Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Annu Rev Biochem ; 90: 31-55, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153217

RESUMO

My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Bioquímica/história , Frutosedifosfatos/metabolismo , Fosfofrutoquinase-2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Glicólise , História do Século XX , História do Século XXI , Humanos , Masculino , Camundongos , Fosfofrutoquinase-2/química , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Fosforilação , Estados Unidos
2.
Annu Rev Cell Dev Biol ; 37: 341-367, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34351784

RESUMO

Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues.


Assuntos
Desenvolvimento Vegetal , Transdução de Sinais , Nutrientes , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Transdução de Sinais/genética
3.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37842778

RESUMO

As photoautotrophic organisms, plants produce an incredible spectrum of pigments, anti-herbivory compounds, structural materials and energic intermediates. These biosynthetic routes help plants grow, reproduce and mitigate stress. HEXOKINASE1 (HXK1), a metabolic enzyme and glucose sensor, catalyzes the phosphorylation of hexoses, a key introductory step for many of these pathways. However, previous studies have largely focused on the glucose sensing and signaling functions of HXK1, and the importance of the enzyme's catalytic function is only recently being connected to plant development. In this brief Spotlight, we describe the developmental significance of plant HXK1 and its role in plant metabolic pathways, specifically in glucose-6-phosphate production. Furthermore, we describe the emerging connections between metabolism and development and suggest that HXK1 signaling and catalytic activity regulate discrete areas of plant development.


Assuntos
Glucose-6-Fosfato , Hexoquinase , Desenvolvimento Vegetal , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Fosforilação , Plantas/metabolismo
4.
Plant Cell Rep ; 42(6): 989-1002, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36991149

RESUMO

KEY MESSAGE: Cytoplasm-localized RING ubiquitin E3 ligase AtCHYR2 involved in plant glucose responses during germination and post-germinative growth. CHY ZINC FINGER AND RING PROTEIN (CHYR) containing both a CHY zinc finger and a C3H2C3-type RING domain plays important roles in plant drought tolerance and the abscisic acid (ABA) response; however, their functions in sugar signaling pathways are less studied. Here, we report a glucose (Glc) response gene AtCHYR2, a homolog of RZFP34/CHYR1, which is induced by various abiotic stresses, ABA, and sugar treatments. In vitro, we demonstrated that AtCHYR2 is a cytoplasm-localized RING ubiquitin E3 ligase. Overexpression of AtCHYR2 led to hypersensitivity to Glc and enhanced Glc-mediated inhibition of cotyledon greening and post-germinative growth. Contrastingly, AtCHYR2 loss-of-function plants were insensitive to Glc-regulated seed germination and primary root growth, suggesting that AtCHYR2 is a positively regulator of the plant glucose response. Additionally, physiological analyses showed that overexpression AtCHYR2 increased stomata aperture and photosynthesis under normal condition, and promoted accumulation of endogenous soluble sugar and starch in response to high Glc. Genome-wide RNA sequencing analysis showed that AtCHYR2 affects a major proportion of Glc-responsive genes. Particularly, sugar marker gene expression analysis suggested that AtCHYR2 enhances the Glc response via a signaling pathway dependent on glucose metabolism. Taken together, our findings show that a novel RING ubiquitin E3 ligase, AtCHYR2, plays an important role in glucose responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Germinação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Glucose , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
5.
New Phytol ; 236(2): 561-575, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35789001

RESUMO

Low light intensities affect the outbreak of plant diseases. However, the underlying molecular mechanisms remain poorly understood. High-performance liquid chromatography analysis of tomato (Solanum lycopersicum) revealed that apoplastic glucose (Glc) levels decreased in response to low light. Conversely, low-light-induced susceptibility to Pseudomonas syringae pv tomato (Pst) DC3000 was significantly alleviated by exogenous Glc treatment. Using cell-based biolayer interferometry assays, we found that Glc specifically binds to the tomato regulator of G protein signaling 1 (RGS1). Laser scanning confocal microscopy imaging revealed that Glc triggers RGS1 endocytosis, which influences the uncoupling of the RGS1-Gα (GPA1) and GPA1-Gß (SlGB1) proteins, in a dose- and duration-dependent manner. Analysis of G protein single and double mutants revealed that RGS1 negatively regulates disease resistance under low light and is required for Glc-enhanced defense. Downstream of RGS1-Glc binding, GPA1 negatively mediates the light-intensity-regulated defense, whereas SlGB1 positively regulates this process. These results reveal a novel light-intensity-responsive defense system that is mediated by a Glc-RGS1-G protein signaling pathway. This information will be critical for future investigations of how plant cells sense extracellular sugars and adjust defense under different environments, as well as for genetic engineering approaches to improve stress resilience.


Assuntos
Solanum lycopersicum , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Glucose , Solanum lycopersicum/genética , Doenças das Plantas/genética , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética , Açúcares
6.
J Exp Bot ; 73(22): 7362-7379, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36099003

RESUMO

The homeostasis of major macronutrient metabolism needs to be tightly regulated, especially when the availability of one or more nutrients fluctuates in the environment. Both sulfur metabolism and glucose signaling are important processes throughout plant growth and development, as well as during stress responses. Still, very little is known about how these processes affect each other, although they are positively connected. Here, we showed in Arabidopsis that the crucial transcription factor of sulfur metabolism, SLIM1, is involved in glucose signaling during shortage of sulfur. The germination rate of the slim1_KO mutant was severely affected by high glucose and osmotic stress. The expression of SLIM1-dependent genes in sulfur deficiency appeared to be additionally induced by a high concentration of either mannitol or glucose, but also by sucrose, which is not only the source of glucose but another signaling molecule. Additionally, SLIM1 affects PAP1 expression during sulfur deficiency by directly binding to its promoter. The lack of PAP1 induction in such conditions leads to much lower anthocyanin production. Taken together, our results indicate that SLIM1 is involved in the glucose response by modulating sulfur metabolism and directly controlling PAP1 expression in Arabidopsis during sulfur deficiency stress.


Assuntos
Arabidopsis , Açúcares , Arabidopsis/genética , Fatores de Transcrição/genética , Enxofre , Glucose
7.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682874

RESUMO

To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vitis , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Vitis/metabolismo
8.
J Biol Chem ; 295(8): 2259-2269, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31941791

RESUMO

The yeast vacuolar H+-ATPase (V-ATPase) of budding yeast (Saccharomyces cerevisiae) is regulated by reversible disassembly. Disassembly inhibits V-ATPase activity under low-glucose conditions by releasing peripheral V1 subcomplexes from membrane-bound Vo subcomplexes. V-ATPase reassembly and reactivation requires intervention of the conserved regulator of H+-ATPase of vacuoles and endosomes (RAVE) complex, which binds to cytosolic V1 subcomplexes and assists reassembly with integral membrane Vo complexes. Consistent with its role, the RAVE complex itself is reversibly recruited to the vacuolar membrane by glucose, but the requirements for its recruitment are not understood. We demonstrate here that RAVE recruitment to the membrane does not require an interaction with V1 Glucose-dependent RAVE localization to the vacuolar membrane required only intact Vo complexes containing the Vph1 subunit, suggesting that the RAVE-Vo interaction is glucose-dependent. We identified a short conserved sequence in the center of the RAVE subunit Rav1 that is essential for the interaction with Vph1 in vivo and in vitro Mutations in this region resulted in the temperature- and pH-dependent growth phenotype characteristic of ravΔ mutants. However, this region did not account for glucose sensitivity of the Rav1-Vph1 interaction. We quantitated glucose-dependent localization of a GFP-tagged RAVE subunit to the vacuolar membrane in several mutants previously implicated in altering V-ATPase assembly state or glucose-induced assembly. RAVE localization did not correlate with V-ATPase assembly levels reported previously in these mutants, highlighting both the catalytic nature of RAVE's role in V-ATPase assembly and the likelihood of glucose signaling to RAVE independently of V1.


Assuntos
Glucose/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Membranas Intracelulares/metabolismo , Mutação/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vacúolos/metabolismo
9.
Plant Mol Biol ; 98(6): 495-506, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30406469

RESUMO

KEY MESSAGE: Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucose/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Heme Oxigenase (Desciclizante)/genética , Histona-Lisina N-Metiltransferase/genética , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética
10.
J Biol Chem ; 291(14): 7267-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26865637

RESUMO

Hexokinase 2 (Hxk2) fromSaccharomyces cerevisiaeis a bi-functional enzyme, being both a catalyst in the cytosol and an important regulator of the glucose repression signal in the nucleus. Despite considerable recent progress, little is known about the regulatory mechanism that controls nuclear Hxk2 association with theSUC2promoter chromatin and how this association is necessary forSUC2gene repression. Our data indicate that in theSUC2promoter context, Hxk2 functions through a variety of structurally unrelated factors, mainly the DNA-binding Mig1 and Mig2 repressors and the regulatory Snf1 and Reg1 factors. Hxk2 sustains the repressor complex architecture maintaining transcriptional repression at theSUC2gene. Using chromatin immunoprecipitation assays, we discovered that the Hxk2 in its open configuration, at low glucose conditions, leaves the repressor complex that induces its dissociation and promotesSUC2gene expression. In high glucose conditions, Hxk2 adopts a close conformation that promotes Hxk2 binding to the Mig1 protein and the reassembly of theSUC2repressor complex. Additional findings highlight the possibility that Hxk2 constitutes an intracellular glucose sensor that operates by changing its conformation in response to cytoplasmic glucose levels that regulate its interaction with Mig1 and thus its recruitment to the repressor complex of theSUC2promoter. Thus, our data indicate that Hxk2 is more intimately involved in gene regulation than previously thought.


Assuntos
Glucose/metabolismo , Hexoquinase/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucose/genética , Hexoquinase/genética , Complexos Multiproteicos/genética , Ligação Proteica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , beta-Frutofuranosidase/biossíntese , beta-Frutofuranosidase/genética
11.
IUBMB Life ; 69(3): 137-147, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28093891

RESUMO

Glycolytic inhibitors are of interest therapeutically as they are effective against cancers that display increased glycolytic rate and mitochondrial defects. 2-Deoxyglucose (2-DG) is one such glycolytic inhibitor and was identified to be a competitive inhibitor of glucose. Studies from past few decades have shown that the mechanism of action of 2-DG is complex involving several metabolic and signaling pathways. Budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are two important models for studying metabolism, cell cycle and cell signaling. These two unicellular eukaryotes are Crabtree positive yeasts exhibiting a metabolism similar to that of cancer cells. Effects of 2-DG in yeast is of interest owing to these similarities and hence yeasts have emerged as ideal model organisms to study the mode of action and resistance to 2-DG. In this review, we summarize the studies on biological effect and resistance to 2-DG in budding and fission yeasts and give an insight into its possible mechanism of action as models for understanding cancer metabolism and drugs affecting cancer progression. © 2017 IUBMB Life, 69(3):137-147, 2017.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxiglucose/farmacologia , Neoplasias/tratamento farmacológico , Schizosaccharomyces/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Metabolismo Energético/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Schizosaccharomyces/metabolismo
12.
Pol J Microbiol ; 66(3): 393-396, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-29319508

RESUMO

Schizosaccharomyces pombe cells of strains each carrying a deletion of one of the genes snf5, ypa1, pho7 and pas1 and of a strain overexpressing gene odr1, have been previously shown to grow in presence of the toxic glucose analogue 2-deoxyglucose (2-DG). Here we report that these genes control 2-DG induced lysis and are, with the exception of odr1, also involved in control of formation of reactive oxygen species (ROS) upon exposure of cells to H2O2. Lysis of deletion strains, but not of strain overexpressing odr1, is dependent on glucose concentration of the medium whereas ROS formation is glucose independent.


Assuntos
Desoxiglucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia
13.
Proc Natl Acad Sci U S A ; 110(52): 21142-7, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324139

RESUMO

The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIA(Glc) in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ(70) in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ(70). Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ(70)-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ(70) and σ(S) for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ(70) activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd.


Assuntos
Proteínas de Bactérias/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Fator sigma/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia de Afinidade , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo
14.
FEMS Yeast Res ; 15(2)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25769530

RESUMO

This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.


Assuntos
Membrana Celular/enzimologia , Membrana Celular/metabolismo , Proteínas Quinases/análise , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo , Mutação , Proteínas Quinases/genética , Saccharomyces cerevisiae/genética
15.
Biochim Biophys Acta ; 1830(11): 5204-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911748

RESUMO

BACKGROUND: Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW: This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. MAJOR CONCLUSIONS: The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. GENERAL SIGNIFICANCE: Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.


Assuntos
Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
16.
J Plant Biol ; 57(2): 67-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25530701

RESUMO

The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks.

17.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534316

RESUMO

Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Saccharomyces cerevisiae , Masculino , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Estresse Oxidativo , Proteínas rho de Ligação ao GTP/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Front Bioeng Biotechnol ; 11: 1282314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941722

RESUMO

Aspergillus niger is the main industrial workhorse for global citric acid production. This fungus has complex sensing and signaling pathways to respond to environmental nutrient fluctuations. As the preferred primary carbon source, glucose also acts as a critical signal to trigger intracellular bioprocesses. Currently, however, there is still a knowledge gap in systems-level understanding of metabolic and cellular responses to this vital carbon source. In this study, we determined genome-wide transcriptional changes of citric acid-producing Aspergillus niger in response to external glucose gradient. It demonstrated that external glucose fluctuation led to transcriptional reprogramming of many genes encoding proteins involved in fundamental cellular process, including ribosomal biogenesis, carbon transport and catabolism, glucose sensing and signaling. The major glucose catabolism repressor creA maintained a stable expression independent of external glucose, while creB and creD showed significant downregulation and upregulation by the glucose increase. Notably, several high-affinity glucose transporters encoding genes, including mstA, were greatly upregulated when glucose was depleted, while the expression of low-affinity glucose transporter mstC was glucose-independent, which showed clear concordance with their protein levels detected by in situ fluorescence labeling assay. In addition, we also observed that the citric acid exporter cexA was observed to be transcriptionally regulated by glucose availability, which was correlated with extracellular citric acid secretion. These discoveries not only deepen our understanding of the transcriptional regulation of glucose but also shed new light on the adaptive evolutionary mechanism of citric acid production of A. niger.

19.
Front Plant Sci ; 14: 1069830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778691

RESUMO

Hexokinase1 (HXK1) is a bifunctional enzyme that plays indispensable roles in plant growth, nitrogen utilization, and stress resistance. However, information on the HXK family members of strawberries and their functions in glucose sensing and metabolic regulation is scarce. In the present study, four HXKs were firstly identified in the genome of Fragaria vesca and F. pentaphylla. The conserved domains of the HXK1s were confirmed, and a site-directed mutation (S177A) was introduced into the FpHXK1. FpHXK1, which shares the highest identity with the AtHXK1 was able to restore the glucose sensitivity and developmental defects of the Arabidopsis gin2-1 mutant, but not its kinase-activity-impaired mutant (FpHXK1S177A ). The transcription of FpHXK1 was dramatically up-regulated under PEG-simulated drought stress conditions. The inhibition of the HXK kinase activity delayed the strawberry plant's responses to drought stress. Transient overexpression of the FpHXK1 and its kinase-impaired mutant differentially affected the level of glucose, sucrose, anthocyanins, and total phenols in strawberry fruits. All these results indicated that the FpHXK1, acting as a glucose sensor, was involved in drought stress response and sugar metabolism depending on its kinase activity.

20.
Plant Sci ; 331: 111672, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921631

RESUMO

Glucose signaling plays an essential role in plant growth, development and stress response. Previous studies have shown that STOREKEEPER (STK) is a new class of DNA binding protein that regulates patatin expression in potato tubers and confers elevated sensitivity to glucose response in Arabidopsis thaliana. However, the biological functions of STK gene in tomato (Solanum lycopersicum) have not been studied. Here, we characterized the tomato SlSTK and determined its role in glucose signaling. The SlSTK protein was localized in the nucleus and the expression of the SlSTK gene was induced by the glucose treatment. Overexpression of SlSTK in tomato enhanced glucose sensitivity, as manifested by reduced seed germination rate and arrested growth at the early seedling stage. In contrast, the SlSTK-knockout plants generated via the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (CRISPR-Cas9) technique attenuated the sensitivity to glucose. In addition, SlSTK was ubiquitinated in plant cells and interacted with the tomato ubiquitin ligase SEVEN IN ABSENTIA4 (SlSINA4) that degrades SlSTK in a ligase-dependent manner. Taken together, these results suggest that SlSTK is involved in glucose signaling and its stability is regulated by the ubiquitin ligase SlSINA4.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Ubiquitina/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Plântula , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA