RESUMO
Alumoxanes are typically produced via controlled hydrolysis of short-chain alkyl aluminium compounds which leads to oligomeric species that are usually difficult to obtain in crystalline form. Simultaneously, various alternative non-hydrolytic approaches to alumoxanes have also been used. In this work, we report on a new methylalumoxane scaffold derived from the alkylation of a series of dicarboxylic acids: itaconic acid (HO2CCH2C(=CH2)CO2H), succinic acid (HO2CCH2CH2CO2H) and homophthalic acid (HO2CCH2C6H4CO2H). The reactions of AlMe3 with a selected dicarboxylic acid in the molar ratio 4 : 1 conducted at elevated temperature occur with double methylation of each carboxylic group and provide to the formation of a new methylalumoxane aggregate, Me10Al6O4, flanked by methylaluminium diolate units. We also aimed to obtain dialkylaluminium derivatives of dicarboxylic acids by the controlled reaction of the appropriate acid with AlMe3 in the 1 : 2 stoichiometry. While the synthesis of organoaluminium derivatives of flexible aliphatic dicarboxylic acids (itaconic and succinic acids) is challenging due to their insolubility, the related homophtalate compound readily forms a molecular tetranuclear cluster, [([(O2CCH2C6H4CO2)(µ-AlMe2)2]2. The molecular and crystal structures of the resulting compounds were determined via NMR spectroscopic analysis and single crystal X-ray diffraction crystallography.
RESUMO
Plutonium(IV) oxalate hexahydrate (Pu(C2 O4 )2 â 6 H2 O; PuOx) is an important intermediate in the recovery of plutonium from used nuclear fuel. Its formation by precipitation is well studied, yet its crystal structure remains unknown. Instead, the crystal structure of PuOx is assumed to be isostructural with neptunium(IV) oxalate hexahydrate (Np(C2 O4 )2 â 6 H2 O; NpOx) and uranium(IV) oxalate hexahydrate (U(C2 O4 )2 â 6 H2 O; UOx) despite the high degree of unresolved disorder that exists when determining water positions in the crystal structures of the latter two compounds. Such assumptions regarding the isostructural behavior of the actinide elements have been used to predict the structure of PuOx for use in a wide range of studies. Herein, we report the first crystal structures for PuOx and Th(C2 O4 )2 â 6 H2 O (ThOx). These data, along with new characterization of UOx and NpOx, have resulted in the full determination of the structures and resolution of the disorder around the water molecules. Specifically, we have identified the coordination of two water molecules with each metal center, which necessitates a change in oxalate coordination mode from axial to equatorial that has not been reported in the literature. The results of this work exemplify the need to revisit previous assumptions regarding fundamental actinide chemistry, which are heavily relied upon within the current nuclear field.
RESUMO
The search for new anticancer drugs based on biogenic metals, which have weaker side effects compared to platinum-based drugs, remains an urgent task in medicinal chemistry. Titanocene dichloride, a coordination compound of fully biocompatible titanium, has failed in pre-clinical trials but continues to attract the attention of researchers as a structural framework for the development of new cytotoxic compounds. In this study, a series of titanocene (IV) carboxylate complexes, both new and those known from the literature, was synthesized, and their structures were confirmed by a complex of physicochemical methods and X-ray diffraction analysis (including one previously unknown structure based on perfluorinated benzoic acid). The comprehensive comparison of three approaches for the synthesis of titanocene derivatives known from the literature (the nucleophilic substitution of chloride anions of titanocene dichloride with sodium and silver salts of carboxylic acids as well as the reaction of dimethyltitanocene with carboxylic acids themselves) made it possible to optimize these methods to obtain higher yields of individual target compounds, generalize the advantages and disadvantages of these techniques, and determine the substrate frames of each method. The redox potentials of all obtained titanocene derivatives were determined by cyclic voltammetry. The relationship between the structure of ligands, the reduction potentials of titanocene (IV), and their relative stability in redox processes, as obtained in this work, can be used for the design and synthesis of new effective cytotoxic titanocene complexes. The study of the stability of the carboxylate-containing derivatives of titanocene obtained in the work in aqueous media showed that they were more resistant to hydrolysis than titanocene dichloride. Preliminary tests of the cytotoxicity of the synthesised titanocene dicarboxilates on MCF7 and MCF7-10A cell lines demonstrated an IC50 ≥ 100 µM for all the obtained compounds.
Assuntos
Antineoplásicos , Compostos Organometálicos , Humanos , Eletroquímica , Compostos Organometálicos/química , Antineoplásicos/química , Células MCF-7 , Ácidos CarboxílicosRESUMO
This research presents the highly regioselective syntheses of 1,2-dicarboxylated cyclopentadienide salts [Cat]2 [C5 H3 (CO2 )2 H] by reaction of a variety of organic cation methylcarbonate salts [Cat]OCO2 Me (Cat=NR4 + , PR4 + , Im+ ) with cyclopentadiene (CpH) or by simply reacting organic cation cyclopentadienides Cat[Cp] (Cat=NR4 + , PR4 + , Im+ ) with CO2 . One characteristic feature of these dianionic ligands is the acidic proton delocalized in an intramolecular hydrogen bridge (IHB) between the two carboxyl groups, as studied by 1 Hâ NMR spectroscopy and XRD analyses. The reaction cannot be stopped after the first carboxylation. Therefore, we propose a Kolbe-Schmitt phenol-carboxylation related mechanism where the acidic proton of the monocarboxylic acid intermediate plays an ortho-directing and CO2 activating role for the second kinetically accelerated CO2 addition step exclusively in ortho position. The same and related thiocarboxylates [Cat]2 [C5 H3 (COS)2 H] are obtained by reaction of COS with Cat[Cp] (Cat=NR4 + , PR4 + , Im+ ). A preliminary study on [Cat]2 [C5 H3 (CO2 )2 H] reveals, that its soft and hard coordination sites can selectively be addressed by soft Lewis acids (Mo0 , Ru2+ ) and hard Lewis acids (Al3+ , La3+ ).
RESUMO
Metal-organic frameworks (MOFs) with carboxylate ligands as co-catalysts are very efficient for the oxygen evolution reaction (OER). However, the role of local adsorbed carboxylate ligands around the in-situ-transformed metal (oxy)hydroxides during OER is often overlooked. We reveal the extraordinary role and mechanism of surface-adsorbed carboxylate ligands on bi/trimetallic layered double hydroxides (LDHs)/MOFs for OER electrocatalytic activity enhancement. The results of X-ray photoelectron spectroscopy (XPS), synchrotron X-ray absorption spectroscopy, and density functional theory (DFT) calculations show that the carboxylic groups around metal (oxy)hydroxides can efficiently induce interfacial electron redistribution, facilitate an abundant high-valence state of nickel species with a partially distorted octahedral structure, and optimize the d-band center together with the beneficial Gibbs free energy of the intermediate. Furthermore, the results of inâ situ Raman and FTIR spectra reveal that the surface-adsorbed carboxylate ligands as Lewis base can promote sluggish OER kinetics by accelerating proton transfer and facilitating adsorption, activation, and dissociation of hydroxyl ions (OH- ).
RESUMO
Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted widespread attention due to potential applications in displays, anticounterfeiting, and so on. However, MOFs often have large pore size, which restricts the formation of efficient inter- and intramolecular interactions to realize LPL. Herein, a new approach to achieving LPL in MOFs by multifold interpenetration of discrete frameworks is reported. By comparison between threefold- and twofold-interpenetrating MOFs, it was found that the former, which have higher multiplicity and denser frameworks, can be endowed with enhanced inter- and intramolecular interactions, and thus enhanced LPL is obtained. Meanwhile, metal-cluster and heavy-halogen effects could also cause variations in LPL duration and color.
RESUMO
Eight mixed-ligand coordination networks, [Cd(2-aba)(NO3)(4-bphz)3/2]n·n(dmf) (1), [Cd(2-aba)2(4-bphz)]n·0.75n(dmf) (2), [Cd(seb)(4-bphz)]n·n(H2O) (3), [Cd(seb)(4-bpmhz)]n·n(H2O) (4), [Cd(hpa)(3-bphz)]n (5), [Zn(1,3-bdc)(3-bpmhz)]n·n(MeOH) (6), [Cd(1,3-bdc)(3-bpmhz)]n ·0.5n(H2O)·0.5n(EtOH) (7), and [Cd(NO3)2(3-bphz)(bpe)]n·n(3-bphz) (8) were obtained by interplay of cadmium nitrate tetrahydrate or zinc nitrate hexahydrate with 2-aminobenzenecarboxylic acid (H(2-aba)), three dicarboxylic acids, sebacic (decanedioic acid, H2seb), homophthalic (2-(carboxymethyl)benzoic acid, H2hpa), isophthalic (1,3-benzenedicarboxylic acid, H2(1,3-bdc)) acids, bis(4-pyridyl)ethane (bpe) and with four azine ligands, 1,2-bis(pyridin-4-ylmethylene)hydrazine (4-bphz), 1,2-bis(1-(pyridin-4-yl)ethylidene) hydrazine (4-bpmhz), 1,2-bis(pyridin-3-ylmethylene)hydrazine (3-bphz), and 1,2-bis(1-(pyridin-3-yl) ethylidene)hydrazine (3-bpmhz). Compounds 1 and 2 are 1D coordination polymers, while compounds 3-8 are 2D coordination polymers. All compounds were characterized by spectroscopic and X-ray diffraction methods of analysis. The solvent uptakes and stabilities to the guest evacuation were studied and compared for 1D and 2D coordination networks. The de-solvated forms revealed a significant increase of emission in comparison with the as-synthesized crystals.
Assuntos
Compostos Azo/química , Cádmio/química , Ácidos Carboxílicos/química , Compostos Organometálicos/química , Zinco/química , Adsorção , Ânions/química , Cristalografia por Raios X , Ligantes , Luminescência , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Espectroscopia Fotoeletrônica , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
Mono-N-protected amino acids (MPAAs) are increasingly common ligands in Pd-catalyzed C-H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C-H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand-accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand-to-metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C-H activation and catalytic C-H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50-100-fold increase in rate when only 0.05â equivalents of MPAA are present relative to PdII . These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdII enables a single MPAA to support C-H activation at multiple PdII centers.
Assuntos
Aminoácidos/química , Paládio/química , Carbono/química , Catálise , Hidrogênio/química , Ligantes , Espectroscopia de Ressonância Magnética/métodosRESUMO
A new thorium metal-organic framework (MOF), Th(OBA)2 , where OBA is 4,4'-oxybis(benzoic) acid, has been synthesized hydrothermally in the presence of a range of nitrogen-donor coordination modulators. This Th-MOF, described herein as GWMOF-13, has been characterized by single-crystal and powder X-ray diffraction, as well as through a range of techniques including gas sorption, thermogravimetric analysis (TGA), solid-state UV/Vis and luminescence spectroscopy. Single-crystal X-ray diffraction analysis of GWMOF-13 reveals an interesting, high symmetry (cubic Ia 3 â¾ d) structure, which yields a novel srs-a topology. Most notably, TGA analysis of GWMOF-13 reveals framework stability to 525 °C, matching the thermal stability benchmarks of the UiO-66 series MOFs and zeolitic imidazolate frameworks (ZIFs), and setting a new standard for thermal stability in f-block based MOFs.
RESUMO
For the first time, orthogonally substituted azole-carboxylate adamantane ligands were synthesized and used for preparation of coordination polymers. The angle-shaped ligands were prepared by the reaction of 1-adamantanecarboxylic acid and azoles (1H-1,2,4-triazole, 3-methyl-1H-1,2,4-triazole, 3,5-dimethyl-1H-1,2,4-triazole, 1H-tetrazole, 5-methyl-1H-tetrazole) in concentrated sulfuric acid. Variation of the solvent and substituents in azole rings allowed to prepare both 1D and 2D copper(II) and nickel(II) coordination polymers, [Cu2(trzadc)4(H2O)0.7]âDMFâ0.3H2O, [Cu(trzadc)2(MeOH)]âMeOH, [Ni(trzadc)2(MeOH)2] and [Cu2(mtrzadc)3(MeOH)]+NO3- (trzadc-3-(1,2,4-triazol-1-yl)-adamantane-1-carboxylic acid; mtrzadc-3-(3-methyl-1,2,4-triazol-1-yl)-adamantane-1-carboxylic acid) which were structurally characterized by single crystal X-ray diffraction. Complex [Cu(trzadc)2(MeOH)]âMeOH was shown to act as a catalyst in the Chan-Evans-Lam arylation reaction.
Assuntos
Adamantano/análogos & derivados , Polímeros/química , Adamantano/síntese química , Adamantano/química , Adamantano/farmacologia , Catálise , Técnicas de Química Sintética , Cristalografia por Raios X , Ligantes , Estruturas Metalorgânicas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Polímeros/síntese química , Análise EspectralRESUMO
As the main organic pollutants in wastewater, antibiotics and organic dyes are harmful to the environment and public health, and their removal is important but challenging. In this work, highly porous 3D metal-organic frameworks (MOFs) [M2 (PDAD)(H2 O)]n (PCN-124-stu; M=Cu, Zn; H4 PDAD = 5,5'-(pyridine-3,5-dicarbonyl)bis(azanediyl)diisophthalic acid) were synthesized, and PCN-124-stu(Cu) shows excellent chemical and thermal stability. PCN-124-stu(Cu) was used as a host for efficient extraction of various organic dyes, especially the large-molecule dye Coomassie brilliant blue, and fluoroquinolones from water, in comparison with five common MOFs, zeoliteâ 13X, and activated carbon. PCN-124-stu(Cu) exhibits absolute predominance for fluoroquinolone adsorption among these microporous materials because of the H-bonds between fluoroquinolone molecules and the amide groups in the frameworks, except for MIL-100(Cr), which is a mesoporous MOF. Moreover, PCN-124-stu(Cu) could release fluoroquinolones slowly in physiological saline and retained its framework structure after four adsorption/desorption cycles. In addition, PCN-124-stu(Cu) can be used as a platform for selective adsorption of CO2 /CH4.
Assuntos
Amidas/química , Antibacterianos/química , Dióxido de Carbono/química , Estruturas Metalorgânicas/química , Metano/química , Adsorção , Corantes/química , Porosidade , Água/químicaRESUMO
A general synthetic route was used to prepare 15 new N-heterocyclic carbene (NHC)-Ag(I) complexes bearing anionic carboxylate ligands [Ag(NHC)(O2 CR)], including a homologous series of complexes of sterically flexible ITent ligands, which permit a systematic spectroscopic and theoretical study of the structural and electronic features of these compounds. The complexes displayed a significant ligand-accelerated effect in the intramolecular cyclisation of propargylic amides to oxazolidines. The substrate scope is highly complementary to that previously achieved by NHC-Au and pyridyl-Ag(I) complexes.
RESUMO
The ability to control the interplay of materials with low-energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal-organic frameworks (MOFs) were synthesized from the same linker bearing all-visible ortho-fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al-based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light-heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid-phase applications such as light-controlled catalysis and adsorptive separation.
RESUMO
A series of heterometallic 3d-Gd(3+) complexes based on a lanthanide metalloligand, [M(H2 O)6 ][Gd(oda)3 ]â 3 H2 O [M=Cr(3+) (1-Cr)] (H2 oda=2,2'-oxydiacetic acid), [M(H2 O)6 ][MGd(oda)3 ]2 â 3 H2 O [M=Mn(2+) (2-Mn), Fe(2+) (2-Fe) and Co(2+) (2-Co)], and [M3 Gd2 (oda)6 (H2 O)6 ]â 12 H2 O [M=Ni(2+) (3-Ni), Cu(2+) (3-Cu), and Zn(2+) (3-Zn)], are reported. Magnetic and heat-capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of -ΔSm between complexes 2-Co and 1-Cr. In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co(2+) and Cr(3+) ions), and the theoretical calculation suggested a larger -ΔSm value for 2-Co (47.8â J K(-1) kg(-1) ) than 1-Cr (37.5â J K(-1) kg(-1) ); however, the significant anisotropy of Co(2+) ions in 2-Co, which can result in smaller effective spins, gives a smaller value of -ΔSm for 2-Co (32.2â J K(-1) kg(-1) ) than for 1-Cr (35.4â J K(-1) kg(-1) ) at ΔH=9â T.
RESUMO
A series of highly connected metal-organic frameworks (MOFs), [Co8 (O)(OH)4 (H2 O)4 (ina)8 ](NO3 )2 â 2 C2 H5 OHâ 4 H2 O (1), [Co8 (O)(OH)4 (H2 O)4 (pba)8 ](NO3 )2 â 8 C2 H5 OHâ 28 H2 O (2), and [Co8 (O)(OH)4 (H2 O)4 (pbba)8 ](NO3 )2 â guest (3), in which ina=isonicotinate, pba=4-pyridylbenzoate, and pbba=4-(pyridine-4-yl)phenylbenzoate, is reported. These MOFs contain a new secondary building unit (SBU), with a square Co4 (µ4 -O) central unit having the rare µ4 -O(2-) motif, which is decorated by the other four peripheral cobalt atoms through µ3 -OH in a windmill-like shape. This SBU holds 16 divergent connecting organic ligands, pyridyl-carboxylates, to form three different frameworks. The high porosity of desolvated 2 is shown by the efficient gas absorption of N2 , CO2 , CH4 , and H2 . In addition, 1 and 2 exhibit unusual canted antiferromagnetic behavior with spin-glass-like relaxation, with blocking temperatures that are fairly high, 20â K (1) and 10â K (2), for cobalt materials. The relationship between the metal clusters and linkers has been studied, in which the size and rotational degrees of freedom of the ligands are found to control the topology, gas sorption, and magnetic properties.
RESUMO
Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2â nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4â nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.
RESUMO
A new tetracarboxylate ligand having short and long arms formed 2D layer Zn(II) coordination polymer 1 with paddle-wheel secondary building units under solvothermal conditions. The framework undergoes solvent-specific single crystal-to-single crystal (SC-SC) transmetalation to produce 1Cu . With a sterically encumbered dipyridyl linker, the same ligand forms non-interpenetrated, 3D, pillared-layer Zn(II) metal-organic framework (MOF) 2, which takes part in SC-SC linker-exchange reactions to produce three daughter frameworks. The parent MOF 2 shows preferential incorporation of the longest linker in competitive linker-exchange experiments. All the 3D MOFs undergo complete SC-SC transmetalation with Cu(II) , whereby metal exchange in different solvents and monitoring of X-ray structures revealed that bulky solvated metal ions lead to ordering of the shortest linker in the framework, which confirms that the solvated metal ions enter through the pores along the linker axis.
RESUMO
A unique Al(III) -based metal-organic framework (467-MOF) with two types of square channels has been designed and synthesized by using a flexible tricarboxylate ligand under solvothermal conditions. 467-MOF exhibits superior thermal and chemical stability and, moreover, shows high CO2 sorption selectivity over H2 , with a selectivity, based on the ideal adsorbed solution theory (IAST) of approximately 45 at 273 or 293â K. Furthermore, its solvent-dependent photoluminescence makes it an applicable sensor in the detection of nitrobenzene explosives through fluorescence quenching.
RESUMO
Reactions of cerium(III) nitrate, Ce(NO3 )3 â 6 H2 O, with different carboxylic acids, such as pivalic acid, benzoic acid, and 4-methoxybenzoic acid, in the presence of a tridentate N,N,N-donor ligand, diethylenetriamine (L(1) ), under aerobic conditions yielded the corresponding cerium hexamers Ce6 O8 (O2 CtBu)8 (L(1) )4 (1), Ce6 O8 (O2 CC6 H5 )8 (L(1) )4 (2), and Ce6 O8 (O2 CC6 H4 -4-OCH3 )8 (L(1) )4 (3). Hexamers 1, 2, and 3 contain the same octahedral Ce(IV) 6 O8 core, in which all interstitial oxygen atoms are connected by µ3 -oxo bridging ligands. In contrast, treatment of the Ce(IV) precursor (NH4 )2 Ce(NO3 )6 (CAN) with pivalic acid and the ligand L(1) under the same conditions afforded Ce6 O4 (OH)4 (O2 CtBu)12 (L(1) )2 (4), exhibiting a deformed octahedral Ce(IV) 6 O4 (OH)4 core containing µ3 -oxo and µ3 -hydroxo moieties in defined positions. In contrast to the formation of 1-3, the use of N-methyldiethanolamine (L) in the reaction with Ce(NO3 )3 â 6 H2 O and pivalic acid afforded a previously reported Ce(III) dinuclear cluster, Ce2 (O2 CtBu)6 L2 , even in the presence of dioxygen. ESI-MS analysis of the reaction mixture clearly indicated the importance of the ligand L(1) in promoting oxidation of the Ce(III) aggregates, [Cen (O2 CtBu)3n (L(1) )2 ], which is necessary for the formation of Ce(IV) hexamers.
RESUMO
Three isostructural lanthanide-based two- dimensional coordination polymers (CPs) {[Ln2(L)3(H2O)2]nâ 2n CH3OH)â 2n H2O} (Ln=Gd(3+) (1), Tb(3+) (2), Dy(3+) (3); H2L=cyclobutane-1,1-dicarboxylic acid) were synthesized by using a low molecular weight dicarboxylate ligand and characterized. Single-crystal structure analysis showed that in complexes 1-3 lanthanide centers are connected by µ3-bridging cyclobutanedicarboxylate ligands along the c axis to form a rod-shaped infinite 1D coordination chain, which is further linked with nearby chains by µ4-connected cyclobutanedicarboxylate ligands to form 2D CPs in the bc plane. Viewing the packing of the complexes down the b axis reveals that the lattice methanol molecules are located in the interlayer space between the adjacent 2D layers and form H-bonds with lattice and coordinated water molecules to form 1D chains. Magnetic properties of complexes 1-3 were thoroughly investigated. Complex 1 exhibits dominant ferromagnetic interaction between two nearby gadolinium centers and also acts as a cryogenic magnetic refrigerant having a significant magnetic entropy change of -ΔSm=32.8â J kg(-1) K(-1) for ΔH=7â T at 4â K (calculated from isothermal magnetization data). Complex 3 shows slow relaxation of magnetization below 10â K. Impedance analysis revealed that the complexes show humidity-dependent proton conductivity (σ=1.5×10(-5)â S cm(-1) for 1, σ=2.07×10(-4)â S cm(-1) for 2, and σ=1.1×10(-3)â S cm(-1) for 3) at elevated temperature (>75 °C). They retain the conductivity for up to 10â h at high temperature and high humidity. Furthermore, the proton conductivity results were correlated with the number of water molecules from the water-vapor adsorption measurements. Water-vapor adsorption studies showed hysteretic and two-step water vapor adsorption (182,000â µL g(-1) for 1, 184,000â µL g(-1) for 2, and 1,874,000â µL g(-1) for 3) in the experimental pressure range. Simulation of water-vapor adsorption by the Monte Carlo method (for 1) confirmed the high density of adsorbed water molecules, preferentially in the interlayer space between the 2D layers.