Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Cell ; 185(26): 4873-4886.e10, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36513064

RESUMO

Respiratory syncytial virus (RSV) infection is a major cause of severe lower respiratory tract infection and death in young infants and the elderly. With no effective prophylactic treatment available, current vaccine candidates aim to elicit neutralizing antibodies. However, binding and neutralization have poorly predicted protection in the past, and accumulating data across epidemiologic cohorts and animal models collectively point to a role for additional antibody Fc-effector functions. To begin to define the humoral correlates of immunity against RSV, here we profiled an adenovirus 26 RSV-preF vaccine-induced humoral immune response in a group of healthy adults that were ultimately challenged with RSV. Protection from infection was linked to opsonophagocytic functions, driven by IgA and differentially glycosylated RSV-specific IgG profiles, marking a functional humoral immune signature of protection against RSV. Furthermore, Fc-modified monoclonal antibodies able to selectively recruit effector functions demonstrated significant antiviral control in a murine model of RSV.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Camundongos , Animais , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunoglobulina G , Fragmentos Fc das Imunoglobulinas , Proteínas Virais de Fusão
2.
Cell ; 183(4): 1024-1042.e21, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991844

RESUMO

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes/imunologia , Mapeamento de Epitopos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Epitopos/química , Epitopos/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Cinética , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos/imunologia , Estrutura Quaternária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Immunity ; 54(9): 2143-2158.e15, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34453881

RESUMO

Neutralizing antibodies (NAbs) are effective in treating COVID-19, but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment during prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. Real-time imaging revealed that the virus spread sequentially from the nasal cavity to the lungs in mice and thereafter systemically to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct neutralization, depletion studies indicated that Fc effector interactions of NAbs with monocytes, neutrophils, and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Encéfalo/patologia , COVID-19/imunologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Testículo/patologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Encéfalo/virologia , COVID-19/terapia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Luciferases/genética , Medições Luminescentes , Pulmão/virologia , Masculino , Camundongos , Camundongos Transgênicos , Testículo/virologia
4.
Immunity ; 47(2): 224-233, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813656

RESUMO

Through specific interactions with distinct types of Fcγ receptors (FcγRs), the Fc domain of immunoglobulin G (IgG) mediates a wide spectrum of immunological functions that influence both innate and adaptive responses. Recent studies indicate that IgG Fc-FcγR interactions are dynamically regulated during an immune response through the control of the Fc-associated glycan structure and Ig subclass composition on the one hand and selective FcγR expression on immune cells on the other, which together determine the capacity of IgG to interact in a cell-type-specific manner with specific members of the FcγR family. Here, we present a framework that synthesizes the current understanding of the contribution of FcγR pathways to the induction and regulation of antibody and T cell responses. Within this context, we discuss vaccination strategies to elicit broad and potent immune responses based on the immunomodulatory properties of Fc-FcγR interactions.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Receptores de IgG/metabolismo , Linfócitos T Reguladores/imunologia , Vacinas/imunologia , Animais , Humanos , Isotipos de Imunoglobulinas/imunologia , Imunomodulação , Receptores de IgG/imunologia , Transdução de Sinais , Vacinação
5.
Immunol Rev ; 309(1): 64-74, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781671

RESUMO

In this review, we discuss how IgG antibodies can modulate inflammatory signaling during viral infections with a focus on CD16a-mediated functions. We describe the structural heterogeneity of IgG antibody ligands, including subclass and glycosylation that impact binding by and downstream activity of CD16a, as well as the heterogeneity of CD16a itself, including allele and expression density. While inflammation is a mechanism required for immune homeostasis and resolution of acute infections, we focus here on two infectious diseases that are driven by pathogenic inflammatory responses during infection. Specifically, we review and discuss the evolving body of literature showing that afucosylated IgG immune complex signaling through CD16a contributes to the overwhelming inflammatory response that is central to the pathogenesis of severe forms of dengue disease and coronavirus disease 2019 (COVID-19).


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Receptores de IgG
6.
Trends Immunol ; 43(10): 815-825, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995705

RESUMO

A single dose of human papillomavirus (HPV) vaccine against HPV infection (prerequisite for cervical cancer) appears to be as efficacious as two or three doses, despite inducing lower antibody titers. Neutralizing antibodies are thought to be the primary mediator of protection, but the threshold for protection is unknown. Antibody functions beyond neutralization have not been explored for HPV vaccines. Here, we discuss the immune mechanisms of HPV vaccines, with a focus on non-neutralizing antibody effector functions. In the context of single-dose HPV vaccination where antibody is limiting, we propose that non-neutralizing antibody functions may contribute to preventing HPV infection. Understanding the immunological basis of protection for single-dose HPV vaccination will provide a rationale for implementing single-dose HPV vaccine regimens.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18 , Humanos , Infecções por Papillomavirus/prevenção & controle
7.
J Infect Dis ; 229(2): 462-472, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37815524

RESUMO

Maternal immunity impacts the infant, but how is unclear. To understand the implications of the immune exposures of vaccination and infection in pregnancy for neonatal immunity, we evaluated antibody functions in paired peripheral maternal and cord blood. We compared those who in pregnancy received mRNA coronavirus disease 2019 (COVID-19) vaccine, were infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the combination. We found that vaccination enriched a subset of neutralizing activities and Fc effector functions that was driven by IgG1 and was minimally impacted by antibody glycosylation in maternal blood. In paired cord blood, maternal vaccination also enhanced IgG1. However, Fc effector functions compared to neutralizing activities were preferentially transferred. Moreover, changes in IgG posttranslational glycosylation contributed more to cord than peripheral maternal blood antibody functional potency. These differences were enhanced with the combination of vaccination and infection as compared to either alone. Thus, Fc effector functions and antibody glycosylation highlight underexplored maternal opportunities to safeguard newborns.


Assuntos
COVID-19 , Recém-Nascido , Lactente , Feminino , Gravidez , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Imunoglobulina G , Vacinas contra COVID-19 , Vacinação , Anticorpos Antivirais
8.
J Infect Dis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743692

RESUMO

BACKGROUND: Several influenza vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical. METHODS: Plasma samples were obtained from a subset of pregnant women living with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza-illness cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month post-vaccination. The association between these Fc-mediated functions and protection against influenza-illness following vaccination was examined using multiple logistic regression analysis and risk reduction thresholds were defined by the score associated with the lowest odds of influenza-illness. RESULTS: Amongst TIV and placebo recipients, lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without confirmed influenza-illness 1-month post-vaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio 0.11; p=0.01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (0.10; p=0.01) and non-group 1 (0.06; p=0.0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction. H1 stalk-specific ADCC potential was not associated with protection against influenza-illness. CONCLUSION: H1 stalk-specific ADCD correlates with protection against influenza-illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of HA stalk antibodies.

9.
Infect Immun ; : e0005924, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212405

RESUMO

Intracellular bacteria use secreted effector proteins to modify host biology and facilitate infection. For many of these microbes, a particular eukaryotic domain-the ankyrin repeat (ANK)-plays a central role in specifying the host proteins and pathways targeted by the microbe. While we understand much of how some ANKs function in model organisms like Legionella and Coxiella, the understudied Rickettsiales species harbor many proteins with ANKs, some of which play critical roles during infection. This minireview is meant to organize and summarize the research progress made in understanding some of these Rickettsiales ANKs as well as document some of the techniques that have driven much of this progress.

10.
J Virol ; 97(11): e0077123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902399

RESUMO

IMPORTANCE: Respiratory syncytial virus (RSV) can cause serious illness in older adults (i.e., those aged ≥60 years). Because options for RSV prophylaxis and treatment are limited, the prevention of RSV-mediated illness in older adults remains an important unmet medical need. Data from prior studies suggest that Fc-effector functions are important for protection against RSV infection. In this work, we show that the investigational Ad26.RSV.preF/RSV preF protein vaccine induced Fc-effector functional immune responses in adults aged ≥60 years who were enrolled in a phase 1/2a regimen selection study of Ad26.RSV.preF/RSV preF protein. These results demonstrate the breadth of the immune responses induced by the Ad26.RSV.preF/RSV preF protein vaccine.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Fragmentos Fc das Imunoglobulinas , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão/imunologia
11.
J Med Virol ; 96(5): e29638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682662

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Fragmentos Fc das Imunoglobulinas , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Animais , Vacinação
12.
Immun Ageing ; 21(1): 63, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39272189

RESUMO

BACKGROUND: Previous research has shown that repeated COVID-19 mRNA vaccination leads to a marked increase of SARS-CoV-2 spike-specific serum antibodies of the IgG4 subclass, indicating far-reaching immunoglobulin class switching after booster immunization. Considering that repeated vaccination has been recommended especially for older adults, the aim of this study was to investigate IgG subclass responses in the ageing population and assess their relation with Fc-mediated antibody effector functionality. RESULTS: Spike S1-specific IgG subclass concentrations (expressed in arbitrary units per mL), antibody-dependent NK cell activation, complement deposition and monocyte phagocytosis were quantified in serum from older adults (n = 38-50, 65-83 years) at one month post-second, -third and -fifth vaccination. Subclass distribution in serum was compared to that in younger adults (n = 64, 18-47 years) at one month post-second and -third vaccination. Compared to younger individuals, older adults showed increased levels of IgG2 and IgG4 at one month post-third vaccination (possibly related to factors other than age) and a further increase following a fifth dose. The capacity of specific serum antibodies to mediate NK cell activation and complement deposition relative to S1-specific total IgG concentrations decreased upon repeated vaccination. This decrease associated with an increased IgG4/IgG1 ratio. CONCLUSIONS: In conclusion, these findings show that, like younger individuals, older adults produce antibodies with reduced functional capacity upon repeated COVID-19 mRNA vaccination. Additional research is needed to better understand the mechanisms underlying these responses and their potential implications for vaccine effectiveness. Such knowledge is vital for the future design of optimal vaccination strategies in the ageing population.

13.
J Infect Dis ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066574

RESUMO

BACKGROUND: The critical issues of sustained memory immunity following ebolavirus disease among long-term survivors (EVD) are still unclear. METHODS: Here, we examine virus-specific immune and inflammatory responses in 12 Sudan virus (SUDV) long-term survivors from Uganda's 2000-1 Gulu outbreak, 15 years after recovery following in vitro challenge. Total RNA from isolated SUDV-stimulated and unstimulated PBMCs was extracted and analyzed. Matched serum samples were also collected to determine SUDV IgG levels and functionality. RESULTS: We detected persistent humoral (58%, 7 of 12) and cellular (33%, 4 of 12) immune responses in SUDV long-term survivors and identified critical molecular mechanisms of innate and adaptive immunity. Gene expression in immune pathways, the IFN signaling system, antiviral defense response, and activation and regulation of T- and B-cell responses were observed. SUDV long-term survivors also maintained robust virus-specific IgG antibodies capable of polyfunctional responses, including neutralizing and innate Fc effector functions. CONCLUSIONS: Data integration identified significant correlations among humoral and cellular immune responses and pinpointed a specific innate and adaptive gene expression signature associated with long-lasting immunity. This could help identify natural and vaccine correlates of protection against ebolavirus disease.

14.
Infect Immun ; 91(7): e0049122, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37347192

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a host-derived vacuole termed the inclusion. Central to pathogenesis is a type III secretion system that translocates effector proteins into the host cell, which are predicted to play major roles in host cell invasion, nutrient acquisition, and immune evasion. However, until recently, the genetic intractability of C. trachomatis hindered identification and characterization of these important virulence factors. Here, we sought to expand the repertoire of identified effector proteins and confirm they are secreted during C. trachomatis infection. Utilizing bioinformatics, we identified 18 candidate substrates that had not been previously assessed for secretion, of which we show four to be secreted, using Yersinia pseudotuberculosis as a surrogate host. Using adenylate cyclase (CyaA), BlaM, and glycogen synthase kinase (GSK) secretion assays, we identified nine novel substrates that were secreted in at least one assay. Interestingly, only three of the substrates, shown to be translocated by C. trachomatis, were similarly secreted by Y. pseudotuberculosis. Using large-scale screens to determine subcellular localization and identify effectors that perturb crucial host cell processes, we identified one novel substrate, CT392, that is toxic when heterologously expressed in Saccharomyces cerevisiae. Toxicity required both the N- and C-terminal regions of the protein. Additionally, we show that these newly described substrates traffic to distinct host cell compartments, including vesicles and the cytoplasm. Collectively, our study expands the known repertoire of C. trachomatis secreted factors and highlights the importance of testing for secretion in the native host using multiple secretion assays when possible.


Assuntos
Proteínas de Bactérias , Infecções por Chlamydia , Humanos , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Células HeLa , Citoplasma/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
15.
Infect Immun ; 91(4): e0044122, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36912646

RESUMO

To replicate within host cells, bacterial pathogens must acquire host-derived nutrients while avoiding degradative antimicrobial pathways. Fundamental insights into bacterial pathogenicity have been revealed by bacteria of the genus Legionella, which naturally parasitize free-living protozoa by establishing a membrane-bound replicative niche termed the Legionella-containing vacuole (LCV). Biogenesis of the LCV and intracellular replication rely on rapid evasion of the endocytic pathway and acquisition of host-derived nutrients, much of which is mediated by bacterial effector proteins translocated into host cells by a Dot/Icm type IV secretion system. Billions of years of co-evolution with eukaryotic hosts and broad host tropism have resulted in expansion of the Legionella genome to accommodate a massive repertoire of effector proteins that promote LCV biogenesis, safeguard the LCV from endolysosomal maturation, and mediate the acquisition of host nutrients. This minireview is focused on the mechanisms by which an ancient intracellular pathogen leverages effector proteins and hijacks host cell biology to obtain essential host-derived nutrients and prevent lysosomal degradation.


Assuntos
Legionella pneumophila , Legionella , Legionella/genética , Legionella/metabolismo , Legionella pneumophila/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lisossomos/metabolismo , Nutrientes , Interações Hospedeiro-Patógeno
16.
Proc Natl Acad Sci U S A ; 117(30): 18002-18009, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32665438

RESUMO

In combating viral infections, the Fab portion of an antibody could mediate virus neutralization, whereas Fc engagement of Fc-γ receptors (FcγRs) could mediate an array of effector functions. Evidence abounds that effector functions are important in controlling infections by influenza, Ebola, or HIV-1 in animal models. However, the relative contribution of virus neutralization versus effector functions to the overall antiviral activity of an antibody remains unknown. To address this fundamental question in immunology, we utilized our knowledge of HIV-1 dynamics to compare the kinetics of the viral load decline (ΔVL) in infected animals given a wild-type (WT) anti-HIV-1 immunoglobulin G1 (IgG1) versus those given a Fc-Null variant of the same antibody. In three independent experiments in HIV-1-infected humanized mice and one pivotal experiment in simian-human immunodeficiency virus (SHIV)-infected rhesus macaques, an earlier and sharper decline in viral load was consistently detected for the WT antibody. Quantifications of the observed differences indicate that Fc-mediated effector functions accounted for 25-45% of the total antiviral activity in these separate experiments. In this study, Fc-mediated effector functions have been quantified in vivo relative to the contribution of virus neutralization mediated by the Fab.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Imunoglobulina G/imunologia , Receptores de IgG/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Modelos Animais de Doenças , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Testes de Neutralização
17.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446195

RESUMO

Like other chronic viral infections, HIV-1 persistence inhibits the development of antigen-specific memory T-cells, resulting in the exhaustion of the immune response and chronic inflammation. Autophagy is a major lysosome-dependent mechanism of intracellular large-target degradation such as lipid and protein aggregates, damaged organelles, and intracellular pathogens. Although it is known that autophagy may target HIV-1 for elimination, knowledge of its function as a metabolic contributor in such viral infection is only in its infancy. Recent data show that elite controllers (EC), who are HIV-1-infected subjects with natural and long-term antigen (Ag)-specific T-cell protection against the virus, are characterized by distinct metabolic autophagy-dependent features in their T-cells compared to other people living with HIV-1 (PLWH). Despite durable viral control with antiretroviral therapy (ART), HIV-1-specific immune dysfunction does not normalize in non-controller PLWH. Therefore, the hypothesis of inducing autophagy to strengthen their Ag-specific T-cell immunity against HIV-1 starts to be an enticing concept. The aim of this review is to critically analyze promises and potential limitations of pharmacological and dietary interventions to activate autophagy in an attempt to rescue Ag-specific T-cell protection among PLWH.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Inflamação/metabolismo
18.
J Infect Dis ; 225(10): 1755-1764, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134138

RESUMO

BACKGROUND: Measles outbreaks are reported worldwide and pose a serious threat, especially to young unvaccinated infants. Early measles vaccination given to infants under 12 months of age can induce protective antibody levels, but the long-term antibody functionalities are unknown. METHODS: Measles-specific antibody functionality was tested using a systems serology approach for children who received an early measles vaccination at 6-8 or 9-12 months, followed by a regular dose at 14 months of age, and children who only received the vaccination at 14 months. Antibody functionalities comprised complement deposition, cellular cytotoxicity, and neutrophil and cellular phagocytosis. We used Pearson's r correlations between all effector functions to investigate the coordination of the response. RESULTS: Children receiving early measles vaccination at 6-8 or 9-12 months of age show polyfunctional antibody responses. Despite significant lower levels of antibodies in these early-vaccinated children, Fc effector functions were comparable with regular-timed vaccinees at 14 months. However, 3-year follow-up revealed significant decreased polyfunctionality in children who received a first vaccination at 6-8 months of age, but not in children who received the early vaccination at 9-12 months. CONCLUSIONS: Antibodies elicited in early-vaccinated children are equally polyfunctional to those elicited from children who received vaccination at 14 months. However, these antibody functionalities decay more rapidly than those induced later in life, which may lead to suboptimal, long-term protection.


Assuntos
Formação de Anticorpos , Sarampo , Anticorpos Antivirais , Criança , Humanos , Lactente , Sarampo/epidemiologia , Vacina contra Sarampo , Vírus do Sarampo , Vacinação
19.
Cancer Metastasis Rev ; 40(1): 221-244, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33438104

RESUMO

Neutrophils are the key cells of our innate immune system mediating host defense via a range of effector functions including phagocytosis, degranulation, and NETosis. For this, they employ an arsenal of anti-microbial cargoes packed in their readily mobilizable granule subsets. Notably, the release of granule content is tightly regulated; however, under certain circumstances, their unregulated release can aggravate tissue damage and could be detrimental to the host. Several constituents of neutrophil granules have also been associated with various inflammatory diseases including cancer. In cancer setting, their excessive release may modulate tissue microenvironment which ultimately leads the way for tumor initiation, growth and metastasis. Neutrophils actively infiltrate within tumor tissues, wherein they show diverse phenotypic and functional heterogeneity. While most studies are focused at understanding the phenotypic heterogeneity of neutrophils, their functional heterogeneity, much of which is likely orchestrated by their granule cargoes, is beginning to emerge. Therefore, a better understanding of neutrophil granules and their cargoes will not only shed light on their diverse role in cancer but will also reveal them as novel therapeutic targets. This review provides an overview on existing knowledge of neutrophil granules and detailed insight into the pathological relevance of their cargoes in cancer. In addition, we also discuss the therapeutic approach for targeting neutrophils or their microenvironment in disease setting that will pave the way forward for future research.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
20.
Cancer Immunol Immunother ; 71(10): 2421-2431, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35237846

RESUMO

Ipilimumab, a monoclonal antibody that recognizes cytotoxic T-lymphocyte associated protein 4 (CTLA-4), was the first immune checkpoint inhibitor approved by the FDA to treat metastatic melanoma patients. Multiple preclinical studies have proposed that Fc effector functions of anti-CTLA-4 therapy are required for anti-tumor efficacy, in part, through the depletion of intratumoral regulatory T cells (Tregs). However, the contribution of the Fc-independent functions of anti-CTLA-4 antibodies to the observed efficacy is not fully understood. H11, a non-Fc-containing single-domain antibody (VHH) against CTLA-4, has previously been demonstrated to block CTLA-4-ligand interaction. However, in vivo studies demonstrated lack of anti-tumor efficacy with H11 treatment. Here, we show that a half-life extended H11 (H11-HLE), despite the lack of Fc effector functions, induced potent anti-tumor efficacy in mouse syngeneic tumor models. In addition, a non-Fc receptor binding version of ipilimumab (Ipi-LALAPG) also demonstrated anti-tumor activity in the absence of Treg depletion. Thus, we demonstrate that Fc-independent functions of anti-CTLA-4 antibodies contributed to anti-tumor efficacy, which may indicate that non-Treg depleting activity of anti-CTLA-4 therapy could benefit cancer patients in the clinic.


Assuntos
Melanoma , Linfócitos T Reguladores , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígeno CTLA-4 , Modelos Animais de Doenças , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Melanoma/tratamento farmacológico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA