RESUMO
Prostate cancer (PC) is very common in old age and causes many deaths. Early diagnosis and monitoring of the progress of the disease and the effectiveness of PC treatment are critical. On the other hand, choosing a specific biomarker for PCs is essential. Prostate-specific antigen (PSA) is a specific biomarker secreted in the prostate epithelial cells, which increases in cancer cells. Between all employed sensing mechanism, electrochemical sensors based on nanomaterials have created many hopes. Meanwhile, graphite carbon nitride (g-C3N4) is interested in developing photoelectrochemical sensors due to its large surface area, stability, easy modification, and good photoelectronic properties. In this review, electrochemical sensors based on nanocomposites containing g-C3N4 have been investigated in PSA detection. After providing an overview of the characteristics of g-C3N4 and cancer biomarkers, it reviews the strategies and mechanisms involved in identifying PSA. Different approaches to photoelectrochemistry, impedimetric immunosensors, photocatalysis, and luminescence have been used in diagnostic mechanisms. Then, challenges and prospects for electrochemical sensors based on nanocomposites containing g-C3N4 in PSA detection have been analyzed. The recent review generally opens an efficient view in PSA diagnosis and the application of g-C3N4-based electrochemical sensors in personalized medicine diagnosis and treatment.
RESUMO
Photosynthesis of hydrogen peroxide (H2O2) in ambient conditions remains neither cost effective nor environmentally friendly enough because of the rapid charge recombination. Here, a photocatalytic rate of as high as 114 µmolâ g-1â h-1 for the production of H2O2 in pure water and open air is achieved by using a Z-scheme heterojunction, which outperforms almost all reported photocatalysts under the same conditions. An extensive study at the atomic level demonstrates that Z-scheme electron transfer is realized by improving the photoresponse of the oxidation semiconductor under visible light, when the difference between the Fermi levels of the two constituent semiconductors is not sufficiently large. Moreover, it is verified that a type II electron transfer pathway can be converted to the desired Z-scheme pathway by tuning the excitation wavelengths. This study demonstrates a feasible strategy for developing efficient Z-scheme photocatalysts by regulating photoresponses.
RESUMO
Precious metals exhibit promising potential for the hydrogen evolution reaction (HER), but their limited abundance restricts widespread utilization. Loading precious metal nanoparticles (NPs) on 2D/2D heterojunctions has garnered considerable interest since it saves precious metal consumption and facilitates unidirectional electron transmission from semiconductors to active sites. In this study, Ru NPs loaded on MXenes Mo2C by an in-site simple strategy and then formed 2D/2D heterojunctions with 2D g-C3N4 (CN) via electrostatic self-assembly were used to enhance photocatalytic H2 evolution. Evident from energy band structure analyses such as UV-vis and TRPL, trace amounts of Ru NPs as active sites significantly improve the efficiency of the hydrogen evolution reaction. More interestingly, MXene Mo2C, as substrates for supporting Ru NPs, enriches photoexcited electrons from CN, thereby enhancing the unidirectional electron transmission. As a result, the combination of Ru-Mo2C and CN constructs a composite heterojunction (Ru-Mo2C@CN) that shows an improved H2 production rate at 1776.4 µmolâg-1âh-1 (AQE 3.58% at 400 nm), which is facilitated by the unidirectional photogenerated electron transmission from the valence band on CN to the active sites on Ru (CNâMo2CâRu). The study offers fresh perspectives on accelerated unidirectional photogenerated electron transmission and saved precious metal usage in photocatalytic systems.
RESUMO
The ability to effectively treat deep bacterial infections while promoting osteogenesis is the biggest treatment demand for diseases such as osteomyelitis. Microwave therapy is widely studied due to its remarkable ability to penetrate deep tissue. This paper focuses on the development of a microwave-responsive system, namely, a zinc ion (Zn2+ ) doped graphite carbon nitride (CN) system (BZCN), achieved through two high-temperature burning processes. By subjecting composite materials to microwave irradiation, an impressive 99.81% eradication of Staphylococcus aureus is observed within 15 min. Moreover, this treatment enhances the growth of bone marrow stromal cells. The Zn2+ doping effectively alters the electronic structure of CN, resulting in the generation of a substantial number of free electrons on the material's surface. Under microwave stimulation, sodium ions collide and ionize with the free electrons generated by BZCN, generating a large amount of energy, which reacts with water and oxygen, producing reactive oxygen species. In addition, Zn2+ doping improves the conductivity of CN and increases the number of unsaturated electrons. Under microwave irradiation, polar molecules undergo movement and generate frictional heat. Finally, the released Zn2+ promotes macrophages to polarize toward the M2 phenotype, which is beneficial for tibial repair.
Assuntos
Grafite , Osteomielite , Humanos , Grafite/química , Carbono , Micro-Ondas , Antibacterianos/farmacologia , Antibacterianos/química , Osteomielite/tratamento farmacológicoRESUMO
DNA methylation as a ubiquitously regulation is closely associated with cell proliferation and differentiation. Growing data shows that aberrant methylation contributes to disease incidence, especially in tumorigenesis. The approach for identifying DNA methylation usually depends on treatment of sodium bisulfite, which is time-consuming and conversion-insufficient. Here, with a special biosensor, we establish an alternative approach for detecting DNA methylation. The biosensor is consisted of two parts, which are gold electrode and nanocomposite (AuNPs/rGO/g-C3N4). Nanocomposite was fabricated by three components, which are gold nanoparticles (AuNPs), reduced graphene oxide (rGO) and graphite carbon nitride (g-C3N4). For methylated DNA detection, the target DNA was captured by probe DNA immobilized on the gold electrode surface through thiolating process and subjected to hybrid with anti-methylated cytosine conjugated to nanocomposite. When the methylated cytosines in target DNA were recognized by anti-methylated cytosine, a change of electrochemical signals will be observed. With different size of target DNAs, the concentration and methylation level were tested. It is shown that in short size methylated DNA fragment, the linear range and LOD of concentration is 10-7M-10-15M and 0.74 fM respectively; in longer size methylated DNA, the linear range of methylation proportion and LOD of copy number is 3%-84% and 103 respectively. Also, this approach has a high sensitivity and specificity as well as anti-disturbing ability.
Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Ouro , Metilação de DNA , Técnicas Eletroquímicas , DNA , EletrodosRESUMO
Increased environmental pollution is a critical issue that must be addressed. Photocatalytic, adsorption, and membrane filtration methods are suitable in environmental governance because of their high selectivity, low cost, environment-friendly nature, and excellent treatment efficiency. Graphitic carbon nitride (g-C3N4) quantum dots (QDs) have been considered as photocatalysts, adsorbents, and membrane materials for wastewater treatments, owing to their stability, adsorption capacity, photochemical properties, and low toxicity and cost. This review summarizes g-C3N4 QD synthesis techniques, operating parameters affecting the removal performance in the treatment process, modification effects with other semiconductors, and benefits and drawbacks of g-C3N4 QD-based materials. Furthermore, this review discusses the practical applications of g-C3N4 QDs as adsorbents, photocatalysts, and membrane materials for organic and inorganic contaminant treatments and their value-added product formation potential. Modified g-C3N4 QD-based material adsorbents, photocatalysts, and membranes present potentially applicable effects, such as removal of most waterborne contaminants. Excellent results were obtained for the reduction of methyl orange, bisphenol A, tetracycline, ciprofloxacin, phenol, rhodamine B, E. coli, and Hg. Overall, this paper provides comprehensive background on g-C3N4 QD-based materials and their diverse applications in wastewater treatment, and it presents a foundation for the enhancement of similar unique materials in the future.
Assuntos
Pontos Quânticos , Águas Residuárias , Pontos Quânticos/química , Conservação dos Recursos Naturais , Escherichia coli , Política Ambiental , CatáliseRESUMO
A sandwich-type electrochemiluminescence (ECL) immunosensor based on the resonance energy transfer (RET) was proposed for ultrasensitive detection of cardiac troponin I (cTnI). The RET behavior could be generated between graphite carbon nitride nanosheets (m-CNNS) as donor and copper oxide@graphene oxide (CuO@GO) as acceptor, achieving the quenching effect of CuO@GO on m-CNNS for cTnI detection. The m-CNNS synthesized by mechanical grinding of the graphite carbon nitride (CN) not only has better dispersion and higher specific surface area, but also has high luminous efficiency and stable chemical properties. Therefore, m-CNNS was used as the matrix material and luminophore. As the acceptor, CuO@GO prepared by in-situ chemical synthesis of CuO NPs onto GO sheets also has a high specific surface area, which could be used as a label of secondary antibody (Ab2). Under optimal conditions, cTnI could be determined within the linear range of 0.1 pg mL-1 to 100 ng mL-1 and had a low detection limit (0.028 pg mL-1, S/N = 3). Meanwhile, the prepared ECL immunosensor possessed great stability, specificity and reproducibility, providing a new method for detecting cTnI and other biomarkers.
Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Fluorimunoensaio/métodos , Troponina I/análise , Troponina I/sangue , Anticorpos Imobilizados/química , Cobre/química , Grafite/síntese química , Grafite/química , Humanos , Limite de Detecção , Nanoestruturas/química , Compostos de Nitrogênio/química , Reprodutibilidade dos TestesRESUMO
The urgency for new materials in oncology is immediate. In this study we have developed the g-C3N4, a graphitic-like structure formed by periodically linked tris-s-triazine units. The g-C3N4has been synthesized by a simple and fast thermal process. XRD has shown the formation of the crystalline sheet with a compacted structure. The graphite-like structure and the functional groups have been shown by Raman and FTIR spectroscopy. TEM image and AFM revealed the porous composed of five or six C-N layers stacked. DRS and Photoluminescence analyses confirmed the structure with band gap of 2.87 eV and emission band at 448 nm in different wavelengths excitation conditions. The biological results showed inhibitory effect on cancer cell lines and non-toxic effect in normal cell lines. To the best of our knowledge, this is the first work demonstrating the cytotoxic effects of 2D g-C3N4in a cancer cell line, without any external or synergistic influence. The biodistribution/tissue accumulation showed that g-C3N4present a tendency to accumulation on the lung in the first 2 h, but after 24 h the profile of the biodistribution change and it is found mainly in the liver. Thus, 2D-g-C3N4showed great potential for the treatment of several cancer types.
Assuntos
Sobrevivência Celular , Grafite/síntese química , Grafite/metabolismo , Compostos de Nitrogênio/síntese química , Compostos de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Humanos , Distribuição TecidualRESUMO
Green fluorescent silver (Ag)-doped graphite carbon nitride (Ag-g-C3 N4 ) nanosheets have been fabricated by an ultrasonic exfoliating method. The fluorescence of the Ag-g-C3 N4 nanosheets is quenched by curcumin. The fluorescence intensity decreases with the increase in the concentration of curcumin, indicating that the Ag-g-C3 N4 nanosheets can function as a non-toxic and facile fluorescence probe to detect curcumin. The fluorescence intensity of Ag-g-C3 N4 nanosheets shows a linear relationship to curcumin in the concentration range 0.01-2.00 µM with a low detection limit of 38 nM. The fluorescence quenching process between curcumin and Ag-g-C3 N4 nanosheets mainly is based on static quenching. The fluorescent probe has been successfully applied to analyse curcumin in human urine and serum samples with satisfactory results.
Assuntos
Curcumina/análise , Corantes Fluorescentes/química , Grafite/química , Nanopartículas/química , Nitrilas/química , Prata/química , Tamanho da PartículaRESUMO
The authors describe a fluorescent probe for sensitive and selective determination of quercetin, an indicator for the freshness of drinks. The probe consists of silica ball encapsulated graphitic carbon nitride (g-C3N4) modified with a molecularly imprinted polymer (MIP). It was synthesized via reverse microemulsion. The resulting MIP@g-C3N4 nanocomposite was characterized by fluorescence spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. Quercetin quenches the fluorescence of the MIP@g-C3N4 probe. The effect was used to quantify quercetin in grape juice, tea juice, black tea, and red wine by fluorometry (λexc = 350 nm, λem = 460 nm). Response is linear in the 10-1000 ng mL-1 quercetin concentration range. The detection limit is 2.5 ng mL-1, recoveries range between 90.7 and 94.1%, and relative standard deviations are between 2.1 and 5.5%. Graphical abstract Schematic of the synthesis of the MIP@g-C3N4 by a reverse microemulsion method. The probe was applied for the selective recognition and fluorometric determination of quercetin.
RESUMO
Graphite carbon nitride (g-C3 N4 ) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g-C3 N4 nanotubes were synthesized by thermal polymerization of freeze-dried urea and CQDs precursor. The CQD-implanted g-C3 N4 nanotubes (CCTs) could simultaneously facilitate photoelectron transport and suppress charge recombination through their specially coupled heterogeneous interface. The electronic structure and morphology were optimized in the CCTs, contributing to greater visible light absorption and a weakened barrier of the photocarrier transfer. As a result, the CCTs exhibited efficient photocatalytic performance under light irradiation with a high H2 production rate of 3538.3â µmol g-1 h-1 and a notable quantum yield of 10.94 % at 420â nm.
RESUMO
A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3 N4 ) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3 N4 . This catalyst family (with less than 0.1â wt % of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3â wt % platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24â h.
RESUMO
Herein, a dual-defective graphite carbon nitride (DDCN) was prepared by polymerization under N2 atmosphere combined with oxidation treatment. The luminous intensity of dual-defect graphite phase carbon nitride based on defect state luminescence is significantly improved compared to CN-air. On this basis, a biosensor for CEA detection was constructed based on specific immunobinding of antigen-antibody. It is noted that the biosensor exhibits a wide linear range of 1 × 10-5 â¼ 1 × 102 ngâ¢mL-1, a low detection limit of 3.3 × 10-4 pgâ¢mL-1, a recovery of 94 %â¼105 % and RSD less than 4.41 %. In addition, there was no significant difference to the clinical results, indicating that this work has good clinical application prospects.
Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Grafite , Limite de Detecção , Medições Luminescentes , Nitrilas , Grafite/química , Nitrilas/química , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário/análise , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Humanos , Compostos de NitrogênioRESUMO
The copper-modified tubular carbon nitride (CTCN) with higher specific surface area and pore volume was prepared by a simple in-situ hydrolysis and self-assembly. Increased â¼4.7-fold and â¼2.3-fold degradation rate for a representative refractory water pollutant (Ibuprofen, IBP) were achieved with low-energy light source (LED, 420 ± 10 nm), as compared to graphitic carbon nitride (GCN) and tubular carbon nitride (TCN), respectively. The high efficiency of IBP removal was supported by narrow band gap (2.15 eV), high photocurrent intensity (1.10 µA/cm2) and the high surface -OH group (14.75 µg/cm3) of CTCN. According to analysis of the various reactive species in the degradation, the superoxide radical (â¢O2-) played a dominant role, followed by â¢OH and h+, responsible for IBP degradation. Furthermore, Fukui functions were employed to predict the active sites of IBP, and combined with the HPLC-MS/MS results, possible mechanisms and pathways for photocatalytic degradation were indicated. This study will lay an important scientific foundation and a possible new approach for the treatment of emerging aromatic organic pollutants in visible-light-driven heterogeneous catalytic oxidation environment.
Assuntos
Cobre , Ibuprofeno , Luz , Nitrilas , Poluentes Químicos da Água , Ibuprofeno/química , Cobre/química , Poluentes Químicos da Água/química , Catálise , Nitrilas/química , Fotólise , Processos Fotoquímicos , Grafite/química , Teoria da Densidade Funcional , Compostos de NitrogênioRESUMO
Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420â¯nm + 808â¯nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10â¯minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.
Assuntos
Antibacterianos , Escherichia coli , Nanocompostos , Staphylococcus aureus , Cicatrização , Nanocompostos/química , Cicatrização/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Fotoquimioterapia , Testes de Sensibilidade Microbiana , Camundongos , Esterilização/métodos , Ferrocianetos/química , Ferrocianetos/farmacologia , Tamanho da Partícula , Zinco/química , Zinco/farmacologia , Terapia Fototérmica , Propriedades de Superfície , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , GrafiteRESUMO
Graphite carbon nitride (CN) eliminates cancer cells by converting H2O2 to highly toxic â¢OH under visible light. However, its in vivo applications are constrained by insufficient endogenous H2O2, accumulation of OH- and finite photocarriers. We designed Fe/NV-CN, co-modified CN with nitrogen vacancies (NV) and ferric ions (Fe3+). NV and Fe3+, not only adjust the band structure of CN through quantum confinement effect and the altered coupled oscillations of atomic orbitals to facilitates â¢OH production by oxidizing OH-, but also construct dual carrier-transfer channels for electrons and holes to respective active sites by introducing stepped electrostatic potential and shortening three-electron bonds, thereby involving more carriers in â¢OH production. Fe/NV-CN, the novel reactor, effectually produces vast â¢OH under illumination by expanding OH- as the raw material of â¢OH and augmenting carriers at active sites, which induces cancer cell apoptosis by disrupting mitochondrial function for significant shrinkage of Cal27 cell-induced tumor under illumination. This work provides not only an effective photosensitizer avoiding the accumulation of OH- for cancer therapy but also a novel strategy by constructing dual carrier-transfer channels on semiconductor photosensitizers for improving the therapeutic effect of photodynamic therapy.
RESUMO
Triazine-based graphitic carbon nitride is a semiconductor material constituted of cross-linked triazine units, which differs from widely reported heptazine-based carbon nitrides. Its triazine-based structure gives rise to significantly different physical chemical properties from the latter. However, it is still a great challenge to experimentally synthesize this material. Here, we propose a synthesis strategy via vapor-metal interfacial condensation on a planar copper substrate to realize homogeneous growth of triazine-based graphitic carbon nitride films over large surfaces. The triazine-based motifs are clearly shown in transmission electron microscopy with high in-plane crystallinity. An AB-stacking arrangement of the layers is orientationlly parallel to the substrate surface. Eventually, the as-prepared films show dense electrochemical lithium deposition attributed to homogeneous charge transport within this thin film interphase, making it a promising solution for energy storage.
RESUMO
Graphitic carbon nitride (g-C3N4) had aroused tremendous attention in photodynamic antibacterial therapy due to its excellent energy band structure and appealing optical performance. Nevertheless, the superfast electron-hole recombination and dense biofilm formation abated its photodynamic antibacterial effect. To this end, a nanoheterojunction was synthesized via in-situ growing copper sulfide (CuS) on g-C3N4 (CuS@g-C3N4). On the one hand, CuS could form Fermi level difference with g-C3N4 to accelerate carrier transfer and thus facilitate electron-hole separation. On the other hand, CuS could respond near-infrared light to generate localized thermal to disrupt biofilm. Then the CuS@g-C3N4 nanoparticle was introduced into the poly-l-lactide (PLLA) scaffold. The photoelectrochemistry results demonstrated that the electron-hole separation efficiency was apparently enhanced and thereby brought an approximate sevenfold increase in reactive oxygen species (ROS) production. The thermal imaging indicated that the scaffold possesses a superior photothermal effect, which effectively eradicated the biofilm by disrupting its extracellular DNA and thereby facilitated to the entry of ROS. The entered ROS could effectively kill the bacteria by causing protein, K+, and nucleic acid leakage and glutathione consumption. As a consequence, the scaffold displayed an antibacterial rate of 97.2% and 98.5% against E. coli and S. aureus, respectively.
Assuntos
Escherichia coli , Staphylococcus aureus , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , BiofilmesRESUMO
Herein, we introduce a stable and green Au@g-C3N4 nanocomposite as a selective electrochemical sensor for vortioxetine (VOR) determination. The electrochemical behavior of VOR on the developed electrode was investigated through cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The Au@g-C3N4 nanocomposite was thoroughly observed by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and scanning electron microscopy. The Au@g-C3N4 nanocomposite had a higher conductivity and a narrower band gap than pure g-C3N4, causing higher electrochemical activity for VOR detection. Moreover, Au@g-C3N4 on the glassy carbon electrode (Au@g-C3N4/GCE) monitored a low level of VOR with high efficiency and low interference as an environmentally friendly processing approach. Interestingly, the as-fabricated sensor exhibited an ultrahigh selectivity for recognizing VOR with a detection limit (LOD) of 3.2 nM. Furthermore, the developed sensor was applied to determine VOR in pharmaceutical and biological samples, which indicated a high selectivity in the presence of interferences. This study suggests new insights into the phytosynthesis synthesis of nanomaterials with excellent biosensing applications.
Assuntos
Grafite , Nanocompostos , Grafite/química , Hyssopus , Vortioxetina , Carbono/química , Eletrodos , Nanocompostos/química , Técnicas Eletroquímicas/métodosRESUMO
Intramolecular-tailored graphite carbon nitride (g-C3N4) has great potential to greatly optimize the photo-response performance and carrier separation ability, but exquisite molecular structure engineering is still challenging. Firstly, a series of oxygen and terminal methyl moiety co-modified g-C3N4 (CNNx) has been systematically prepared by using N-Hydroxysuccinimide (HOSu) as a novel copolymerized precursor and urea. The density functional theory (DFT) calculations demonstrated that the presence of oxygen can lower the binding energy for the C-C bond to make the terminal modification easier. The terminal methyl and Oxygen not only caused abundant alveolar defects to break the periodic symmetry but also acted as an electron-accepting platform to tune the local charge redistribution within g-C3N4 molecular. The synthesized CNNx (CNN25) achieved ultra-high photocatalytic activity and chemical stability under visible light toward antibiotic degradation (99% tetracycline, 92% doxycycline, 65% ofloxacin and 74% sulfathiazole degradation within 30 min) and hydrogen production (an apparent quantum efficiency of 2.10% at 400 nm). CNN25 also maintains good efficiency in surface water and groundwater. Moreover, the TC solution treated with CNN25 had hardly any harm to the growth of E. coli. We believe our findings will provide a facile and green strategy for the preparation of non-metallic modified g-C3N4.