified that protect ß cells against ER stress. However, this compound has narrow activity range and limited aqueous solubility. To overcome these, we designed and synthesized a new scaffold in which the triazole pharmacophore was substituted with a glycine-like amino acid. Structure-activity relationship studies on this scaffold identified a N-(2-(Benzylamino)-2-oxoethyl)benzamide analog WO5m that possesses ß-cell protective activity against ER stress with much improved potency (maximal activity at 100% with EC50 at 0.1 ± 0.01 µm) and water solubility. Identification of this novel ß-cell protective scaffold thus provides a new promising modality for the treatment of diabetes.


Assuntos
Benzamidas/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipoglicemiantes/química , Células Secretoras de Insulina/metabolismo , Substâncias Protetoras/química , Aminoácidos/metabolismo , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Hipoglicemiantes/farmacologia , Substâncias Protetoras/farmacologia , Solubilidade , Relação Estrutura-Atividade
7.
J Mol Biol ; 432(5): 1347-1366, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31446075

RESUMO

Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.


Assuntos
AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Incretinas/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
8.
Peptides ; 125: 170201, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31751656

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is a gut-derived incretin that, in common with glucagon-like peptide-1 (GLP-1), has both insulin releasing and extra-pancreatic glucoregulatory actions. GIP is released in response to glucose or fat absorption and acts on the GIP receptor (GIPR) to potentiate insulin release from pancreatic beta cells. GIP has also been shown to promote beta cell survival and stimulate the release of GLP-1 from islet alpha cells. There is now evidence to suggest that low levels of GIP are secreted from alpha cells and may act in a paracrine manner to prime neighboring beta cells for insulin release. In addition, GIP acts on adipocytes to stimulate fat storage and can exert anorexigenic effects via actions in the hypothalamus. Contrary to GLP-1, the development of effective GIP-based T2D treatments has been hindered by poor bioavailability and attenuation of beta cell responses to GIP in some patients with sub-optimally controlled T2D. Recently, longer-acting GIP agonists that exhibit enzymatic stability, as well as dual GLP-1/GIP agonists which provide simultaneous improvement in glucose and weight control have been generated and successfully tested in animal T2D models. This, together with reports on GIP antagonists that may protect against obesity, has revived the interest on the GIP/GIPR axis as a potential anti-diabetic pathway. In this review, we summarize the known aspects of the effects of GIP on beta and other islet cells and discuss the most recent developments on GIP-based therapeutic agents for the improvement of beta cell function in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/farmacologia , Fármacos Gastrointestinais/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo
9.
Mol Cell Endocrinol ; 439: 297-307, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27658750

RESUMO

Proinsulin folding imperfections cause extensive beta-cell defects known in diabetes. Here, we investigated whether exenatide can alleviate such defects in proinsulin conversion, beta-cell survival, and insulin secretion, in the Ins2+/Akita beta-cells that have a spontaneous mutation (Cys 96 Tyr) in the insulin 2 gene caused dominant negative misfolding problem. 15 or 120 min exenatide administration substantially improves glucose-stimulated insulin secretion, marked in the secreted insulin levels and proinsulin/insulin ratio. This improvement is mainly due to enhanced conversion of proinsulin to insulin, having nothing to do with the prohormone convertase PC1/3 and PC2 levels. The 15 min improvement is calcium-independent. The 120 min improvement is linked to calcium and/or cAMP dependent mechanisms. This efficacy is validated during longer treatment and in Akita islets. Exenatide improves Ins2+/Akita beta-cell survival and Akita mouse's glucose tolerance. The results suggest a potential of incretin mimetics in alleviating defective proinsulin conversion and other proinsulin misfolding consequences.


Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Peptídeos/farmacologia , Proinsulina/metabolismo , Peçonhas/farmacologia , Animais , Glicemia/metabolismo , Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Exenatida , Glucose/farmacologia , Teste de Tolerância a Glucose , Homeostase/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Pró-Proteína Convertase 1/metabolismo , Fatores de Tempo , Peçonhas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA