Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Magn Reson Med ; 92(2): 573-585, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501914

RESUMO

PURPOSE: To evaluate the use of pre-excitation gradients for eddy current-nulled convex optimized diffusion encoding (Pre-ENCODE) to mitigate eddy current-induced image distortions in diffusion-weighted MRI (DWI). METHODS: DWI sequences using monopolar (MONO), ENCODE, and Pre-ENCODE were evaluated in terms of the minimum achievable echo time (TE min $$ {}_{\mathrm{min}} $$ ) and eddy current-induced image distortions using simulations, phantom experiments, and in vivo DWI in volunteers ( N = 6 $$ N=6 $$ ). RESULTS: Pre-ENCODE provided a shorter TE min $$ {}_{\mathrm{min}} $$ than MONO (71.0 ± $$ \pm $$ 17.7ms vs. 77.6 ± $$ \pm $$ 22.9ms) and ENCODE (71.0 ± $$ \pm $$ 17.7ms vs. 86.2 ± $$ \pm $$ 14.2ms) in 100 % $$ \% $$ of the simulated cases for a commercial 3T MRI system with b-values ranging from 500 to 3000 s/mm 2 $$ {}^2 $$ and in-plane spatial resolutions ranging from 1.0 to 3.0mm 2 $$ {}^2 $$ . Image distortion was estimated by intravoxel signal variance between diffusion encoding directions near the phantom edges and was significantly lower with Pre-ENCODE than with MONO (10.1 % $$ \% $$ vs. 22.7 % $$ \% $$ , p = 6 - 5 $$ p={6}^{-5} $$ ) and comparable to ENCODE (10.1 % $$ \% $$ vs. 10.4 % $$ \% $$ , p = 0 . 12 $$ p=0.12 $$ ). In vivo measurements of apparent diffusion coefficients were similar in global brain pixels (0.37 [0.28,1.45] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s vs. 0.38 [0.28,1.45] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s, p = 0 . 25 $$ p=0.25 $$ ) and increased in edge brain pixels (0.80 [0.17,1.49] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s vs. 0.70 [0.18,1.48] × 1 0 - 3 $$ \times 1{0}^{-3} $$ mm 2 $$ {}^2 $$ /s, p = 0 . 02 $$ p=0.02 $$ ) for MONO compared to Pre-ENCODE. CONCLUSION: Pre-ENCODE mitigated eddy current-induced image distortions for diffusion imaging with a shorter TE min $$ {}_{\mathrm{min}} $$ than MONO and ENCODE.


Assuntos
Algoritmos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador , Artefatos , Adulto , Voluntários Saudáveis
2.
Magn Reson Med ; 91(3): 1067-1074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994235

RESUMO

PURPOSE: To minimize eddy current artifacts in periodic pulse sequences with balanced gradient moments as, for example, used for quantitative MRI. THEORY AND METHODS: Eddy current artifacts in balanced sequences result from large jumps in k-space. In quantitative MRI, one often samples some spin dynamics repeatedly while acquiring different parts of k-space. We swap individual k-space lines between different repetitions in order to minimize jumps in temporal succession without changing the overall trajectory. This reordering can be formulated as a traveling salesman problem and we tackle the discrete optimization with a simulated annealing algorithm. RESULTS: Compared to the default ordering, we observe a substantial reduction of artifacts in the reconstructed images and the derived quantitative parameter maps. Comparing two variants of our algorithm, one that resembles the pairing approach originally proposed by Bieri et al., and one that minimizes all k-space jumps equally, we observe slightly lower artifact levels in the latter. CONCLUSION: The proposed reordering scheme effectively reduces eddy current artifacts in sequences with balanced gradient moments. In contrast to previous approaches, we capitalize on the periodicity of the sampled signal dynamics, enabling both efficient k-space sampling and minimizing artifacts caused by eddy currents.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
3.
Magn Reson Med ; 92(5): 2261-2270, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39004827

RESUMO

PURPOSE: Driven by the Lorentz force, acoustic noise may arguably be the next physiological challenge associated with ultra-high field MRI scanners and powerful gradient coils. This work consisted of isolating and mitigating the main sound pathway in the NexGen 7 T scanner equipped with the investigational Impulse head gradient coil. METHODS: Sound pressure level (SPL) measurements were performed with and without the RF coil to assess its acoustic impact. Vibration measurements were carried out on the gradient coil, the RF coil, and on the patient table to distinguish the different vibration mechanisms and pathways. Vibrations of the RF coil were modified by either making contact with the patient bore liner with padding material or by changing directly the RF shield with phosphor bronze mesh material. RESULTS: SPL and vibration measurements demonstrated that eddy-currents induced in the RF shield were the primary cause of acoustic noise. Replacing the conventional solid copper shield with phosphor bronze mesh material altered the vibrations of the RF shield and decreased SPL by 6 to 8 dB at the highest frequencies in EPI, depending on the gradient axis, while boosting the transmit B1 + field by 15%. Padding led to slightly less sound reduction on the X and Z gradient axes, but with minimal impact for the Y axis. CONCLUSION: This study demonstrates the potential importance of eddy-current induced vibrations in the RF coil in terms of acoustic noise and opens new horizons for mitigation measures.


Assuntos
Acústica , Desenho de Equipamento , Imageamento por Ressonância Magnética , Ruído , Vibração , Imageamento por Ressonância Magnética/instrumentação , Humanos , Imagens de Fantasmas
4.
Magn Reson Med ; 91(2): 541-557, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37753621

RESUMO

PURPOSE: To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS: A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS: Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION: Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Ecoplanar/métodos
5.
Int J Hyperthermia ; 41(1): 2391008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39205623

RESUMO

OBJECTIVES: Demonstrate the potential application of a novel, endoscope-like device to guide and focus an alternating magnetic field (AMF) for treating deep-seated cancers via magnetic nanoparticle hyperthermia (MNPH). METHODS: AMF delivery, MNP activation, and eddy current distribution characteristics are investigated through experimental studies in phantoms and computational simulations using a full 3-dimensional human model. The 3D simulations compare the novel device to traditional AMF designs, including a MagForce-like, two-coil system (used clinically) and a single surface-coil system. RESULTS: The results demonstrate that this approach can deliver the same magnetic field strength at the prostate's centroid as traditional AMF designs, while reducing eddy current heating by 2 to 6 times. At the same level of normal tissue heating, this method provides 5.0 times, 1.5 times, and 0.92 times the magnetic field strength to the nearest, centroid, and farthest regions of the prostate, respectively. CONCLUSIONS: These results demonstrate proof-of-concept for an endoscopic magnetic field guiding and focusing system capable of delivering clinically relevant AMF from a distance. This innovative approach offers a promising alternative to conventional field delivery methods by directing AMF through the body, concentrating it in the tumor region, reducing eddy currents in surrounding healthy tissue, and avoiding exposure of nearby metallic implants.


Assuntos
Hipertermia Induzida , Campos Magnéticos , Hipertermia Induzida/métodos , Humanos , Masculino , Neoplasias/terapia
6.
Sensors (Basel) ; 24(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39275730

RESUMO

Eddy current testing (ECT) is a crucial non-destructive testing (NDT) technique extensively used across various industries to detect surface and sub-surface defects in conductive materials. This review explores the latest advancements and methodologies in the design of eddy current probes, emphasizing their application in diverse industrial contexts such as aerospace, automotive, energy, and electronics. It explores the fundamental principles of ECT, examining how eddy currents interact with material defects to provide valuable insights into material integrity. The integration of numerical simulations, particularly through the Finite Element Method (FEM), has emerged as a transformative approach, enabling the precise modeling of electromagnetic interactions and optimizing probe configurations. Innovative probe designs, including multiple coil configurations, have significantly enhanced defect detection capabilities. Despite these advancements, challenges remain, particularly in calibration and sensitivity to environmental conditions. This comprehensive overview highlights the evolving landscape of ECT probe design, aiming to provide researchers and practitioners with a detailed understanding of current trends in this dynamic field.

7.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475165

RESUMO

Although the classical four-point probe method usually provides adequate results, it is in many cases inappropriate for the measurement of thin sheet resistance, especially in the case of a buried conductive layer or if the surface contacts are oxidized/degraded. The surface concentration of dislocation defects in GaN samples is known to challenge this kind of measurement. For the GaN sample presented in this study, it even totally impaired the ability of this method to even provide results without a prior deposition of gold metallic contact pads. In this paper, we demonstrate the benefits of using a new broadband multifrequency noncontact eddy current method to accurately measure the sheet resistance of a complicated-to-measure epitaxy-grown GaN-doped sample. The benefits of the eddy current method compared to the traditional four-point method are demonstrated. The multilayer-doped GaN sample is perfectly evaluated, which will allow further development applications in this field. The point spread function of the probe used for this noncontact method was also evaluated using a 3D finite element model using CST-Studio Suite simulation software 2020 and experimental measurements.

8.
Magn Reson Med ; 90(5): 2158-2174, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37465874

RESUMO

PURPOSE: The rapid switching of the gradient fields induces eddy currents in neighboring metallic structures, causing undesirable effects. Numerical computations are thus required to understand eddy-currents effects for designing/implementing mitigation (involving passive shielding) and compensating techniques (using pre-emphasis). Previously, the network-analysis (NA) method was introduced to compute z-gradient eddy currents, although limited to a circularly symmetric and unconnected coil. Multi-layer integral method (MIM) method was recently introduced, modifying the circuit equation involving stream functions. We tailor MIM (TMIM) for a more general eddy-currents analysis in thin structures. Z-gradient eddy currents are analyzed and then compared using three methods (NA, TMIM, and Ansys). The analysis helps to evaluate the efficiency of passive shielding and to compensate eddy currents. METHODS: NA and TMIM computational frameworks for harmonic and transient eddy-currents analysis were implemented and cross-validated against Ansys Maxwell. A pre-emphasis pulse was modeled for compensating eddy currents. RESULTS: Eddy-currents analysis of an unconnected z-gradient coil in both the passive shield and cryostat were computed, and results were comparable to the least computationally efficient Ansys simulations. Although NA computations are fast, TMIM is implemented with reasonable efficiency and applied to circularly unsymmetric geometries. TMIM computations were further validated against Ansys using a connected z-gradient. Our computations allowed the effective evaluation of the performance of three various passive-shielding configurations, non-capped, capped, and slitted (for the first time), and an effective pre-emphasis compensation model was computed. CONCLUSION: Three eddy-currents analysis methods were studied and compared. Computationally efficient TMIM allows both harmonic and transient eddy-currents analysis involving different/complex gradient configurations/situations as well as involved shielding structures. Eddy-currents pre-emphasis compensation was demonstrated.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos
9.
Magn Reson Med ; 90(6): 2242-2260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37598420

RESUMO

PURPOSE: A significant source of artifacts in MRI are field fluctuations. Field monitoring is a new technology that allows measurement of field dynamics during a scan via "field probes," which can be used to improve image reconstruction. Ideally, probes are located within the volume where gradients produce nominally linear field patterns. However, in some situations probes must be located far from isocenter where rapid field variation can arise, leading to erroneous field-monitoring characterizations and images. This work aimed to develop an algorithm that improves the robustness of field dynamics in these situations. METHODS: The algorithm is split into three components. Component 1 calculates field dynamics one spatial order at a time, whereas the second implements a weighted least squares solution based on probe distance. Component 3 then calculates phase residuals and removes the residual phase for distant probes before recalculation. Two volunteers and a phantom were scanned on a 7T MRI using diffusion-weighted sequences, and field monitoring was performed. Image reconstructions were informed with field dynamics calculated conventionally, and with the correction algorithm, after which in vivo images were compared qualitatively and phantom image error was quantitatively assessed. RESULTS: The algorithm was able to correct corrupted field dynamics, resulting in image-quality improvements. Significant artifact reduction was observed when correcting higher-order fits. Stepwise fitting provided the most correction benefit, which was marginally improved when adding the other correction strategies. CONCLUSION: The proposed algorithm can mitigate effects of phase errors in field monitoring, providing improved characterization of field dynamics.

10.
Magn Reson Med ; 89(2): 721-728, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161333

RESUMO

PURPOSE: Real-time monitoring of dynamic magnetic fields has recently become a commercially available option for measuring MRI k-space trajectories and magnetic fields induced by eddy currents in real time. However, for accurate image reconstructions, sub-microsecond synchronization between the MRI data and field dynamics (ie, k-space trajectory plus other spatially varying fields) is required. In this work, we introduce a new model-based algorithm to automatically perform this synchronization using only the MRI data and field dynamics. METHODS: The algorithm works by enforcing consistency among the MRI data, field dynamics, and receiver sensitivity profiles by iteratively alternating between convex optimizations for (a) the image and (b) the synchronization delay. A healthy human subject was scanned at 7 T using a transmit-receive coil with integrated field probes using both single-shot spiral and EPI, and reconstructions with various synchronization delays were compared with the result of the proposed algorithm. The accuracy of the algorithm was also investigated using simulations, in which the acquisition delays for simulated acquisitions were determined using the proposed algorithm and compared with the known ground truth. RESULTS: In the in vivo scans, the proposed algorithm minimized artifacts related to synchronization delay for both spiral and EPI acquisitions, and the computation time required was less than 30 s. The simulations demonstrated accuracy to within tens of nanoseconds. CONCLUSIONS: The proposed algorithm can automatically determine synchronization delays between MRI data and field dynamics measured using a field probe system.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
11.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992059

RESUMO

This paper presents an automated Non-Destructive Testing (NDT) system for the in-service inspection of orbital welds on tubular components operating at temperatures as high as 200 °C. The combination of two different NDT methods and respective inspection systems is here proposed to cover the detection of all potential defective weld conditions. The proposed NDT system combines ultrasounds and Eddy current techniques with dedicated approaches for dealing with high temperature conditions. Phased array ultrasound was employed, searching for volumetric defects within the weld bead volume while Eddy currents were used to look for surface and sub-surface cracks. The results from the phased array ultrasound results showed the effectiveness of the cooling mechanisms and that temperature effects on sound attenuation can be easily compensated for up to 200 °C. The Eddy current results showed almost no influence when temperatures were raised up to 300 °C.

12.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36850372

RESUMO

The paper considers non-destructive testing (NTDs) as a means to solve the flaw detection problems of magnetic products. It proposes a new probe-coil magnetic-field NDT, not requiring the pre-magnetization of the test object material, which is mandatory for all conventional magnetic flaw detection techniques. A new bifactor excitation of the fluxgate sensor's sensitive element, based on double µ-transformation through the simultaneous activation of magnetic-modulating and electromagnetic-acoustic effects, is theoretically justified. The physical processes underlying the proposed technique are considered in detail, and a scheme for its practical implementation is described. The authors provide a variant of the new fluxgate's original design, implementing the proposed excitation technique. The specifics of implementing the fluxgate operating modes are analyzed, testifying to the possibility of detecting a given class of flaws with the required coverage as well as ensuring the required diagnostic resolution during flaw detection, which, in fact, indicates a more reliable identification of both the flaw type and location. Herewith, the new fluxgate type features the advantages of improved functionality and lower cost due to its simple design. The paper also considers a method to experimentally study the capabilities of the proposed fluxgate sensor with a new bifactor excitation in detail. The results of the experimental study into its key specifications are provided, confirming its high resolution, narrower zone of uncertainty, and the possibility of detecting smaller flaws at greater depths compared to available analogs.

13.
Magn Reson Med ; 88(6): 2709-2717, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916368

RESUMO

PURPOSE: Flow quantification by phase-contrast MRI is hampered by spatially varying background phase offsets. Correction performance by polynomial regression on stationary tissue may be affected by outliers such as wrap-around or constant flow. Therefore, we propose an alternative, M-estimate SAmple Consensus (MSAC) to reject outliers, and improve and fully automate background phase correction. METHODS: The MSAC technique fits polynomials to randomly drawn small samples from the image. Over several trials, it aims to find the best consensus set of valid pixels by rejecting outliers to the fit and minimizing the residuals of the remaining pixels. The robustness of MSAC to its few parameters was investigated and verified using third-order polynomial correction fits on a total of 118 2D flow (97 with wrap-around) and 18 4D flow data sets (14 with wrap-around), acquired at 1.5 T and 3 T. Background phase was compared with standard stationary correction and phantom correction. Pulmonary/systemic flow ratios in 2D flow were derived, and exemplary 4D flow analysis was performed. RESULTS: The MSAC technique is robust over a range of parameter choices, and a unique set of parameters is suitable for both 2D and 4D flow. In 2D flow, phase errors were significantly reduced by MSAC compared with stationary correction (p = 0.005), and stationary correction shows larger errors in pulmonary/systemic flow ratios compared with MSAC. In 4D flow, MSAC shows similar performance as stationary correction. CONCLUSIONS: The MSAC method provides fully automated background phase correction to 2D and 4D flow data and shows improved robustness over stationary correction, especially with outliers present.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Velocidade do Fluxo Sanguíneo , Consenso , Voluntários Saudáveis , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
Magn Reson Med ; 88(6): 2378-2394, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35916545

RESUMO

PURPOSE: Very high gradient amplitudes played out over extended time intervals as required for second-order motion-compensated cardiac DTI may violate the assumption of a linear time-invariant gradient system model. The aim of this work was to characterize diffusion gradient-related system nonlinearity and propose a correction approach for echo-planar and spiral spin-echo motion-compensated cardiac DTI. METHODS: Diffusion gradient-induced eddy currents of 9 diffusion directions were characterized at b values of 150 s/mm2 and 450 s/mm2 for a 1.5 Tesla system and used to correct phantom, ex vivo, and in vivo motion-compensated cardiac DTI data acquired with echo-planar and spiral trajectories. Predicted trajectories were calculated using gradient impulse response function and diffusion gradient strength- and direction-dependent zeroth- and first-order eddy current responses. A reconstruction method was implemented using the predicted k $$ k $$ -space trajectories to additionally include off-resonances and concomitant fields. Resulting images were compared to a reference reconstruction omitting diffusion gradient-induced eddy current correction. RESULTS: Diffusion gradient-induced eddy currents exhibited nonlinear effects when scaling up the gradient amplitude and could not be described by a 3D basis alone. This indicates that a gradient impulse response function does not suffice to describe diffusion gradient-induced eddy currents. Zeroth- and first-order diffusion gradient-induced eddy current effects of up to -1.7 rad and -16 to +12 rad/m, respectively, were identified. Zeroth- and first-order diffusion gradient-induced eddy current correction yielded improved image quality upon image reconstruction. CONCLUSION: The proposed approach offers correction of diffusion gradient-induced zeroth- and first-order eddy currents, reducing image distortions to promote improvements of second-order motion-compensated spin-echo cardiac DTI.


Assuntos
Algoritmos , Imagem de Tensor de Difusão , Artefatos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Imagens de Fantasmas
15.
Magn Reson Med ; 87(5): 2209-2223, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34894640

RESUMO

PURPOSE: To develop and test a method for reducing artifacts due to time-varying eddy currents in oscillating gradient spin-echo (OGSE) diffusion images. METHODS: An in-house algorithm (TVEDDY), that for the first time retrospectively models eddy current decay, was tested on pulsed gradient spin echo and OGSE brain images acquired at 7 T. Image pairs were acquired using opposite polarity diffusion gradients. A three-parameter exponential decay model (two amplitudes and a time constant) was used to characterize and correct eddy current distortions by minimizing the intensity difference between image pairs. Correction performance was compared with conventional correction methods by evaluating the mean squared error (MSE) between diffusion-weighted images acquired with opposite polarity diffusion gradients. As a ground-truth comparison, images were corrected using field dynamics up to third order in space, measured using a field monitoring system. RESULTS: Time-varying eddy currents were observed for OGSE, which introduced blurring that was not reduced using the traditional approach but was diminished considerably with TVEDDY and field monitoring-informed model-based reconstruction. No MSE difference was observed between the conventional approach and TVEDDY for pulsed gradient spin echo, but for OGSE TVEDDY resulted in significantly lower MSE than the conventional approach. The field-monitoring reconstruction had the lowest MSE for both pulsed gradient spin echo and OGSE. CONCLUSION: This work establishes that it is possible to estimate time-varying eddy currents from the actual diffusion data, which provides substantial image-quality improvements for gradient-intensive diffusion MRI acquisitions like OGSE.


Assuntos
Artefatos , Imagem de Difusão por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
16.
Int J Hyperthermia ; 39(1): 1222-1232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36104297

RESUMO

OBJECTIVE: To investigate the eddy current heating that occurs in metallic biliary stents during magnetic hyperthermia treatments and to assess whether these implants should continue to be an exclusion criterion for potential patients. METHODS: Computer simulations were run on stent heating during the hyperthermia treatment of local pancreatic tumors (5-15 mT fields at 300 kHz for 30 min), considering factors such as wire diameter, type of stent alloy, and field orientation. Maxwell's equations were solved numerically in a bile duct model, including the secondary field produced by the stents. The heat exchange problem was solved through a modified version of the Pennes' bioheat equation assuming a temperature dependency of blood perfusion and metabolic heat. RESULTS: The choice of alloy has a large impact on the stent heating, preferring those having a lower electrical conductivity. Only for low field intensities (5 mT) and for some of the bile duct tissue layers the produced heating can be considered safe. The orientation of the applied field with respect to the stent wires can give rise to the onset of regions with different heating levels depending on the shape that the stent has finally adopted according to the body's posture. Bile helps to partially dissipate the heat that is generated in the lumen of the bile duct, but not at a sufficient rate. CONCLUSION: The safety of patients with pancreatic cancer wearing metallic biliary stents during magnetic hyperthermia treatments cannot be fully assured under the most common treatment parameters.


Assuntos
Adenocarcinoma , Hipertermia Induzida , Neoplasias Pancreáticas , Ligas , Calefação , Humanos , Hipertermia Induzida/métodos , Fenômenos Magnéticos , Neoplasias Pancreáticas/terapia , Stents , Neoplasias Pancreáticas
17.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684853

RESUMO

This paper presents an eddy current approach for testing, estimating, and classifying CFRP plate sub-surface defects, mainly due to delamination, through specific 2D magnetic induction field amplitude maps. These maps, showing marked fuzziness content, require the development of a procedure based on a fuzzy approach being efficiently classified. Since similar defects produce similar maps, we propose a method based on innovative fuzzy similarity formulations. This procedure can collect maps similar to each other in particular defect classes. In addition, a low-cost analysis system, including the probe, has been implemented in hardware. The developed tool can detect and evaluate the extent of surface defects with the same performance as a hardware tool of higher specifications, and it could be fruitfully employed by airline companies to maintain aircraft in compliance with safety standards.

18.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808175

RESUMO

This paper introduces a novel methodology to optimize the design of a ratiometric rotary inductive position sensor (IPS) fabricated in printed circuit board (PCB) technology. The optimization aims at reducing the linearity error of the sensor and amplitude mismatch between the voltages on the two receiving (RX) coils. Distinct from other optimization techniques proposed in the literature, the sensor footprint and the target geometry are considered as a non-modifiable input. This is motivated by the fact that, for sensor replacement purposes, the target has to fit a predefined space. For this reason, the original optimization technique proposed in this paper modifies the shape of the RX coils to reproduce theoretical coil voltages as much as possible. The optimized RX shape was obtained by means of a non-linear least-square solver, whereas the electromagnetic simulation of the sensor is performed with an original surface integral method, which are orders of magnitude faster than commercial software based on finite elements. Comparisons between simulations and measurements performed on different prototypes of an absolute rotary sensor show the effectiveness of the optimization tool. The optimized sensors exhibit a linearity error below 0.1% of the full scale (FS) without any signal calibration or post-processing manipulation.


Assuntos
Simulação por Computador , Calibragem
19.
Magn Reson Med ; 85(5): 2434-2444, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33252784

RESUMO

PURPOSE: To demonstrate an MRI technique-Submillisecond Periodic Event Encoded Dynamic Imaging (SPEEDI)-for capturing cyclic dynamic events with submillisecond temporal resolution. METHODS: The SPEEDI technique is based on an FID or an echo signal in which each time point in the signal is used to sample a distinct k-space raster, followed by repeated FIDs or echoes to produce the remaining k-space data in each k-space raster. All acquisitions are synchronized with a cyclic event, resulting in a set of time-resolved images of the cyclic event with a temporal resolution determined by the dwell time. In SPEEDI, spatial encoding is accomplished by phase encoding. The SPEEDI technique was demonstrated in two experiments at 3 T to (1) visualize fast-changing electric currents that mimicked the waveform of an action potential, and (2) characterize rapidly decaying eddy currents in an MRI system, with a temporal resolution of 0.2 ms and 0.4 ms, respectively. In both experiments, compressed sensing was incorporated to reduce the scan times. Phase difference maps related to the dynamics of electric currents or eddy currents were then obtained. RESULTS: In the first experiment, time-resolved phase maps resulting from the action potential-mimicking current waveform were successfully obtained and agreed well with theoretical calculations (normalized RMS error = 0.07). In the second experiment, spatially resolved eddy current phase maps revealed time constants (27.1 ± 0.2 ms, 41.1 ± 3.5 ms, and 34.8 ± 0.7 ms) that matched well with those obtained from an established method using point sources (26.4 ms, 41.2 ms and 34.8 ms). For both experiments, phase maps from fully sampled and compressed-sensing-accelerated k-space data exhibited a high structural similarity (> 0.8) despite a two-fold to three-fold acceleration. CONCLUSIONS: We have illustrated that SPEEDI can provide submillisecond temporal resolution. This capability will likely lead to future exploration of ultrafast, cyclic biomedical processes using MRI.


Assuntos
Aceleração , Imageamento por Ressonância Magnética
20.
Magn Reson Med ; 85(5): 2370-2376, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33274790

RESUMO

PURPOSE: The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X-nuclear spectroscopy and imaging artifacts, as well as methods to correct this. METHODS: Pulse-acquire spectra were collected for 1 H and X-nuclei (23 Na or 31 P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X-nucleus were developed and applied, and data were compared with and without these corrections for: slice-selective MRS (for 23 Na and 31 P), 2D spiral trajectories (for 13 C), and 3D cones trajectories (for 23 Na). RESULTS: Line-shape distortions characteristic of eddy currents were demonstrated for X-nuclei, which were not seen for 1 H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non-Cartesian imaging (2D spiral and 3D cones trajectories). CONCLUSION: A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X-nuclear spectroscopy and imaging.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo , Calibragem , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA