Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochem Biophys Res Commun ; 733: 150575, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39197199

RESUMO

Flavin monooxygenases (FMOs) have been widely used in the biosynthesis of natural compounds due to their excellent stereoselectivity, regioselectivity and chemoselectivity. Stenotrophomonas maltophilia flavin monooxygenase (SmFMO) has been reported to catalyze the oxidation of various thiols to corresponding sulfoxides, but its activity is relatively low. Herein, we obtained a mutant SmFMOF52G which showed 4.35-fold increase in kcat/Km (4.96 mM-1s-1) and 6.84-fold increase in enzyme activity (81.76 U/g) compared to the SmFMOWT (1.14 mM-1s-1 and 11.95 U/g) through semi-rational design guided by structural analysis and catalytic mechanism combined with high-throughput screening. By forming hydrogen bond with O4 atom of FAD isoalloxazine ring and reducing steric hindrance, the conformation of FAD isoalloxazine ring in SmFMOF52G is more stable, and NADPH and substrate are closer to FAD isoalloxazine ring, shortening the distances of hydrogen transfer and substrate oxygenation, thereby increasing the rate of reduction and oxidation reactions and enhancing enzyme activity. Additionally, the overall structural stability and substrate binding capacity of the SmFMOF52G have significant improved than that of SmFMOWT. The strategy used in this study to improve the enzyme activity of FMOs may have generality, providing important references for the rational and semi-rational engineering of FMOs.


Assuntos
Flavina-Adenina Dinucleotídeo , Flavinas , Oxigenases , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavinas/metabolismo , Flavinas/química , Oxigenases/metabolismo , Oxigenases/química , Oxigenases/genética , Stenotrophomonas maltophilia/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Oxirredução , Especificidade por Substrato , Cinética
2.
Bioorg Med Chem ; 81: 117210, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791612

RESUMO

Structure-photosensitizing activity relationships for a series of flavin analogues were investigated with the final goal of identifying the most potent photosensitizer in these series. The main structural modifications involved the introduction of various halogen atoms in C7- and/or C8-positions on the isoalloxazine ring. These compounds were synthesized by reacting judiciously-functionalized anilines with alloxan. The SAR trends showed that the photosensitizing activity increased with the size of the halogen atoms, confirming the importance of the heavy-atom effect on the photosensitizer's activity. The halogens in C8 were more active than the di-substituted halogens, which in turn were more active than the C7-substituted equivalents. However, even if the photosensitizing activity is slightly less important for the 7- compared to the 8-substituted derivatives, the 7-haloisoalloxazines are promising photosensitizers, as they present a better cellular toxicity profile than the 8-substituted analoges. The photosensitizing activity perfectly correlated with the determined fluorescence for the same compounds. Except for the dihalogeno derivatives, all the compounds were not toxic up to a 50 µM range.


Assuntos
Flavinas , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Flavinas/química , Relação Estrutura-Atividade , Halogênios
3.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985849

RESUMO

The flavin derivatives 10-methyl-isoalloxazine (MIA) and 6-fluoro-10-methyl-isoalloxazine (6F-MIA) were incorporated in two alternative metal-organic frameworks, (MOFs) MIL-53(Al) and MOF-5. We used a post-synthetic, diffusion-based incorporation into microcrystalline MIL-53 powders with one-dimensional (1D) pores and an in-situ approach during the synthesis of MOF-5 with its 3D channel network. The maximum amount of flavin dye incorporation is 3.9 wt% for MIA@MIL-53(Al) and 1.5 wt% for 6F-MIA@MIL-53(Al), 0.85 wt% for MIA@MOF-5 and 5.2 wt% for 6F-MIA@MOF-5. For the high incorporation yields the probability to have more than one dye molecule in a pore volume is significant. As compared to the flavins in solution, the fluorescence spectrum of these flavin@MOF composites is broadened at the bathocromic side especially for MIA. Time-resolved spectroscopy showed that multi-exponential fluorescence lifetimes were needed to describe the decays. The fluorescence-weighted lifetime of flavin@MOF of 4 ± 1 ns also corresponds to those in solution but is significantly prolonged compared to the solid flavin dyes with less than 1 ns, thereby confirming the concept of "solid solutions" for dye@MOF composites. The fluorescence quantum yield (ΦF) of the flavin@MOF composites is about half of the solution but is significantly higher compared to the solid flavin dyes. Both the fluorescence lifetime and quantum yield of flavin@MOF decrease with the flavin loading in MIL-53 due to the formation of various J-aggregates. Theoretical calculations using plane-wave and QM/MM methods are in good correspondence with the experimental results and explain the electronic structures as well as the photophysical properties of crystalline MIA and the flavin@MOF composites. In the solid flavins, π-stacking interactions of the molecules lead to a charge transfer state with low oscillator strength resulting in aggregation-caused quenching (ACQ) with low lifetimes and quantum yields. In the MOF pores, single flavin molecules represent a major population and the computed MIA@MOF structures do not find π-stacking interactions with the pore walls but only weak van-der-Waals contacts which reasons the enhanced fluorescence lifetime and quantum yield of the flavins in the composites compared to their neat solid state. To analyze the orientation of flavins in MOFs, we measured fluorescence anisotropy images of single flavin@MOF-5 crystals and a static ensemble flavin@MIL53 microcrystals, respectively. Based on image information, anisotropy distributions and overall curve of the time-resolved anisotropy curves combined with theoretical calculations, we can prove that all fluorescent flavins species have a defined and rather homogeneous orientation in the MOF framework. In MIL-53, the transition dipole moments of flavins are orientated along the 1D channel axis, whereas in MOF-5 we resolved an average orientation that is tilted with respect to the cubic crystal lattice. Notably, the more hydrophobic 6F-MIA exhibits a higher degree order than MIA. The flexible MOF MIL-53(Al) was optimized essentially to the experimental large-pore form in the guest-free state with QuantumEspresso (QE) and with MIA molecules in the pores the structure contracted to close to the experimental narrow-pore form which was also confirmed by PXRD. In summary, the incorporation of flavins in MOFs yields solid-state materials with enhanced rigidity, stabilized conformation, defined orientation and reduced aggregations of the flavins, leading to increased fluorescence lifetime and quantum yield as controllable photo-luminescent and photo-physical properties.

4.
J Comput Chem ; 43(23): 1561-1572, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35778728

RESUMO

Flavins are employed as redox cofactors and chromophores in a plethora of flavoenzymes. Their versatility is an outcome of intrinsic molecular properties of the isoalloxazine ring modulated by the protein scaffold and surrounding solvent. Thus, an investigation of isolated flavins with high-level electronic-structure methods and with error assessment of the calculated properties will contribute to building better models of flavin reactivity. Here, we benchmarked ground-state properties such as electron affinity, gas-phase basicity, dipole moment, torsion energy, and tautomer stability for lumiflavins in all biologically relevant oxidation and charge states. Overall, multiconfigurational effects are small and chemical accuracy is achieved by coupled-cluster treatments of energetic properties. Augmented basis sets and extrapolations to the complete basis-set limit are necessary for consistent agreement with experimental energetics. Among DFT functionals tested, M06-2X shows the best performance for most properties, except gas-phase basicity, in which M06 and CAM-B3LYP perform better. Moreover, dipole moments of radical flavins show large deviations for all functionals studied. Tautomers with noncanonical protonation states are significantly populated at normal temperatures, adding to the complexity of modeling flavins. These results will guide future computational studies of flavoproteins and flavin chemistry by indicating the limitations of electronic-structure methodologies and the contributions of multiple tautomeric states.


Assuntos
Flavinas , Flavinas/química , Oxirredução
5.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466340

RESUMO

The last step in the biosynthesis of flavin adenine dinucleotide (FAD) is considered a target for the design of antimicrobial drugs because it is carried out by two non-homologous proteins in eukaryotic and prokaryotic organisms. Monofunctional FMN: adenylyltransferases (FMNAT) in Eukarya and FMNAT modules of bifunctional FAD synthases (FADS) in Prokarya belong to different structural families with dissimilar chemistry and binding modes for the substrates. In this study, we analyzed the relevance of the hydrophobic environment of the flavin isoalloxazine in the FMNAT active site of Corynebacterium ammoniagenes FADS (CaFADS) through the mutational analysis of its F62, Y106, and F128 residues. They form the isoalloxazine binding cavity and are highly conserved in the prokaryotic FADS family. The spectroscopic, steady-state kinetics and thermodynamic data presented indicate that distortion of aromaticity at the FMNAT isoalloxazine binding cavity prevents FMN and FAD from correct accommodation in their binding cavity and, as a consequence, decreases the efficiency of the FMNAT activity. Therefore, the side-chains of F62, Y106 and F128 are relevant in the formation of the catalytic competent complex during FMNAT catalysis in CaFADS. The introduced mutations also modulate the activity occurring at the riboflavin kinase (RFK) module of CaFADS, further evidencing the formation of quaternary assemblies during catalysis.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Nucleotidiltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium/enzimologia , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fenilalanina/química , Ligação Proteica , Tirosina/química
6.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610214

RESUMO

The actinobacterium Microbacterium maritypicum splits riboflavin (vitamin B2) into lumichrome and d-ribose. However, such degradation by other bacteria and the involvement of a two-component flavin-dependent monooxygenase (FMO) in the reaction remain unknown. Here we investigated the mechanism of riboflavin degradation by the riboflavin-assimilating alphaproteobacterium Devosia riboflavina (formerly Pseudomonas riboflavina). We found that adding riboflavin to bacterial cultures induced riboflavin-degrading activity and a protein of the FMO family that had 67% amino acid identity with the predicted riboflavin hydrolase (RcaE) of M. maritypicum MF109. The D. riboflavina genome clustered genes encoding the predicted FMO, flavin reductase (FR), ribokinase, and flavokinase, and riboflavin induced their expression. This finding suggests that these genes constitute a mechanism for utilizing riboflavin as a carbon source. Recombinant FMO (rFMO) protein of D. riboflavina oxidized riboflavin in the presence of reduced flavin mononucleotide (FMN) provided by recombinant FR (rFR), oxidized FMN and NADH, and produced stoichiometric amounts of lumichrome and d-ribose. Further investigation of the enzymatic properties of D. riboflavina rFMO indicated that rFMO-rFR coupling accompanied O2 consumption and the generation of enzyme-bound hydroperoxy-FMN, which are characteristic of two-component FMOs. These results suggest that D. riboflavina FMO is involved in hydroperoxy-FMN-dependent mechanisms to oxygenize riboflavin and a riboflavin monooxygenase is necessary for the initial step of riboflavin degradation.IMPORTANCE Whether bacteria utilize either a monooxygenase or a hydrolase for riboflavin degradation has remained obscure. The present study found that a novel riboflavin monooxygenase, not riboflavin hydrolase, facilitated this process in D. riboflavina The riboflavin monooxygenase gene was clustered with flavin reductase, flavokinase, and ribokinase genes, and riboflavin induced their expression and riboflavin-degrading activity. The gene cluster is uniquely distributed in Devosia species and actinobacteria, which have exploited an environmental niche by developing adaptive mechanisms for riboflavin utilization.


Assuntos
Alphaproteobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Dinitrocresóis/metabolismo , Oxigenases de Função Mista/metabolismo , Riboflavina/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , FMN Redutase/genética , FMN Redutase/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavinas/metabolismo , Oxigenases de Função Mista/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
7.
Eur Biophys J ; 47(3): 205-223, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28889232

RESUMO

NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH2) forms of Npx are related to very tight flavin-protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N1/N5 and O2/O4 sites, and a strong H-bond at N3H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO-/Cys-S- redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N5 site and ring III. The Cd(II) binding to the EH2-NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N5 site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C4a(flavin) adducts.


Assuntos
Flavinas/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Análise Espectral Raman , Enterococcus faecalis/enzimologia , Ligação Proteica , Ralstonia/enzimologia
8.
Biochim Biophys Acta ; 1837(2): 296-305, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24321506

RESUMO

Ferredoxin-NADP(+) reductase (FNR) is the structural prototype of a family of FAD-containing reductases that catalyze electron transfer between low potential proteins and NAD(P)(+)/H, and that display a two-domain arrangement with an open cavity at their interface. The inner part of this cavity accommodates the reacting atoms during catalysis. Loops at its edge are highly conserved among plastidic FNRs, suggesting that they might contribute to both flavin stabilization and competent disposition of substrates. Here we pay attention to two of these loops in Anabaena FNR. The first is a sheet-loop-sheet motif, loop102-114, that allocates the FAD adenosine. It was thought to determine the extended FAD conformation, and, indirectly, to modulate isoalloxazine electronic properties, partners binding, catalytic efficiency and even coenzyme specificity. The second, loop261-269, contains key residues for the allocation of partners and coenzyme, including two glutamates, Glu267 and Glu268, proposed as candidates to facilitate the key displacement of the C-terminal tyrosine (Tyr303) from its stacking against the isoalloxazine ring during the catalytic cycle. Our data indicate that the main function of loop102-114 is to provide the inter-domain cavity with flexibility to accommodate protein partners and to guide the coenzyme to the catalytic site, while the extended conformation of FAD must be induced by other protein determinants. Glu267 and Glu268 appear to assist the conformational changes that occur in the loop261-269 during productive coenzyme binding, but their contribution to Tyr303 displacement is minor than expected. Additionally, loop261-269 appears a determinant to ensure reversibility in photosynthetic FNRs.


Assuntos
Anabaena/enzimologia , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Coenzimas/metabolismo , Cristalografia por Raios X , Transporte de Elétrons , Ferredoxinas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Biochim Biophys Acta ; 1837(2): 251-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24200908

RESUMO

Ferredoxin-nicotinamide-adenine dinucleotide phosphate (NADP(+)) reductase (FNR) catalyses the production of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) in photosynthetic organisms, where its flavin adenine dinucleotide (FAD) cofactor takes two electrons from two reduced ferredoxin (Fd) molecules in two sequential steps, and transfers them to NADP(+) in a single hydride transfer (HT) step. Despite the good knowledge of this catalytic machinery, additional roles can still be envisaged for already reported key residues, and new features are added to residues not previously identified as having a particular role in the mechanism. Here, we analyse for the first time the role of Ser59 in Anabaena FNR, a residue suggested by recent theoretical simulations as putatively involved in competent binding of the coenzyme in the active site by cooperating with Ser80. We show that Ser59 indirectly modulates the geometry of the active site, the interaction with substrates and the electronic properties of the isoalloxazine ring, and in consequence the electron transfer (ET) and HT processes. Additionally, we revise the role of Tyr79 and Ser80, previously investigated in homologous enzymes from plants. Our results probe that the active site of FNR is tuned by a H-bond network that involves the side-chains of these residues and that results to critical optimal substrate binding, exchange of electrons and, particularly, competent disposition of the C4n (hydride acceptor/donor) of the nicotinamide moiety of the coenzyme during the reversible HT event.


Assuntos
Anabaena/enzimologia , Biocatálise , Domínio Catalítico , Ferredoxina-NADP Redutase/metabolismo , Sequência de Aminoácidos , Aminoácidos , Ferredoxina-NADP Redutase/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Análise Espectral , Temperatura
10.
Bioorg Chem ; 61: 7-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26042530

RESUMO

This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer's disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 µM and 5.22 µM respectively against AChE; and, 6.98 µM and 5.29 µM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for ß-amyloid (Aß) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.


Assuntos
Inibidores da Colinesterase/síntese química , Flavinas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/toxicidade , Avaliação Pré-Clínica de Medicamentos , Flavinas/uso terapêutico , Flavinas/toxicidade , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
11.
J Fluoresc ; 24(2): 505-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24272639

RESUMO

Steady-state and time-resolved spectra were used to describe the singlet and triplet states of 8-methyl-5-deazaalloxazine (8-Me-5-DAll), 9-methyl-5-deazaalloxazine (9-Me-5-DAll) and 10-ethyl-5-deaza-isoalloxazine (10-Et-5-DIAll). Solvatochromic properties were described using different polarity scales, including Δf and the four-parameter scale proposed by Catalán. The results indicate that the Catalán scale shows a strong influence of solvent acidity (hydrogen-bond donating ability) on the emission properties of 8-Me-5-DAll and 9-Me-5-DAll. These results indicate the importance of intermolecular solute-solvent hydrogen-bonding interactions in the excited state of these compounds. Contrary to deazaalloxazines, solvent acidity affects the absorption spectra of 10-Et-5-DIAll. Fluorescence lifetimes and quantum yields and also transient absorption spectra were determined for all of the compounds studied. Electronic structure and S(0)-S(i), S(0)-T(i ), T(1)-T(i) transitions energies and oscillator strengths were calculated using the TD-DFT methods. Theoretical calculations were compared to experimental data.


Assuntos
Oxazinas/química , Espectrometria de Fluorescência/métodos , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta
12.
IUCrdata ; 8(Pt 1): x221223, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36794048

RESUMO

The structure of the title compound, C10H6N4O2, reported by Smalley et al. [(2021). Cryst. Growth Des. 22, 524-534] from powder diffraction data and 15N NMR spectroscopy, is confirmed using low-temperature data from a twinned crystal. The tautomer in the solid state is alloxazine (1H-benzo[g]pteridine-2,4-dione) rather than isoalloxazine (10H-benzo[g]pteridine-2,4-dione). In the extended structure, the mol-ecules form hydrogen-bonded chains propagating in the [01] direction through alternating centrosymmetric R 2 2(8) rings with pairwise N-H⋯O inter-actions and centrosymmetric R 2 2(8) rings with pairwise N-H⋯N inter-actions. The crystal chosen for data collection was found to be a non-merohedral twin (180° rotation about [001]) in a 0.446 (4):0.554 (6) domain ratio.

13.
Food Chem X ; 12: 100146, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34761201

RESUMO

The inhibitory effect of xanthine oxidase (XO) reactions with stilbene compounds, 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging by stilbene compounds and superoxide anion (O2-) scavenging activity were examined. The inhibition of the O2- generation catalyzed by XO by stilbene compounds is stronger than the effect on uric acid formation. The suppression of the O2- generation with resveratrol was diminished by the addition of flavin adenine dinucleotide (FAD). The water-solubility and visible spectra (VIS) of the stilbene compounds in the presence of water-soluble flavin compounds indicated a π-π interaction between the stilbene compounds and the isoalloxazine in flavin compounds. These results indicate that stilbene compounds specifically bind the FAD site in XO so as to inhibit the O2- generation. In the case of piceatannol, it is deduced that the suppression of O2- generation is induced by this specific binding to the FAD site and the subsequent reduction of XO.

14.
Methods Enzymol ; 620: 189-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31072487

RESUMO

The flavin cofactor performs many functions in the cell based on the ability of the isoalloxazine ring to undergo one- or two-electron reduction and form covalent adducts with reactants such as amino acids. In addition, the strong visible absorption of the cofactor is also the basis for flavin-dependent photoreceptors. Vibrational spectroscopy is uniquely suited to studying the mechanism of flavoproteins since the frequency of the vibrational modes is very sensitive to the electronic structure and environment of the isoalloxazine ring. This chapter describes the mechanistic information that can be gained using vibrational spectroscopy as well experimental challenges and approaches that are used to obtain and interpret the complex data contained in a vibrational spectrum.


Assuntos
Enzimas/química , Flavoproteínas/química , Análise Espectral Raman/métodos , Flavinas/química , Vibração
15.
J Biomol Struct Dyn ; 35(8): 1729-1742, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27410776

RESUMO

In Alzheimer's disease (AD), the level of Acetylcholine (ACh) neurotransmitter is reduced. Since Acetylcholinesterase (AChE) cleaves ACh, inhibitors of AChE are very much sought after for AD treatment. The side effects of current inhibitors necessitate development of newer AChE inhibitors. Isoalloxazine derivatives have proved to be promising (AChE) inhibitors. However, their structure-activity relationship studies have not been reported till date. In the present work, various quantitative structure-activity relationship (QSAR) building methods such as multiple linear regression (MLR), partial least squares ,and principal component regression were employed to derive 3D-QSAR models using steric and electrostatic field descriptors. Statistically significant model was obtained using MLR coupled with stepwise selection method having r2 = .9405, cross validated r2 (q2) = .6683, and a high predictability (pred_r2 = .6206 and standard error, pred_r2se = .2491). Steric and electrostatic contribution plot revealed three electrostatic fields E_496, E_386 and E_577 and one steric field S_60 contributing towards biological activity. A ligand-based 3D-pharmacophore model was generated consisting of eight pharmacophore features. Isoalloxazine derivatives were docked against human AChE, which revealed critical residues implicated in hydrogen bonds as well as hydrophobic interactions. The binding modes of docked complexes (AChE_IA1 and AChE_IA14) were validated by molecular dynamics simulation which showed their stable trajectories in terms of root mean square deviation and molecular mechanics/Poisson-Boltzmann surface area binding free energy analysis revealed key residues contributing significantly to overall binding energy. The present study may be useful in the design of more potent Isoalloxazine derivatives as AChE inhibitors.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Flavinas/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Motivos de Aminoácidos , Sítios de Ligação , Inibidores da Colinesterase/metabolismo , Cristalografia por Raios X , Flavinas/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Análise dos Mínimos Quadrados , Modelos Lineares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Relação Quantitativa Estrutura-Atividade , Eletricidade Estática , Termodinâmica
16.
Comput Biol Chem ; 64: 113-125, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27327240

RESUMO

The structural and dynamical properties of five FMN binding protein (FBP) dimers, WT (wild type), E13K (Glu13 replaced by Lys), E13R (Glu13 replaced by Arg), E13T (Glu13 replaced by Thr) and E13Q (Glu13 replaced by Gln), were investigated using a method of molecular dynamics simulation (MDS). In crystal structures, subunit A (Sub A) and subunit B (Sub B) were almost completely equivalent in all of the five FBP dimers. However, the predicted MDS structures of the two subunits were not equivalent in solution, revealed by the distances and inter-planar angles between isoalloxazine (Iso) and aromatic amino acids (Trp32, Tyr35 and Trp106) as well as the hydrogen bonding pairs between Iso and nearby amino acids. Residue root of mean square fluctuations (RMSF) also displayed considerable differences between Sub A and Sub B and in the five FBP dimers. The dynamics of the whole protein structures were examined with the distance (RNN) between the peptide N atom of the N terminal (Met1) and the peptide N atom of the C terminal (Leu122). Water molecules were rarely accessible to Iso in all FBP dimers which are in contrast with other flavoenzymes.


Assuntos
Proteínas de Bactérias/química , Desulfovibrio vulgaris/química , Mononucleotídeo de Flavina/química , Dimerização , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência
17.
Neurotox Res ; 29(4): 495-513, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26797524

RESUMO

Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aß aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aß1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aß1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/ß-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aß1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aß1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aß1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/ß-catenin pathway as evidenced by increased p-GSK-3, ß-catenin, and neuroD1 levels in Aß1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Flavinas/farmacologia , Flavinas/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Catalase/metabolismo , Células Cultivadas , Inibidores da Colinesterase/uso terapêutico , Modelos Animais de Doenças , Flavinas/química , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Antagonistas Muscarínicos/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Escopolamina/toxicidade
18.
Artigo em Zh | WPRIM | ID: wpr-855246

RESUMO

Objective: To study the chemical constituents from Scolopendra multidens. Methods: Compounds were isolated and purified by a combination of chromatographic techniques including silica gel, ODS, Sephadex LH-20 column chromatography, middle and low pressure preparative chromatograms, and pre-HPLC. The structures were elucidated on the basis of physicochemical properties and spectroscopic analyses. Results: Ten compounds were separated and identified as uracil (1), 7, 8-dimethyl-isoalloxazine (2), indole-3-acetamide (3), N-(2-phenylethyl) acetamide (4), (3S)-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (5), cyclo-(L-Ile-L-Pro) (6), cyclo-(L-Leu-L-Pro) (7), cyclo-(L-Phe-L-Pro) (8), cyclo-(L-Phe-L-Tyr) (9), and cyclo-(L-Val-L-Pro) (10). Conclusion: All the compounds are isolated from S. multidens for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA