Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35700230

RESUMO

Sublineages (SLs) within microbial species can differ widely in their ecology and pathogenicity, and their precise definition is important in basic research and for industrial or public health applications. Widely accepted strategies to define SLs are currently missing, which confuses communication in population biology and epidemiological surveillance. Here, we propose a broadly applicable genomic classification and nomenclature approach for bacterial strains, using the prominent public health threat Klebsiella pneumoniae as a model. Based on a 629-gene core genome multilocus sequence typing (cgMLST) scheme, we devised a dual barcoding system that combines multilevel single linkage (MLSL) clustering and life identification numbers (LINs). Phylogenetic and clustering analyses of >7,000 genome sequences captured population structure discontinuities, which were used to guide the definition of 10 infraspecific genetic dissimilarity thresholds. The widely used 7-gene multilocus sequence typing (MLST) nomenclature was mapped onto MLSL SLs (threshold: 190 allelic mismatches) and clonal group (threshold: 43) identifiers for backwards nomenclature compatibility. The taxonomy is publicly accessible through a community-curated platform (https://bigsdb.pasteur.fr/klebsiella), which also enables external users' genomic sequences identification. The proposed strain taxonomy combines two phylogenetically informative barcode systems that provide full stability (LIN codes) and nomenclatural continuity with previous nomenclature (MLSL). This species-specific dual barcoding strategy for the genomic taxonomy of microbial strains is broadly applicable and should contribute to unify global and cross-sector collaborative knowledge on the emergence and microevolution of bacterial pathogens.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae , Genômica , Genótipo , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Filogenia
2.
Microbiology (Reading) ; 168(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536738

RESUMO

Vibrio parahaemolyticus is a shellfish-borne pathogen that is a highly prevalent causative agent of inflammatory gastroenteritis in humans. Genomic libraries have proven useful for the identification of novel gene functions in many bacterial species. In this study we prepared a library containing 40 kb fragments of randomly sheared V. parahaemolyticus genomic DNA and introduced this into Escherichia coli HB101 using a commercially available low copy cosmid system. In order to estimate coverage and suitability of the library and potentially identify novel antimicrobial resistance determinants, we screened for the acquisition of resistance to the fluoroquinolone norfloxacin - a phenotype exhibited by V. parahaemolyticus but not the heterologous E. coli host. Upon selection on solid medium containing norfloxacin, 0.52% of the library population was resistant, consistent with the selection of a single resistance locus. End-sequencing identified six distinct insert fragments. All clones displayed fourfold increased norfloxacin MIC compared with E. coli HB101 carrying an empty vector. The common locus contained within resistant clones included qnr, a previously described quinolone resistance gene. These results indicate that the library was unbiased, of sufficient coverage and that heterologous expression was possible. While we hope that this library proves useful for identifying the genetic determinants of complex phenotypes such as those related to virulence, not all norfloxacin resistance genes were detected in our screen. As such, we discuss the benefits and limitations of this approach for identifying the genetic basis of uncharacterized bacterial phenotypes.


Assuntos
Quinolonas , Vibrio parahaemolyticus , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Biblioteca Genômica , Norfloxacino/metabolismo , Norfloxacino/farmacologia , Quinolonas/metabolismo , Quinolonas/farmacologia , Vibrio parahaemolyticus/metabolismo
3.
Yeast ; 37(1): 131-140, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31293017

RESUMO

Microbial oils are regarded as promising alternatives to fossil fuels. For bio-oil production to be sustainable over the long term, utilizing low-cost substrates like volatile fatty acids (VFAs) is crucial. Increasing attention is being paid to one of the most common VFAs: propionate, a substrate that could be used to produce the odd-chain FAs of industrial interest. However, little is known about microbial responses to propionate-induced stress and the genes involved. Using genomic library screening, we identified two genes involved in propionate tolerance in Yarrowia lipolytica-MFS1 and RTS1. Strains containing each of the genes displayed enhanced tolerance to propionate even when the genes were expressed in truncated form via a replicative plasmid. Compared with the control strain, the strain overexpressing MFS1 under a constitutive promoter displayed greater tolerance to propionate: It had a shorter lag phase and higher growth rate in propionate medium (0.047 hr-1 versus 0.030 hr-1 for the control in 40 g/L propionate); it also accumulated more total lipids and more odd-chain lipids (10% and 3.3%, respectively) than the control. The strain overexpressing RTS1 showed less tolerance for propionate than the strains harboring the truncated form (0.057 hr-1 versus 0.065 hr-1 in 40 g/L propionate medium) but still had higher tolerance than the control strain. Furthermore, the overexpression of RTS1 seemed to confer tolerance to other weak acids such as lactate, formic acid, malic acid, and succinic acid. This work provides a basis for better understanding the response to propionate-induced stress in Y. lipolytica.


Assuntos
Genes Fúngicos , Biblioteca Genômica , Propionatos/farmacologia , Estresse Fisiológico , Yarrowia/genética , Meios de Cultura/química , Sequenciamento de Nucleotídeos em Larga Escala , Propionatos/metabolismo
4.
Bull Environ Contam Toxicol ; 104(6): 820-827, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32424434

RESUMO

Di-(2-ethylhcxyl) phthalate (DEHP) is applied as plasticizer, which results in the pollution of environment. In this study, the effects of DEHP on soil microbial functions, structure and genetic diversity were investigated. The concentration of DEHP in the soil were 0, 0.1, 1, 10 and 50 mg/kg, and the experimental period were 28 days. DEHP reduced the quantity, abundance, species dominance and homogeneity of soil microbes during the first 14 days. In addition, microbial utilization efficiency of carbon (carbohydrates, aliphatics, amino acids, metabolites) was impacted after 28 days, though the effects gradually weakened. Based on denaturing gradient gel electrophoresis and clone library analysis, in the presence of DEHP, the dominant microbes in the DEHP-contaminated soil were Sphingomonas and Bacillus, which belonged to the Acidobacteria and Proteobacteriav, respectively. With 0.1 or 1 mg/kg of DEHP, the relative abundances of Acidobacteria were higher, and with 10 or 50 mg/kg of DEHP, the relative abundances of Proteobacteria were higher.


Assuntos
Dietilexilftalato/toxicidade , Microbiota/efeitos dos fármacos , Plastificantes/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Bacillus/efeitos dos fármacos , Bacillus/metabolismo , Carbono/metabolismo , Dietilexilftalato/análise , Plastificantes/análise , Poluentes do Solo/análise , Sphingomonas/efeitos dos fármacos , Sphingomonas/metabolismo
5.
Biochem Genet ; 57(2): 338-353, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30411176

RESUMO

Simple sequence repeat (SSR) markers are the major molecular tools for genetic and genomic researches that have been extensively developed and used in major crops. However, few are available for lentils (Lens culinaris M.), economically an important cool-season legume. The lack of informative simple sequence repeat (SSR) markers in lentil has been a major limitation for lentil molecular breeding studies. Therefore, in order to develop SSR markers for lentil, an enriched genomic libraries for AC and AG repeats were constructed from the Lens culinaris cv Kafkas. A total of 350 clones were inquired for the detection of SSRs. Of 350 clones, 68 had SSR motifs. In polymorphism analysis using 53 newly developed SSRs, a total of 144 alleles across 24 lentil cultivars were detected with an average of 4.64 per locus. The average heterozygosity was 0.588 and polymorphism information contents ranged from 0.194 to 0.895 with an average value of 0.520. These newly developed SSRs will constitute useful tools for molecular breeding, mapping, and assessments of genetic diversity and population structure of lentils.


Assuntos
Biblioteca Gênica , Loci Gênicos , Variação Genética , Heterozigoto , Lens (Planta)/genética , Repetições de Microssatélites
6.
Genomics ; 106(4): 249-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26028264

RESUMO

The natural history of the amoeba Dictyostelium discoideum has inspired scientific inquiry for seventy-five years. A genetically tractable haploid eukaryote, D. discoideum appeals as a laboratory model as well. However, certain rote molecular genetic tasks, such as PCR and cloning, are difficult due to the AT-richness and low complexity of its genome. Here we report on the construction of a ~20 fold coverage D. discoideum genomic library in Escherichia coli, cloning 4-10 kilobase partial restriction fragments into a linear vector. End-sequencing indicates that most clones map to the six chromosomes in an unbiased distribution. Over 70% of these clones contain at least one complete open reading frame. We demonstrate that individual clones and library composition are stable over multiple replication cycles. Our library will enable numerous molecular biological applications and the completion of additional species' genome sequences, and suggests a path towards the long-elusive goal of genetic complementation.


Assuntos
Dictyostelium/genética , Escherichia coli/genética , Genoma de Protozoário , Clonagem Molecular , Biblioteca Genômica , Análise de Sequência de DNA
7.
Emerg Infect Dis ; 21(4): e1-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25811221

RESUMO

Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community.


Assuntos
Animais Selvagens , Influenza Aviária/epidemiologia , Orthomyxoviridae , Vigilância da População , Animais , Aves , Análise Custo-Benefício , Bases de Dados Factuais , Variação Genética , Saúde Global , Humanos , Notificação de Abuso , Orthomyxoviridae/classificação , Orthomyxoviridae/genética , Navegador
8.
J Therm Biol ; 52: 24-37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26267495

RESUMO

The 60kDa heat shock protein (Hsp60) or chaperonin is one among the highly conserved families of heat shock proteins, known to be involved in variety of cellular activities, including protein folding, thermal protection, etc. In this study we sequence characterized hsp60 gene homologue of Lucilia cuprina, isolated and cloned from the genomic library as well as by genomic PCR, followed by RACE- PCR. The L. cuprina hsp60 gene/protein expression pattern was analyzed in various tissues, either at normal temperature (25±1°C) or after exposure to heat stress (42°C). The analysis of nucleotide sequence of Lchsp60 gene revealed absence of intron and the nuclear localizing signal (NLS). The deduced amino acid sequence showed presence of unique conserved sequences, such as those for mitochondrial localization, ATP binding, etc. Unlike Drosophila, Lucilia showed presence of only one isoform, i.e., hsp60A. Phylogenetic analysis of hsp60 gene homologues from different species revealed Lchsp60 to have >88.36% homology with D. melanogaster, 76.86% with L. sericata, 58.31% with mice, 57.99% with rat, and 57.72% with human. Expression analysis using Real Time PCR and fluorescence imaging showed significant enhancement in the expression level of Lchsp60 upon heat stress in a tissue specific manner, indicating its likely role in thermo-tolerance as well as in normal cellular activities.


Assuntos
Chaperonina 60/genética , Dípteros/fisiologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Chaperonina 60/biossíntese , Clonagem Molecular , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Íntrons , Larva/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Temperatura
9.
J Fish Biol ; 86(5): 1650-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25943151

RESUMO

The utility of 15 new and 17 previously published microsatellite markers was evaluated for species identification and stock delimitation in the deep-water hake Merluccius paradoxus and the shallow-water hake Merluccius capensis. A total of 14 microsatellites were polymorphic in M. paradoxus and 10 in M. capensis. Two markers could individually discriminate the species using Bayesian clustering methods and a statistical power analysis showed that the set of markers for each species is likely to detect subtle genetic differentiation (FST < 0·006) that will be valuable to delimit and characterize genetic stocks.


Assuntos
Gadiformes/classificação , Repetições de Microssatélites , Animais , Teorema de Bayes , Análise por Conglomerados , Conservação dos Recursos Naturais , Gadiformes/genética , Polimorfismo Genético , Especificidade da Espécie
10.
J Fungi (Basel) ; 10(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535197

RESUMO

Filamentous fungi of the genus Aspergillus include producers of industrially important organic acids, enzymes, and secondary metabolites, as well as pathogens of many plants and animals. Novel genes in the Aspergillus genome are potentially crucial for the fermentation and drug industries (e.g., agrochemicals and antifungal drugs). A research approach based on classical genetics is effective for identifying functionally unknown genes. During analyses based on classical genetics, mutations must be identified easily and quickly. Herein, we report the development of a cosmid-based plasmid pTOCK1 and the use of a genomic library of Aspergillus nidulans constructed using pTOCK1. The cosmid-based genomic library was used for convenient auxotrophic mutants (pyroA and pabaB), as well as mutants with abnormal colony morphology (gfsA) and yellow conidia (yA), to obtain library clones complementary to these phenotypes. The complementary strain could be obtained through a single transformation, and the cosmid could be rescued. Thus, our cosmid library system can be used to identify the causative gene in a mutant strain.

11.
Chembiochem ; 14(17): 2239-42, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24133019

RESUMO

Mycobacterium goes yeast: Target deconvolution of anti-tuberculosis drugs can be a very challenging task. Here we report a yeast 3-hybrid system that allows promising small molecules to be screened for protein targets of a pathogen in nontoxic yeast cells. The system employs libraries of randomly fragmented bacterial DNA and offers a technically simple alternative approach for target identification.


Assuntos
Antituberculosos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Técnicas do Sistema de Duplo-Híbrido , Antituberculosos/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Mycobacterium tuberculosis/genética , Biblioteca de Peptídeos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
12.
J Fish Biol ; 83(5): 1430-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24131284

RESUMO

Fourteen polymorphic microsatellite loci were isolated and characterized for the Neotropical cichlid Geophagus brasiliensis and tested on 30 individuals belonging to a single population. Among the 14 loci described, four showed potential presence of null alleles, inferred from the excess of homozygous genotypes, and three of these loci showed significant deviations from Hardy-Weinberg equilibrium. Fifty-nine different alleles were detected (ranging from two to eight alleles per locus), with estimates of observed and expected heterozygosity ranging from 0·167 to 0·700 and from 0·269 to 0·825. Cross-amplification of primers was successful in five other cichlid species.


Assuntos
Repetições de Microssatélites , Perciformes/genética , Alelos , Animais , Primers do DNA , Biblioteca Gênica , Heterozigoto , Polimorfismo Genético , Análise de Sequência de DNA
13.
Methods Protoc ; 6(5)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37736972

RESUMO

Saccharomyces cerevisiae is a powerful system for the expression of genome-wide or combinatorial libraries for diverse types of screening. However, expressing large libraries in yeast requires high-efficiency transformation and controlled expression. Transformation of yeast using electroporation methods is more efficient than chemical methods; however, protocols described for electroporation require large amounts of linearized plasmid DNA and often yield approximately 106 cfu/µg of plasmid DNA. We optimized the electroporation of yeast cells for the expression of whole-genome libraries to yield up to 108 cfu/µg plasmid DNA. The protocol generates sufficient transformants for 10-100× coverage of diverse genome libraries with small amounts of genomic libraries (0.1 µg of DNA per reaction) and provides guidance on calculations to estimate library size coverage and transformation efficiency. It describes the preparation of electrocompetent yeast cells with lithium acetate and dithiothreitol conditioning step and the transformation of cells by electroporation with carrier DNA. We validated the protocol using three yeast surface display libraries and demonstrated using nanopore sequencing that libraries' size and diversity are preserved. Moreover, expression analysis confirmed library functionality and the method's efficacy. Hence, this protocol yields a sufficient representation of the genome of interest for downstream screening purposes while limiting the amount of the genomic library required.

14.
ACS Infect Dis ; 9(5): 1078-1091, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37083339

RESUMO

The lack of genetic tools to manipulate protozoan pathogens has limited the use of genome-wide approaches to identify drug or vaccine targets and understand these organisms' biology. We have developed an efficient method to construct genome-wide libraries for yeast surface display (YSD) and developed a YSD fitness screen (YSD-FS) to identify drug targets. We show the efficacy of our method by generating genome-wide libraries for Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia parasites. Each library has a diversity of ∼105 to 106 clones, representing ∼6- to 30-fold of the parasite's genome. Nanopore sequencing confirmed the libraries' genome coverage with multiple clones for each parasite gene. Western blot and imaging analysis confirmed surface expression of the G. lamblia library proteins in yeast. Using the YSD-FS assay, we identified bonafide interactors of metronidazole, a drug used to treat protozoan and bacterial infections. We also found enrichment in nucleotide-binding domain sequences associated with yeast increased fitness to metronidazole, indicating that this drug might target multiple enzymes containing nucleotide-binding domains. The libraries are valuable biological resources for discovering drug or vaccine targets, ligand receptors, protein-protein interactions, and pathogen-host interactions. The library assembly approach can be applied to other organisms or expression systems, and the YSD-FS assay might help identify new drug targets in protozoan pathogens.


Assuntos
Trypanosoma brucei brucei , Trypanosoma cruzi , Saccharomyces cerevisiae/genética , Metronidazol/metabolismo , Trypanosoma cruzi/genética , Trypanosoma brucei brucei/genética , Nucleotídeos/metabolismo
15.
Int J Mol Sci ; 13(4): 4069-4088, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22605966

RESUMO

Species-specific simple sequence repeat (SSR) markers are favored for genetic studies and marker-assisted selection (MAS) breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR). Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%), followed by tri-nucleotides (24.2%). Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC) value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626). Low values of observed heterozygosity (H(o)) (0.164) and highly positive fixation indices (F(is)) in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family.


Assuntos
Arecaceae/genética , DNA de Plantas/genética , Repetições de Microssatélites/genética , Óleos de Plantas/análise , Alelos , Sequência de Bases , Primers do DNA/genética , Marcadores Genéticos/genética , Biblioteca Genômica , Dados de Sequência Molecular , Óleo de Palmeira , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Viruses ; 14(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746797

RESUMO

The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell; the serine protease TMPRSS2 cleaves the spike within this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future virus variants.


Assuntos
Bacteriófagos , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Bacteriófagos/metabolismo , Epitopos , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
17.
Vaccine ; 39(17): 2386-2395, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33775439

RESUMO

Infections due to Pseudomonas aeruginosa (PA) are becoming a serious threat to patients in intensive care units. A PA vaccine is a practical and economical solution to solve the problems caused by PA infection successfully. In recent years, several antigen candidates have been tested in animal and human clinical trials, but none of them has been approved to date. An alternative strategy for antigen screening and protective antigens is in urgent demand. In this study, we generated a genome-wide library of PA protein fragments tagged with maltose-binding protein (MBP). Using sera from patients who recovered after PA infection, we identified a novel protective antigen, FlgE, which is the structural component of the flagella hook. Vaccination with recombinant FlgE (reFlgE) induced a Th2-predominant immune response and reduced bacterial load and inflammation in PA-infected mice. Anti-reFlgE antibodies recognized native FlgE on the bacterial membrane in vitro and conferred protection in mice, which may be due to the mediation of opsonophagocytic killing and inhibition of bacterial motility. In addition, the combination of reFlgE with rePcrVNH, an engineered antigen we reported previously, provided elevated protection against PA infection. Our data demonstrate that FlgE is a promising vaccine candidate for PA and provide a new strategy for the efficient screening of antigens of other pathogens.


Assuntos
Infecções por Pseudomonas , Vacinas , Animais , Anticorpos Antibacterianos , Flagelos , Genômica , Humanos , Camundongos , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/genética
18.
Sci China Life Sci ; 64(12): 2114-2128, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33660223

RESUMO

Genomic variants libraries are conducive to obtain dominant strains with desirable phenotypic traits. The non-homologous end joining (NHEJ), which enables foreign DNA fragments to be randomly integrated into different chromosomal sites, shows prominent capability in genomic libraries construction. In this study, we established an efficient NHEJ-mediated genomic library technology in Yarrowia lipolytica through regulation of NHEJ repair process, employment of defective Ura marker and optimization of iterative transformations, which enhanced genes integration efficiency by 4.67, 22.74 and 1.87 times, respectively. We further applied this technology to create high lycopene producing strains by multi-integration of heterologous genes of CrtE, CrtB and CrtI, with 23.8 times higher production than rDNA integration through homologous recombination (HR). The NHEJ-mediated genomic library technology also achieved random and scattered integration of loxP and vox sites, with the copy number up to 65 and 53, respectively, creating potential for further application of recombinase mediated genome rearrangement in Y. lipolytica. This work provides a high-efficient NHEJ-mediated genomic library technology, which enables random and scattered genomic integration of multiple heterologous fragments and rapid generation of diverse strains with superior phenotypes within 96 h. This novel technology also lays an excellent foundation for the development of other genetic technologies in Y. lipolytica.


Assuntos
Reparo do DNA por Junção de Extremidades , Biblioteca Genômica , Yarrowia/genética , Dosagem de Genes , Licopeno/metabolismo , Fenótipo , Biologia Sintética/métodos , Sequenciamento Completo do Genoma , Yarrowia/metabolismo
19.
Methods Mol Biol ; 2196: 77-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32889714

RESUMO

High-copy rescue genetic screening is a powerful strategy for the identification of suppression genetic interactions in the model eukaryotic organism Saccharomyces cerevisiae (budding yeast). The strain carrying the mutant allele of interest is transformed with a genomic library cloned in a high-copy plasmid. Each clone carries a genomic fragment insertion of around 10 kb, typically containing one to three complete genes under their own promoters. The high-copy vector favors the accumulation of high levels of the corresponding protein, aimed at suppressing the mutant phenotype. Typically, high-copy genetic screens select for viable clones under conditions restrictive or lethal for the query mutant strain. Here, we describe in detail the procedure to generate a high-copy genomic library and a protocol for rescue genetic screening and identification of the suppressor clones.


Assuntos
Dosagem de Genes , Genes Fúngicos , Testes Genéticos , Biblioteca Genômica , Saccharomyces cerevisiae/genética , Testes Genéticos/métodos , Fenótipo , Plasmídeos/genética , Transformação Genética
20.
iScience ; 23(10): 101622, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33089110

RESUMO

Understanding the antibody response is critical to developing vaccine and antibody-based therapies and has inspired the recent development of new methods to isolate antibodies. Methods to define the antibody-antigen interactions that determine specificity or allow escape have not kept pace. We developed Phage-DMS, a method that combines two powerful approaches-immunoprecipitation of phage peptide libraries and deep mutational scanning (DMS)-to enable high-throughput fine mapping of antibody epitopes. As an example, we designed sequences encoding all possible amino acid variants of HIV Envelope to create phage libraries. Using Phage-DMS, we identified sites of escape predicted using other approaches for four well-characterized HIV monoclonal antibodies with known linear epitopes. In some cases, the results of Phage-DMS refined the epitope beyond what was determined in previous studies. This method has the potential to rapidly and comprehensively screen many antibodies in a single experiment to define sites essential for binding interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA