Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Curr Issues Mol Biol ; 46(5): 4721-4750, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38785553

RESUMO

In the context of the growing concern regarding the appearance and spread of emerging pathogens with high resistance to chemically synthetized biocides, the development of new agents for crops and human protection has become an emergency. In this context, the yeasts present a huge potential as eco-friendly agents due to their widespread nature in various habitats and to their wide range of antagonistic mechanisms. The present review focuses on some of the major yeast antimicrobial mechanisms, their molecular basis and practical applications in biocontrol and biomedicine. The synthesis of killer toxins, encoded by dsRNA virus-like particles, dsDNA plasmids or chromosomal genes, is encountered in a wide range of yeast species from nature and industry and can affect the development of phytopathogenic fungi and other yeast strains, as well as human pathogenic bacteria. The group of the "red yeasts" is gaining more interest over the last years, not only as natural producers of carotenoids and rhodotorulic acid with active role in cell protection against the oxidative stress, but also due to their ability to inhibit the growth of pathogenic yeasts, fungi and bacteria using these compounds and the mechanism of competition for nutritive substrate. Finally, the biosurfactants produced by yeasts characterized by high stability, specificity and biodegrability have proven abilities to inhibit phytopathogenic fungi growth and mycelia formation and to act as efficient antibacterial and antibiofilm formation agents for biomedicine. In conclusion, the antimicrobial activity of yeasts represents a direction of research with numerous possibilities of bioeconomic valorization as innovative strategies to combat pathogenic microorganisms.

2.
Toxicol Appl Pharmacol ; 486: 116939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643951

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κß, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-ß1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.


Assuntos
Anti-Inflamatórios , Antioxidantes , Bleomicina , Candida parapsilosis , Camundongos Endogâmicos C57BL , MicroRNAs , Fibrose Pulmonar , Proteína Smad3 , Tensoativos , Fator de Crescimento Transformador beta1 , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Bleomicina/toxicidade , Antioxidantes/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Anti-Inflamatórios/farmacologia , Proteína Smad3/metabolismo , Camundongos , Candida parapsilosis/efeitos dos fármacos , Tensoativos/farmacologia , MicroRNAs/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Bacillus , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácidos Oleicos
3.
Crit Rev Biotechnol ; : 1-22, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294002

RESUMO

The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.

4.
Crit Rev Biotechnol ; 44(7): 1403-1421, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38232958

RESUMO

The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.


Assuntos
Ensaios de Triagem em Larga Escala , Tensoativos , Ensaios de Triagem em Larga Escala/métodos , Tensoativos/metabolismo , Tensoativos/química , Colorimetria
5.
Arch Microbiol ; 206(2): 60, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197951

RESUMO

Biosurfactants are naturally occurring, surface-active chemicals generated by microorganisms and have attracted interest recently because of their numerous industrial uses. Compared to their chemical equivalents, they exhibit qualities that include lower toxic levels, increased biodegradable properties, and unique physiochemical properties. Due to these traits, biosurfactants have become attractive substitutes for synthetic surfactants in the pharmaceutical industry. In-depth research has been done in the last few decades, demonstrating their vast use in various industries. This review article includes a thorough description of the various types of biosurfactants and their production processes. The production process discussed here is from oil-contaminated waste, agro-industrial waste, dairy, and sugar industry waste, and also how biosurfactants can be produced from animal fat. Various purification methods such as ultrafiltration, liquid-liquid extraction, acid precipitation, foam fraction, and adsorption are required to acquire a purified product, which is necessary in the pharmaceutical industry, are also discussed here. Alternative ways for large-scale production of biosurfactants using different statistical experimental designs such as CCD, ANN, and RSM are described here. Several uses of biosurfactants, including drug delivery systems, antibacterial and antifungal agents, wound healing, and cancer therapy, are discussed. Additionally, in this review, the future challenges and aspects of biosurfactant utilization in the pharmaceutical industry and how to overcome them are also discussed.


Assuntos
Antibacterianos , Indústria Farmacêutica , Animais , Adsorção , Antifúngicos , Resíduos Industriais
6.
Microb Cell Fact ; 23(1): 84, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486239

RESUMO

Extreme halophilic archaea that can live in high saline environments can offer potential applications in different biotechnological fields. This study delves into the fascinating field of halophilic archaea and their ability to produce biosurfactants. Some strains of haloarchaea were isolated from Wadi El-Natrun and were screened for biosurfactants production in a standard basal medium using emulsification index assay. Two strains were chosen as the potential strains for surface tension reduction. They were identified as Natrialba sp. BG1 and N3. The biosurfactants production was optimized and the produced emulsifiers were partially purified and identified using FTIR and NMR. Sequential statistical optimization, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were carried out using 5 factors: oil, NaCl, casamino acids, pH, and inoculum size. The most significant factors were used for the next Response Surface Methodology experiment. The final optimal conditions for biosurfactants production were the inoculum size 2% pH 11 and NaCl 250 g/L, for Natrialba sp. BG1 and inoculum size 2.2%, pH 10 and NaCl 100 g/L for Natrialba sp. N3. The produced biosurfactants were tested for wound healing and the results indicated that Natrialba sp. BG1 biosurfactants is more efficient than Natrialba sp. N3 biosurfactants. Biosurfactants extracts were tested for their cytotoxic effects on normal cell line as well as on different cancer cells using MTT assay. The findings demonstrated that varying concentrations of the biosurfactants (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) exhibited cytotoxic effects on the cell lines being tested. Additionally, the outcomes unveiled the presence of anti-inflammatory and antioxidant properties for both biosurfactants. Consequently, they could potentially serve as natural, safe, and efficient novel agents for combating cancer, promoting wound healing, and providing anti-inflammatory and antioxidant benefits.


Assuntos
Halobacteriaceae , Cloreto de Sódio , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Egito , Antioxidantes/metabolismo , Halobacteriaceae/metabolismo , Anti-Inflamatórios/metabolismo
7.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964855

RESUMO

AIMS: Microbial enhanced oil recovery (MEOR) is cost-effective and eco-friendly for oil exploitation. Genetically modified biosurfactants-producing high-yield strains are promising for ex-situ MEOR. However, can they survive and produce biosurfactants in petroleum reservoirs for in-situ MEOR? What is their effect on the native bacterial community? METHODS AND RESULTS: A genetically modified indigenous biosurfactants-producing strain Pseudomonas aeruginosa PrhlAB was bioaugmented in simulated reservoir environments. Pseudomonas aeruginosa PrhlAB could stably colonize in simulated reservoirs. Biosurfactants (200 mg l-1) were produced in simulated reservoirs after bio-augmenting strain PrhlAB. The surface tension of fluid was reduced to 32.1 mN m-1. Crude oil was emulsified with an emulsification index of 60.1%. Bio-augmenting strain PrhlAB stimulated the MEOR-related microbial activities. Hydrocarbon-degrading bacteria and biosurfactants-producing bacteria were activated, while the hydrogen sulfide-producing bacteria were inhibited. Bio-augmenting P. aeruginosa PrhlAB reduced the diversity of bacterial community, and gradually simplified the species composition. Bacteria with oil displacement potential became dominant genera, such as Shewanella, Pseudomonas, and Arcobacter. CONCLUSIONS: Culture-based and sequence-based analyses reveal that genetically modified biosurfactants-producing strain P. aeruginosa PrhlAB are promising for in-situ MEOR as well.


Assuntos
Petróleo , Pseudomonas aeruginosa , Tensoativos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Petróleo/metabolismo , Tensoativos/metabolismo , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Hidrocarbonetos/metabolismo , Microbiota
8.
Environ Res ; 244: 117879, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086503

RESUMO

Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.


Assuntos
Resíduos Industriais , Eliminação de Resíduos , Alimentos , Fermentação , Tensoativos/química
9.
Appl Microbiol Biotechnol ; 108(1): 93, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204129

RESUMO

N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC-MS and NMR. KEY POINTS: • A novel aminoacylase from Paraburkholderia monticola was cloned, expressed in E. coli and purified. • The enzyme PmAcy exhibits exceptional temperature and pH stability and a broad substrate spectrum. • Synthesis of acyl amino acids was achieved in good yields.


Assuntos
Amidoidrolases , Aminoácidos , Burkholderiaceae , Escherichia coli , Humanos , Lactente , Escherichia coli/genética , Fenilalanina
10.
Antonie Van Leeuwenhoek ; 117(1): 49, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448684

RESUMO

A marine bacterial strain, named NTOU-MSR1T, was isolated from marine sediment of northern coast of Taiwan. This bacterium was Gram-stain-negative, aerobic, and motile, with a single flagellum. Its rod-shaped cells measured approximately 0.5-0.6 µm in width and 1.8-2.0 µm in length. NTOU-MSR1T grew at temperatures ranging from 10 to 45 °C, optimally at 30 °C. The pH range for growth was 7.0-10.0, with optimal growth at pH 7.0-8.0. It tolerated NaCl concentrations up to 12%. The cell membrane predominantly contained fatty acids such C16:1ω7c, C18:1ω7c, and C16:0. The overall genome relatedness indices indicated that strain NTOU-MSR1T had an average nucleotide identity (ANI) of 87.88% and a digital DNA-DNA hybridization (dDDH) value of 35.40% compared to its closest related species, O. marisflavi 102-Na3T. These values fell below the 95% and 70% threshold for species delineation, respectively. These findings suggested that the strain NTOU-MSR1T was a new member of the Oceanimonas genus. Its genomic DNA had a G + C content of 61.0 mol%. Genomic analysis revealed genes associated with the catechol branch of ß- ketoadipate pathway for degrading polycyclic aromatic hydrocarbons, resistance to heavy metal, biosynthesis of polyhydroxybutyrate and the production of glycoside hydrolases (GH19, GH23, and GH103) for chitin and glycan digestion. Additionally, NTOU-MSR1T was capable of synthesizing biosurfactants and potentially degrading plastic. The proposed name for this new species is Oceanimonas pelagia, with the type strain designated as NTOU-MSR1T (= BCRC 81403T = JCM 36023T).


Assuntos
Bactérias , Flagelos , Membrana Celular , Sedimentos Geológicos , DNA
11.
Biotechnol Lett ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225887

RESUMO

To construct a derivative of the avirulent Pseudomonas aeruginosa ATCC 9027 that produces high levels of di-rhamnolipid, that has better physico-chemical characteristics for biotechnological applications than mono-rhamnolipid, which is the sole type produced by ATCC 9027. We used plasmids expressing the rhlC gene, which encodes for rhamnosyl transferase II that transforms mono- to di-rhamnolipids under different promoters and in combination with the gene coding for the RhlR quorum sensing regulator, or the mono-rhamnolipid biosynthetic rhlAB operon. The plasmids tested carrying the rhlC gene under the lac promoter were plasmid prhlC and prhlRC, while prhlAB-R-C expressed this gene from the rhlA promoter, forming part of the artificially constructed rhlAB-R-C operon. We measured rhamnolipds concentrations using the orcinol method and determined the proportion of mono-rhamnolipids and di-rhamnolipids by UPLC/MS/MS. We found that the expression of rhlC in P. aeruginosa ATCC 9027 caused the production of di-rhamnolipids and that the derivative carrying plasmid prhlAB-R-C gives the best results considering total rhamnolipids and a higher proportion of di-rhamnolipids. A P. aeruginosa ATCC 9027 derivative with increased di-rhamnolipids production was developed by expressing plasmid prhlAB-R-C, that produces similar rhamnolipids levels as PAO1 type-strain and presented a higher proportion of di-rhamnolipids than this type-strain.

12.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366661

RESUMO

This study aims to isolate microbial strains for producing mono-rhamnolipids with high proportion. Oily sludge is rich in petroleum and contains diverse biosurfactant-producing strains. A biosurfactant-producing strain LP20 was isolated from oily sludge, identified as Pseudomonas aeruginosa based on phylogenetic analysis of 16S rRNA. High-performance liquid chromatography-mass spectrometry results indicated that biosurfactants produced from LP20 were rhamnolipids, mainly containing Rha-C8-C10, Rha-C10-C10, Rha-Rha-C8-C10, Rha-Rha-C10-C10, Rha-C10-C12:1, and Rha-C10-C12. Interestingly, more mono-rhamnolipids were produced by strain LP20 with a relative abundance of 64.5%. Pseudomonas aeruginosa LP20 optimally produced rhamnolipids at a pH of 7.0 and a salinity of 0.1% using glycerol and nitrate. The culture medium for rhamnolipids by strain LP20 was optimized by response surface methodology. LP20 produced rhamnolipids up to 6.9 g L-1, increased by 116%. Rhamnolipids produced from LP20 decreased the water surface tension to 28.1 mN m-1 with a critical micelle concentration of 60 mg L-1. The produced rhamnolipids emulsified many hydrocarbons with EI24 values higher than 56% and showed antimicrobial activity against Staphylococcus aureus and Cladosporium sp. with inhibition rates 48.5% and 17.9%, respectively. Pseudomonas aeruginosa LP20 produced more proportion of mono-rhamnolipids, and the LP20 rhamnolipids exhibited favorable activities and promising potential in microbial-enhanced oil recovery, bioremediation, and agricultural biocontrol.


Assuntos
Decanoatos , Pseudomonas aeruginosa , Ramnose/análogos & derivados , Esgotos , Pseudomonas aeruginosa/genética , Filogenia , RNA Ribossômico 16S/genética , Glicolipídeos , Tensoativos/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38906848

RESUMO

To determine the performance of a sophorolipid biosurfactant production process, it is important to have accurate and specific analytical techniques in place. Among the most popular are the anthrone assay, gravimetric quantification (hexane:ethyl acetate extraction), and high-performance liquid chromatography (HPLC). The choice of analytical tool varies depending on cost, availability, and ease of use; however, these techniques have never been compared directly against one another. In this work, 75 fermentation broths with varying product/substrate concentrations were comprehensively tested with the 3 techniques and compared. HPLC-ultraviolet detection (198 nm) was capable of quantifying C18:1 subterminal hydroxyl diacetylated lactonic sophorolipid down to a lower limit of 0.3 g/L with low variability (<3.21%). Gravimetric quantification of the broths following liquid:liquid extraction with hexane and ethyl acetate showed some linearity (R2 = .658) when compared to HPLC but could not quantify lower than 11.06 g/L, even when no sophorolipids were detected in the sample, highlighting the non-specificity of the method to co-extract non-sophorolipid components in the final gravimetric measure. The anthrone assay showed no linearity (R2 = .129) and was found to cross-react with media components (rapeseed oil, corn steep liquor, glucose), leading to consistent overestimation of sophorolipid concentration. The appearance of poor biomass separation during sample preparation with centrifugation was noted and resolved with a novel sample preparation method with pure ethanol. Extensive analysis and comparisons of the most common sophorolipid quantification techniques are explored and the limitations/advantages are highlighted. The findings provide a guide for scientists to make an informed decision on the suitable quantification tool that meets their needs, exploring all aspects of the analysis process from harvest, sample preparation, and analysis.


Assuntos
Tensoativos , Tensoativos/química , Cromatografia Líquida de Alta Pressão/métodos , Fermentação , Ácidos Oleicos/análise , Ácidos Oleicos/química , Meios de Cultura/química
14.
Biodegradation ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733427

RESUMO

Remediation of hydrocarbon contaminations requires much attention nowadays since it causes detrimental effects on land and even worse impacts on aquatic environments. Tools of bioremediation especially filamentous fungi permissible for cleaning up as much as conceivable, at least they turn into non-toxic residues with less consumed periods. Inorganic chemicals, CO2, H2O, and cell biomass are produced as a result of the breakdown and mineralization of petroleum hydrocarbon pollutants. This paper presents a detailed overview of three strategic rules of filamentous fungi in remediating the various aliphatic, and aromatic hydrocarbon compounds: utilizing carbons from hydrocarbons as sole energy, Co-metabolism manners (Enzymatic and Non-enzymatic theories), and Biosorption approaches. Upliftment in the degradation rate of complex hydrocarbon by the Filamentous Fungi in consortia scenario we can say, "Fungal Talk", which includes a variety of cellular mechanisms, including biosurfactant production, biomineralization, and precipitation, etc., This review not only displays its efficiency but showcases the field applications - cost-effective, reliable, eco-friendly, easy to culture as biomass, applicable in both land and any water bodies in operational environment cleanups. Nevertheless, the potentiality of fungi-human interaction has not been fully understood, henceforth further studies are highly endorsed with spore pathogenicity of the fungal species capable of high remediation rate, and the gene knockout study, if the specific peptides cause toxicity to any living matters via Genomics and Proteomics approaches, before application of any in situ or ex situ environments.

15.
Biodegradation ; 35(5): 719-737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38517619

RESUMO

Bioremediation is considered to be an effective treatment for hydrocarbon removal from polluted soils. However, the effectiveness of this treatment is often limited by the low availability of targeted contaminants. Biosurfactants produced by some microorganisms can increase organic compound solubility and might then overcome this limitation. Two different inocula producers of biosurfactants (Burkholderia thailandensis E264 and SHEMS1 microbial consortium isolated from a hydrocarbon-contaminated soil) were incubated in Bushnell-Haas medium supplemented with hydrocarbons to investigate their biodegradation potential. Experimental results showed their ability to degrade 9.1 and 6.1% of hydrocarbons respectively after 65 days of incubation with an initial total hydrocarbon concentration of 16 g L-1. The biodegradation was more effective for the light and medium fractions (C10 to C36). B. thailandensis and SHEMS1 consortium produced surfactants after 14 days of culture during the stationary phase with hydrocarbons as the sole carbon and energy source. However, biosurfactant production did not appear to directly increase hydrocarbon degradation efficiency. The complexity and recalcitrance of hydrocarbon mixture used in this study appeared to continue to limit its biodegradation even in the presence of biosurfactants. In conclusion, B. thailandensis and SHEMS1 consortium can degrade recalcitrant hydrocarbon compounds and are therefore good candidates for the bioremediation of environments polluted by total hydrocarbons.


Assuntos
Biodegradação Ambiental , Burkholderia , Hidrocarbonetos , Consórcios Microbianos , Poluentes do Solo , Tensoativos , Tensoativos/metabolismo , Hidrocarbonetos/metabolismo , Burkholderia/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
16.
Anim Biotechnol ; 35(1): 2263771, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814822

RESUMO

Antimicrobial drug resistance (AMR) from improper use of antibiotics in various livestock products is a growing hazard for humans worldwide, with current death rate in excess of 700,000 per annum linked to the problem. Microorganisms are a rich source of structurally distinct bioactive compounds designed to protect the microbes and can offset AMR challenge. A study was conducted at Chinhoyi University of Technology to isolate, identify and characterize biosurfactant secreting microbes from broiler bird's gastrointestinal tract. Analysis of variance was performed in Genstat software. 16S rRNA technique was used to identify the DNA of isolates, annotated by similarity using BLASTn analysis against the NCBI nucleotide database. Phylogenetic analysis was performed on the BLASTn outcome to have an appreciation of the evolutionary genetic relationships. Small intestine-derived samples had a wider hemolytic activity of 5.6 mm, with a 39% emulsification index. At 98.29% sequence similarity, the bacterium producing biosurfactants was identified as an Escherichia coli strain similar to the 7.1994/NIST 0056 strain. The biosurfactant substance is a derivative of decane with beta lactams, tetracyclines and sulfa drugs properties which were responsible for the observed antibacterial activity. We recommend endogenous biosurfactant production optimization experiments and in-vivo trials to evaluate the potential impacts of a biosurfactant based feed additive in broilers.


Assuntos
Galinhas , Tensoativos , Humanos , Animais , Tensoativos/farmacologia , Filogenia , RNA Ribossômico 16S/genética , Galinhas/genética , Dieta , Trato Gastrointestinal
17.
Bioprocess Biosyst Eng ; 47(9): 1555-1570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38916653

RESUMO

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.


Assuntos
Bacillus , Glicerol , Lipopeptídeos , Tensoativos , Bacillus/metabolismo , Tensoativos/metabolismo , Tensoativos/química , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Glicerol/metabolismo , Reatores Biológicos
18.
Artigo em Inglês | MEDLINE | ID: mdl-39305295

RESUMO

Glycolipids are a class of widely studied biosurfactants with excellent applicability in cosmetic and pharmaceutical formulations. This class of biosurfactants includes mannosylerythritol lipids (MELs), which have gained particular interest due to their moisturizing and healing activity for dry and damaged human skin, arising from conditions such as eczema. Traditionally, MELs have been produced by growing certain basidiomycetous yeasts on vegetable oils. However, oils are a comparatively expensive substrate, which negatively affects the economic performance of MEL production. In addition to this, vegetable oils significantly complicate the downstream processing required to produce a product with the required purity for most applications. To address these challenges, this study investigated MEL-A production exclusively from hydrophilic carbon sources by Ustilago maydis DSM 4500. By implementing a fed-batch production strategy, maximum MEL-A concentration of 0.87 g/L was achieved from glucose exclusively. Also, adding micronutrients (such as MnSO4) to MEL-A production showed a 24.1% increase in the product titer, implying other metabolites are formed, favoring MEL production.

19.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673760

RESUMO

This study aimed to evaluate how the combined presence of the synthetic fungicide azoxystrobin (AZ) and the biosurfactant-producing Bacillus sp. Kol B3 influences the growth of the phytopathogenic fungus Fusarium sambucinum IM 6525. The results showed a noticeable increase in antifungal effectiveness when biotic and abiotic agents were combined. This effect manifested across diverse parameters, including fungal growth inhibition, changes in hyphae morphology, fungal membrane permeability and levels of intracellular reactive oxygen species (ROS). In response to the presence of Fusarium and AZ in the culture, the bacteria changed the proportions of biosurfactants (surfactin and iturin) produced. The presence of both AZ and/or Fusarium resulted in an increase in iturin biosynthesis. Only in 72 h old bacterial-fungal co-culture a 20% removal of AZ was noted. In the fungal cultures (with and without the addition of the bacteria), the presence of an AZ metabolite named azoxystrobin free acid was detected in the 48th and 72nd hours of the process. The possible involvement of increased iturin and ROS content in antifungal activity of Bacillus sp. and AZ when used together are also discussed. Biosurfactants were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Microscopy techniques and biochemical assays were also used.


Assuntos
Antifúngicos , Bacillus , Fusarium , Pirimidinas , Estrobilurinas , Tensoativos , Estrobilurinas/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Bacillus/metabolismo , Tensoativos/farmacologia , Tensoativos/metabolismo , Antifúngicos/farmacologia , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana
20.
J Environ Manage ; 353: 120132, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38286067

RESUMO

The removal of volatile organic compounds (VOCs) in air is of utmost importance to safeguard both environmental quality and human well-being. However, the low aqueous solubility of hydrophobic VOCs results in poor removal in waste gas biofilters (BFs). In this study, we evaluated the addition of (bio)surfactants in three BFs (BF1 and BF2 mixture of compost and wood chips (C + WC), and BF3 filled with expanded perlite) to enhance the removal of cyclohexane and hexane from a polluted gas stream. Experiments were carried out to select two (bio)surfactants (i.e., Tween 80 and saponin) out of five (sodium dodecyl sulfate (SDS), Tween 80, surfactin, rhamnolipid and saponin) from a physical-chemical (i.e., decreasing VOC gas-liquid partitioning) and biological (i.e., the ability of the microbial consortium to grow on the (bio)surfactants) point of view. The results show that adding Tween 80 at 1 critical micelle concentration (CMC) had a slight positive effect on the removal of both VOCs, in BF1 (e.g., 7.0 ± 0.6 g cyclohexane m-3 h-1, 85 ± 2% at 163 s; compared to 6.7 ± 0.4 g cyclohexane m-3 h-1, 76 ± 2% at 163 s and 0 CMC) and BF2 (e.g., 4.3 ± 0.4 g hexane m-3 h-1, 27 ± 2% at 82 s; compared to 3.1 ± 0.7 g hexane m-3 h-1, 16 ± 4% at 82 s and 0 CMC), but a negative effect in BF3 at either 1, 3 and 9 CMC (e.g., 2.4 ± 0.4 g hexane m-3 h-1, 30 ± 4% at 163 s and 1 CMC; compared to 4.6 ± 1.0 g hexane m-3 h-1, 43 ± 8% at 163 s and 0 CMC). In contrast, the performance of all BFs improved with the addition of saponin, particularly at 3 CMC. Notably, in BF3, the elimination capacity (EC) and removal efficiency (RE) doubled for both VOCs (i.e., 9.1 ± 0.6 g cyclohexane m-3 h-1, 49 ± 3%; 4.3 ± 0.3 g hexane m-3 h-1, 25 ± 3%) compared to no biosurfactant addition (i.e., 4.5 ± 0.4 g cyclohexane m-3 h-1, 23 ± 3%; hexane 2.2 ± 0.5 g m-3 h-1, 10 ± 2%) at 82 s. Moreover, the addition of the (bio)surfactants led to a shift in the microbial consortia, with a different response in BF1-BF2 compared to BF3. This study evaluates for the first time the use of saponin in BFs, it demonstrates that cyclohexane and hexane RE can be improved by (bio)surfactant addition, and it provides recommendations for future studies in this field.


Assuntos
Saponinas , Compostos Orgânicos Voláteis , Humanos , Tensoativos/química , Hexanos , Polissorbatos , Cicloexanos , Filtração/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA