Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2310351120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048466

RESUMO

Sediments in southern Laos and eastern Thailand confirm that the Australasian tektite strewn field came from an extraterrestrial impact crater on the Bolaven Plateau of southern Laos. The principal evidence is the Bolaven diamicton, a pebbly to bouldery breccia that is thickest and coarsest on the plateau. Tektites, the melted target material strewn widely by the forces of the impact 789.0 ± 1.8 ka ago, lie either within the uppermost part of the diamicton or atop it. On the flanks of the plateau, the basal diamicton often contains clasts from preimpact lavas and gravels and sometimes mantles broken Mesozoic bedrock. Locally, its upper portions contain unweathered boulders of basalt or sandstone. Its sharp upper contact with a thick sandy silt implies that the two beds formed in rapid succession. These characteristics of the Bolaven diamicton show that it resulted primarily from the excavation, comminution, and launch of sandstone and weathered basaltic lavas from a crater on the Bolaven Plateau, and entrained other materials while in transit.

2.
Geophys Res Lett ; 48(22): e2021GL095978, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-35864978

RESUMO

We use gravity data from NASA's GRAIL mission to characterize the porosity structure of the upper lunar crust. We analyze the gravitational anomalies produced by the porosity of craters with diameters D between 10 and 30 km. We find that the gravitational signature of craters changes significantly at D = 16 . 4 - 0.6 + 1.4 km, which is related to a discrete change in porosity at a depth ∼3-5 km. We propose that this discrete porosity change reveals the location of the boundary between large-scale basin ejecta and the deeper less porous portion of the megaregolith, known as the structurally disturbed crust. The ejecta thickness can help constrain models of material transport and mixing on the Moon and, because the ejecta layer acts as an insulating blanket, models of heat flow and magmatism.

3.
Philos Trans A Math Phys Eng Sci ; 376(2130)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30177564

RESUMO

We have identified clear evidence of an extraterrestrial impact within the onset of the carbon isotope excursion (CIE) that defines the Palaeocene-Eocene (P-E) boundary hyperthermal event (approx. 56 Ma) from several sites on the eastern Atlantic Coastal Plain and offshore. We review and update the state of the evidence for an impact at the P-E boundary, including a K-Ar cooling age of the ejecta that is indistinguishable from the depositional age at the P-E, which establishes the ejecta horizon as an isochronous stratigraphic indicator at the P-E. Immediately above the ejecta peak at the base of the coastal plain Marlboro Clay unit, we identify a sharp increase in charcoal abundance coincident with the previously observed dramatic increase in magnetic nanoparticles of soil pyrogenic origin. We therefore revisit the observed sequence of events through the P-E boundary on the western Atlantic Coastal Plain, showing that an extraterrestrial impact led to wildfires, landscape denudation and deposition of the thick Marlboro Clay, whose base coincides with the spherule horizon and CIE onset. The Sr/Ca ratio of the spherules indicates that the carbon responsible for the onset may be vaporized CaCO3 target rock mixed with isotopically light carbon from the impactor or elsewhere. Crucially, we do not argue that the impact was responsible for the full manifestation of the CIE observed globally (onset to recovery approx. 170 kyr), rather that a rapid onset was triggered by the impact and followed by additional carbon from other processes such as the eruption of the North Atlantic Igneous Province. Such a scenario agrees well with recent modelling work, though it should be revisited more explicitly.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.

4.
Sci Bull (Beijing) ; 68(7): 723-729, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36964089

RESUMO

Frequent impacts on the Moon have changed the physical and chemical properties of the lunar regolith, with new materials deposited from the impact-induced vapor phase. Here, we combined nanoscale chemical and structural analysis to identify the mineral digenite (4Cu2S·CuS) in Chang'e-5 lunar soil. This is the first report of digenite in a lunar sample. The surface-correlated digenite phase is undifferentiated in distribution and compositionally distinct from its hosts, suggesting that it originated from vapor-phase deposition. The presence of an Al-rich impact glass bead suggests that a thermal effect provided by impact ejecta is the main heat source for the evaporation of Cu-S components from a cupriferous troilite precursor, and the digenite condensed from these Cu-S vapors. A large pure metallic iron (Fe0) particle and high Cu content within the studied Cu-Fe-S grain suggest that this grain was most likely derived from a highly differentiated and reduced melt.

5.
Life (Basel) ; 12(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454999

RESUMO

Impact delivery of prebiotic compounds to the early Earth from an impacting comet is considered to be one of the possible ways by which prebiotic molecules arrived on the Earth. Given the ubiquity of impact features observed on all planetary bodies, bolide impacts may be a common source of organics on other planetary bodies both in our own and other solar systems. Biomolecules such as amino acids have been detected on comets and are known to be synthesized due to impact-induced shock processing. Here we report the results of a set of hypervelocity impact experiments where we shocked icy mixtures of amino acids mimicking the icy surface of planetary bodies with high-speed projectiles using a two-stage light gas gun and analyzed the ejecta material after impact. Electron microscopic observations of the ejecta have shown the presence of macroscale structures with long polypeptide chains revealed from LCMS analysis. These results suggest a pathway in which impact on cometary ices containing building blocks of life can lead to the synthesis of material architectures that could have played a role in the emergence of life on the Earth and which may be applied to other planetary bodies as well.

6.
J Geophys Res Planets ; 125(8): e2019JE006282, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999798

RESUMO

Asteroid (101955) Bennu, a near-Earth object with a primitive carbonaceous chondrite-like composition, was observed by the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft to undergo multiple particle ejection events near perihelion between December 2018 and February 2019. The three largest events observed during this period, which all occurred 3.5 to 6 hr after local noon, placed numerous particles <10 cm on temporary orbits around Bennu. Here we examine whether these events could have been produced by sporadic meteoroid impacts using the National Aeronautics and Space Administration's (NASA) Meteoroid Engineering Model 3.0. Most projectiles that impact Bennu come from nearly isotropic or Jupiter-family comets and have evolved toward the Sun by Poynting-Robertson drag. We find that 7,000-J impacts on Bennu occur with a biweekly cadence near perihelion, with a preference to strike in the late afternoon (~6 pm local time). This timing matches observations. Crater scaling laws also indicate that these impact energies can reproduce the sizes and masses of the largest observed particles, provided the surface has the cohesive properties of weak, porous materials. Bennu's ejection events could be caused by the same kinds of meteoroid impacts that created the Moon's asymmetric debris cloud observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE). Our findings also suggest that fewer ejection events should take place as Bennu moves further away from the Sun, a result that can be tested with future observations.

7.
Astrobiology ; 20(1): 91-141, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31880475

RESUMO

This article presents a current (as of September 2019) list of recommended ages for proven terrestrial impact structures (n = 200) and deposits (n = 46) sourced from the primary literature. High-precision impact ages can be used to (1) reconstruct and quantify the impact flux in the inner Solar System and, in particular, the Earth-Moon system, thereby placing constraints on the delivery of extraterrestrial mass accreted on Earth through geologic time; (2) utilize impact ejecta as event markers in the stratigraphic record and to refine bio- and magneto-stratigraphy; (3) test models and hypotheses of synchronous double or multiple impact events in the terrestrial record; (4) assess the potential link between large impacts, mass extinctions, and diversification events in the biosphere; and (5) constrain the duration of melt sheet crystallization in large impact basins and the lifetime of hydrothermal systems in cooling impact craters, which may have served as habitats for microbial life on the early Earth and, possibly, Mars.


Assuntos
Planeta Terra , Sedimentos Geológicos/química , Geologia , Radioisótopos de Carbono/química , Fatores de Tempo
8.
Earth Space Sci ; 5(5): 211-220, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30035188

RESUMO

The primary product of planetary geologic and geomorphologic mapping is a group of lines and polygons that parameterize planetary surfaces and landforms. Many different research fields use those shapes to conduct their own analyses, and some of those analyses require measurement of the shape's perimeter or line length, sometimes relative to a surface area. There is a general lack of discussion in the relevant literature of the fact that perimeters of many planetary landforms are not easily parameterized by a simple aggregation of lines or even curves, but they instead display complexity across a large range of scale lengths; in fewer words, many planetary landforms are fractals. Because of their fractal nature, instead of morphometric properties converging on a single value, those properties will change based on the scale used to measure them. Therefore, derived properties can change-in some cases, by an order of magnitude or more-just when the measuring length scale is altered. This can result in significantly different interpretations of the features. Conversely, instead of a problem, analysis of the fractal properties of some landforms has led to diagnostic criteria that other remote sensing data cannot easily provide. This paper outlines the basic issue of the fractal nature of planetary landforms, gives case studies where the effects become important, and provides the recommendation that geologic mappers consider characterizing the fractal dimension of their mapped units via a relatively simple, straightforward calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA