Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
1.
Nano Lett ; 24(12): 3638-3646, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498912

RESUMO

Tin-based two-dimensional (2D) perovskites are emerging as lead-free alternatives in halide perovskite materials, yet their exciton dynamics and transport remain less understood due to defect scattering. Addressing this, we employed temperature-dependent transient photoluminescence (PL) microscopy to investigate intrinsic exciton transport in three structurally analogous Sn- and Pb-based 2D perovskites. Employing conjugated ligands, we synthesized high-quality crystals with enhanced phase stability at various temperatures. Our results revealed phonon-limited exciton transport in Sn perovskites, with diffusion constants increasing from 0.2 cm2 s-1 at room temperature to 0.6 cm2 s-1 at 40 K, and a narrowing PL line width. Notably, Sn-based perovskites exhibited greater exciton mobility than their Pb-based equivalents, which is attributed to lighter effective masses. Thermally activated optical phonon scattering was observed in Sn-based compounds but was absent in Pb-based materials. These findings, supported by molecular dynamics simulations, demonstrate that the phonon scattering mechanism in Sn-based halide perovskites can be distinct from their Pb counterparts.

2.
Nano Lett ; 24(17): 5182-5188, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630435

RESUMO

Bismuth halide perovskites are widely regarded as nontoxic alternatives to lead halide perovskites for optoelectronics and solar energy harvesting applications. With a tailorable composition and intriguing optical properties, bismuth halide perovskites are also promising candidates for tunable photonic devices. However, robust control of the anion composition in bismuth halide perovskites remains elusive. Here, we established chemical vapor deposition and anion exchange protocols to synthesize bismuth halide perovskite nanoflakes with controlled dimensions and variable compositions. In particular, we demonstrated the gradient bromide distribution by controlling the anion exchange and diffusion processes, which is spatially resolved by time-of-flight secondary ion mass spectrometry. Moreover, the optical waveguiding properties of bismuth halide perovskites can be modulated by flake thicknesses and anion compositions. With a unique gradient anion distribution and controllable optical properties, bismuth halide perovskites provide new possibilities for applications in optoelectronic devices and integrated photonics.

3.
Nano Lett ; 24(22): 6797-6804, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775795

RESUMO

It is a huge challenge to increase the photoluminescence (PL) of lead-free halide perovskites, and understanding the mechanism behind exciton dynamics can provide a valuable solution. Herein, we achieved enhanced broad-band emission at ambient conditions in Cs2AgInCl6 by tuning self-trapped excitons (STEs) through Al3+ doping. Cryogenic measurements showed an inhomogeneous nature of STE emission due to the presence of defect states and is subject to thermal quenching. An increased Huang-Rhys factor (S-factor) resulted in better electron-phonon coupling and high-density STE states post Al3+ doping. Femtosecond transient absorption (fs-TA) results provided insights into the distribution dynamics of excitons, which occurs through gradient energy levels from free excitons (FE) to STEs, where each STE state potentially possesses higher quantized energy states. Overall, this study aims to comprehend the origins of self-trapping and decay of STEs in Cs2AgInCl6:Al3+ and emphasizes the potential of compositional engineering to mitigate self-trapping in this material.

4.
Nano Lett ; 24(3): 1001-1008, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198561

RESUMO

We report a zero-dimensional (0D) lead-free chiral perovskite (S-/R-MBA)4Bi2I10 with a high degree of circularly polarized light (CPL) emission. Our 0D lead-free chiral perovskite exhibits an average degree of circular polarization (DOCP) of 19.8% at 78 K under linearly polarized laser excitation, and the maximum DOCP can reach 25.8%, which is 40 times higher than the highest DOCP of 0.5% in all reported lead-free chiral perovskites to the best of our knowledge. The high DOCP of (S-/R-MBA)4Bi2I10 is attributed to the free exciton emission with a Huang-Rhys factor of 2.8. In contrast, all the lead-free chiral perovskites in prior reports are dominant by self-trapped exciton in which the spin relaxation reduces DOCP dramatically. Moreover, we realize the manipulation of the valley degree of freedom of monolayer WSe2 by using the spin injection of the 0D chiral lead-free perovskites. Our results provide a new perspective to develop lead-free chiral perovskite devices for CPL light source, spintronics, and valleytronics.

5.
Small ; 20(7): e2306486, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803415

RESUMO

Lead-free antiferroelectrics with excellent energy storage performance can become the core components of the next-generation advanced pulse power capacitors. However, the low energy storage efficiency caused by the hysteresis of antiferroelectric-ferroelectric transition largely limits their development toward miniaturization, lightweight, and integration. In this work, an ultrahigh recoverable energy storage density of ≈11.4 J cm-3 with a high efficiency of ≈80% can be realized in La-modified Ag0.5 Na0.5 NbO3 antiferroelectric ceramics at an ultrahigh breakdown electric field of ≈67 kV mm-1 by the compromise optimization between antiferroelectricity enhancement and nanodomain engineering, resulting in the transformation of large-size ferrielectric antipolar stripe domains into ultrasmall antiferroelectric nanodomains or polarization nanoregions revealing as Moiré fringe structures. In addition, the enhanced transparency with increasing La content can also be clearly observed. This work not only develops new lead-free antiferroelectric energy storage materials with high application potential but also demonstrates that the strategy of compromise optimization between antiferroelectricity modulation and nanodomain engineering is an effective avenue to enhance the energy storage performance of antiferroelectrics.

6.
Small ; 20(13): e2308877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948431

RESUMO

Tin halide perovskite solar cells (PSCs) are regarded as the most promising lead-free alternatives for photovoltaic applications. However, they still suffer from uncompetitive photovoltaic performance because of the facile Sn2+ oxidation and Sn-related defects. Herein, a defect and carrier management strategy by using diaminopyridine (DP) and 4-bromo-2,6-diaminopyridine (4BrDP) as multifunctional additives for tin halide perovskites is reported. Both DP and 4BrDP induced strong interaction with tin perovskites by coordinate bonding and N─H···I hydrogen bonding, which greatly suppresses the micro-strain and Urbach energy of tin halide perovskite films. The strong hydrogen bonding inhibits the formation of I3 - and related defect density. Meanwhile, the electron-donor species of halogen bond in 4BrDP provides higher reactivity of 2 and 6 sites, which indicates stronger passivation ability with tin halide perovskites. These advances enable a champion power conversion efficiency (PCE) of 13.40% in 4BrDP-processed devices with remarkable improvement in both open-circuit voltage (Voc) of 881 mV and fill factor (FF) of 71.26%. The 4BrDP devices retain 91% and 82% of the pristine PCE after 2000 h storage in N2 atmosphere and 1000 h under 85 °C, respectively. Therefore, this work provides new insight into molecular design for high-performance and stable lead-free optoelectronics.

7.
Small ; 20(6): e2306115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775951

RESUMO

The unsatisfactory power conversion efficiency (PCE) and long-term stability of tin perovskite solar cells (TPSCs) restrict its further development as alternatives to lead perovskite solar cells (LPSCs). Considerable research has focused on the negative impacts of O2 and H2 O, while discussions about degradation mechanism in an inert atmosphere remains insufficient. Herein, the light-induced autoxidation of tin perovskite in nitrogen atmosphere is revealed for the first time and the elastic lattice distortion is demonstrated as the crucial role of rapid degradation. The continuous injection of photons induces energy transfer from excited A-site cations to vibrating Sn-I framework, leading to the elastic deformation of perovskite lattice. Consequently, the over distorted Sn-I framework releases free iodine and further oxidizes Sn2+ in the form of molecular iodine. Through an appropriately designed light-dark cyclic test, a remarkable PCE of 14.41% is achieved based on (Cs0.025 (MA0.25 FA0.75 )0.975 ) 0.98 EDA0.01 SnI3 solar cells, which is the record of hybrid triple TPSCs so far. The findings unveil autoxidation as the crux of TPSCs' degradation in an inert atmosphere and suggest the possibility of reinforcing the tin perovskite lattice towards highly efficient and stable TPSCs.

8.
Small ; 20(7): e2306803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803480

RESUMO

Lead-free dielectric capacitors have attracted significant research interest for high-power applications due to their environmental benefits and ability to meet the demanding performance requirements of electronic devices. However, the development of lead-free ceramic dielectrics with outstanding energy storage performance remains a challenge. In this study, environmentally friendly ceramic dielectrics with sandwich structures are designed and fabricated to improve energy storage performance via the synergistic effect of different dielectrics. The chemical compositions of the outer and middle layers of the sandwich structure are 0.35BiFeO3 -0.65SrTiO3 and Bi0.39 Na0.36 Sr0.25 TiO3 , respectively. The experimental and theoretical simulation results demonstrate that the breakdown strength is over 700 kV cm-1 for prepare sandwich structure ceramics. As a result, an ultrahigh recoverable energy storage density of 9.05 J cm-3 and a near-ideal energy storage efficiency of 97% are simultaneously achieved under 710 kV cm-1 . Furthermore, the energy storage efficiency maintains high values (≥ 96%) within 1-100 Hz and the power density as high as 188 MW cm-3 under 400 kV cm-1 . These results indicate that the designed lead-free ceramics with a sandwich structure possess superior comprehensive energy storage performance, making them promising lead-free candidates in the energy storage field.

9.
Small ; : e2309796, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813728

RESUMO

The high-field energy-storage performance of dielectric capacitors has been significantly improved in recent years, yet the high voltage risks of device failure and large cost of insulation technology increase the demand for high-performance dielectric capacitors at finite electric fields. Herein, a unique superparaelectric state filled with polar nanoclusters with various local symmetries for lead-free relaxor ferroelectric capacitors is subtly designed through a simple chemical modification method, successfully realizing a collaborative improvement of polarization hysteresis, maximum polarization, and polarization saturation at moderate electric fields of 20-30 kV mm-1. Therefore, a giant recoverable energy density of ≈5.0 J cm-3 and a high efficiency of ≈82.1% are simultaneously achieved at 30 kV mm-1 in (0.9-x)NaNbO3-0.1BaTiO3-xBiFeO3 lead-free ceramics, showing a breakthrough progress in moderate-field comprehensive energy-storage performances. Moreover, superior charge-discharge performances of high-power density ≈182 MW cm-3, high discharge energy density ≈4.3 J cm-3 and ultra-short discharge time <70 ns as well as excellent temperature stability demonstrate great application potentials for dielectric energy-storage capacitors in pulsed power devices. This work provides an effective and paradigmatic strategy for developing novel lead-free dielectrics with high energy-storage performance under finite electric fields.

10.
Small ; : e2401202, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805739

RESUMO

Halide perovskites have garnered significant attention for their unique optoelectronic properties in solar-to-fuel conversions. However, the efficiency of halide perovskites in the field of photocatalytic CO2 reduction is largely limited by serious charge recombination and a lack of efficient active sites. In this work, a rubidium (Rb) doped Cs2AgBiBr6 (Rb:CABB) hierarchical microsphere is developed for photocatalytic CO2 reduction. Experimental and theoretical analysis discloses that partially substituting Rb+ for Ag+ can effectively modulate the electronic structure of CABB, favoring charge separation and making adjacent Bi atoms an electron-rich active site. Further investigations indicated that Rb doping also reduces the energy barriers of the rate-determining step in CO2 reduction. As a result, Rb:CABB demonstrated an enhanced CO yield compared to its undoped counterpart. This work presents a promising approach to optimizing the electronic structures of photocatalysts and paving a new way for exploring halide perovskites for photocatalytic CO2 reduction.

11.
Small ; : e2400997, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712477

RESUMO

Dielectric capacitors are widely used in advanced electrical and electronic systems due to the rapid charge/discharge rates and high power density. High comprehensive energy storage properties are the ultimate ambition in the field of application achievements. Here, the high-entropy strategy is proposed to design and fabricate single-phase homogeneous (Bi0.5Ba0.1Sr0.1Ca0.2Na0.1)(Fe0.5Ti0.3Zr0.1Nb0.1)O3 ceramic, the hierarchical heterostructure including rhombohedral-tetragonal multiphase nanoclusters and locally disordered oxygen octahedral tilt can lead to the increased dielectric relaxation, diffused phase transition, diverse local polarization configurations, grain refinement, ultrasmall polar nanoregions, large random field, delayed polarization saturation and improved breakdown field. Accordingly, a giant Wrec ≈13.3 J cm-3 and a high η ≈78% at 66.4 kV mm-1 can be simultaneously achieved in the lead-free high-entropy BiFeO3-based ceramic, showing an obvious advantage in overall energy-storage properties over BiFeO3-based lead-free ceramics. Moreover, an ultrafast discharge rate (t0.9 = 18 ns) can be achieved at room temperature, concomitant with favorable temperature stability in the range of 20-160 °C, due to the enhanced diffuse phase transition and fast polarization response. This work provides a feasible pathway to design and generate dielectric materials exhibiting high comprehensive energy-storage performance.

12.
Small ; : e2400686, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864439

RESUMO

High-performance energy storage dielectrics capable of low/moderate field operation are vital in advanced electrical and electronic systems. However, in contrast to achievements in enhancing recoverable energy density (Wrec), the active realization of superior Wrec and energy efficiency (η) with giant energy-storage coefficient (Wrec/E) in low/moderate electric field (E) regions is much more challenging for dielectric materials. Herein, lead-free relaxor ferroelectrics are reported with giant Wrec/E designed with polymorphic heterogeneous polar structure. Following the guidance of Landau phenomenological theory and rational composition construction, the conceived (Bi0.5Na0.5)TiO3-based ternary solid solution that delivers giant Wrec/E of ≈0.0168 µC cm-2, high Wrec of ≈4.71 J cm-3 and high η of ≈93% under low E of 280 kV cm-1, accompanied by great stabilities against temperature/frequency/cycling number and excellent charging-discharging properties, which is ahead of most currently reported lead-free energy storage bulk ceramics measured at same E range. Atomistic observations reveal that the correlated coexisting local rhombohedral-tetragonal polar nanoregions embedded in the cubic matrix are constructed, which enables high polarization, minimized hysteresis, and significantly delayed polarization saturation concurrently, endowing giant Wrec/E along with high Wrec and η. These findings advance the superiority and feasibility of polymorphic nanodomains in designing highly efficient capacitors for low/moderate field-region practical applications.

13.
Small ; 20(25): e2309926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196153

RESUMO

As one type of recent emerging lead-free perovskites, Cs2ZrCl6 nanocrystals are widely concerned, benefiting from the eminent designability, high X-ray cutoff efficiency, and favorable stability. Improving the luminescence performance of Cs2ZrCl6 nanocrystals has great importance to cater for practical applications. In view of the surface defects frequently formed by the liquid phase method, the particle morphology and surface quality of this material are expected to be regulated if certain intervention is made in the synthesis process. In the work, differing from normal cell lattice modulation based on the ion doping, the grain size and surface morphology of Cs2ZrCl6 nanocrystals are optimized via adding a certain amount of InCl3 to the synthetic solution. The surface defects are restored to inhibit the defect-induced non-radiative transition, resulting in the improvement of the luminescence properties. Moreover, a flexible Cs2ZrCl6@polydimethylsiloxane film with excellent heat, water, and bending resistance and a light-emitting diode (LED) device are fabricated, exhibiting excellent application potential for X-ray imaging and blue LED.

14.
Small ; 20(12): e2307025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941475

RESUMO

Severe nonradiative recombination and open-circuit voltage loss triggered by high-density interface defects greatly restrict the continuous improvement of Sn-based perovskite solar cells (Sn-PVSCs). Herein, a novel amphoteric semiconductor, O-pivaloylhydroxylammonium trifluoromethanesulfonate (PHAAT), is developed to manage interface defects and carrier dynamics of Sn-PVSCs. The amphiphilic ionic modulators containing multiple Lewis-base functional groups can synergistically passivate anionic and cationic defects while coordinating with uncoordinated Sn2+ to compensate for surface charge and alleviate the Sn2+ oxidation. Especially, the sulfonate anions raise the energy barrier of surface oxidation, relieve lattice distortion, and inhibit nonradiative recombination by passivating Sn-related and I-related deep-level defects. Furthermore, the strong coupling between PHAAT and Sn perovskite induces the transition of the surface electronic state from p-type to n-type, thus creating an extra back-surface field to accelerate electron extraction. Consequently, the PHAAT-treated device exhibits a champion efficiency of 13.94% with negligible hysteresis. The device without any encapsulation maintains 94.7% of its initial PCE after 2000 h of storage and 91.6% of its initial PCE after 1000 h of continuous illumination. This work provides a reliable strategy to passivate interface defects and construct p-n homojunction to realize efficient and stable Sn-based perovskite photovoltaic devices.

15.
Small ; 20(15): e2306600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009782

RESUMO

2D Bi2O2Se has recently garnered significant attention in the electronics and optoelectronics fields due to its remarkable photosensitivity, broad spectral absorption, and excellent long-term environmental stability. However, the development of integrated Bi2O2Se photodetector with high performance and low-power consumption is limited by material synthesis method and the inherent high carrier concentration of Bi2O2Se. Here, a type-I heterojunction is presented, comprising 2D Bi2O2Se and lead-free bismuth perovskite CsBi3I10, for fast response and broadband detection. Through effective charge transfer and strong coupling effect at the interfaces of Bi2O2Se and CsBi3I10, the response time is accelerated to 4.1 µs, and the detection range is expanded from ultraviolet to near-infrared spectral regions (365-1500 nm). The as-fabricated photodetector exhibits a responsivity of 48.63 AW-1 and a detectivity of 1.22×1012 Jones at 808 nm. Moreover, efficient modulation of the dominant photocurrent generation mechanism from photoconductive to photogating effect leads to sensitive response exceeding 103 AW-1 for heterojunction-based photo field effect transistor (photo-FETs). Utilizing the large-scale growth of both Bi2O2Se and CsBi3I10, the as-fabricated integrated photodetector array demonstrates outstanding homogeneity and stability of photo-response performance. The proposed 2D Bi2O2Se/CsBi3I10 perovskite heterojunction holds promising prospects for the future-generation photodetector arrays and integrated optoelectronic systems.

16.
Small ; 20(12): e2307454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948430

RESUMO

Lead halide hybrid perovskites have made great progress in direct X-ray detection and broadband photodetection, but the existence of toxic Pb and the demand for external operating voltage have severely limited their further applications and operational stability improvements. Therefore, exploring "green" lead-free hybrid perovskite that can both achieve X-ray detection and broadband photodetection without external voltage is of great importance, but remains severely challenging. Herein, using centrosymmetric (BZA)3BiI6 (1, BZA = benzylamine) as a template, a pair of chiral-polar lead-free perovskites, (BZA)2(R/S-PPA)BiI6 (2-R/S, R/S-PPA = (R/S)-1-Phenylpropylamine) are successfully obtained by introducing chiral aryl cations of (R/S)-1-Phenylpropylamine. Compared to 1, chiral-polar 2-R presents a significant irradiation-responsive bulk photovoltaic effect (BPVE) with an open circuit photovoltage of 0.4 V, which enables it with self-powered X-ray, UV-vis-NIR broadband photodetection. Specifically, 2-R device exhibits an ultralow detection limit of 18.5 nGy s-1 and excellent operational stability. Furthermore, 2-R as the first lead-free perovskite achieves significant broad-spectrum (377-940 nm) photodetection via light-induced pyroelectric effect. This work sheds light on the rational crystal reconstruction engineering and design of "green" hybrid perovskite toward high-demanded self-powered radiation detection and broadband photodetection.

17.
Small ; : e2401229, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733235

RESUMO

The great potential of K1/2Bi1/2TiO3 (KBT) for dielectric energy storage ceramics is impeded by its low dielectric breakdown strength, thereby limiting its utilization of high polarization. This study develops a novel composition, 0.83KBT-0.095Na1/2Bi1/2ZrO3-0.075 Bi0.85Nd0.15FeO3 (KNBNTF) ceramics, demonstrating outstanding energy storage performance under high electric fields up to 425 kV cm-1: a remarkable recoverable energy density of 7.03 J cm-3, and a high efficiency of 86.0%. The analysis reveals that the superior dielectric breakdown resistance arises from effective mitigation of space charge accumulation at the interface, influenced by differential dielectric and conductance behaviors between grains and grain boundaries. Electric impedance spectra confirm the significant suppression of space charge accumulation in KNBNTF, attributable to the co-introduction of Na1/2Bi1/2ZrO3 and Bi0.85Nd0.15FeO3. Phase-field simulations reveal the emergence of a trans-granular breakdown mode in KNBNTF resulting from the mitigated interfacial polarization, impeding breakdown propagation and increasing dielectric breakdown resistance. Furthermore, KNBNTF exhibits a complex local polarization and enhances the relaxor features, facilitating high field-induced polarization and establishing favorable conditions for exceptional energy storage performance. Therefore, the proposed strategy is a promising design pathway for tailoring dielectric ceramics in energy storage applications.

18.
Chem Rec ; 24(2): e202300241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37728189

RESUMO

The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using "green" chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by "green" chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.

19.
Mikrochim Acta ; 191(3): 125, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326626

RESUMO

Lead-based perovskites are highly susceptible to environmental influences, and their application in analytical chemistry, especially in aqueous solution, has been reported rarely. All-inorganic lead-free metal halide perovskites have been considered as a substitute for lead-based perovskites. Herein, a Cs2RbTbCl6 perovskite microcrystal (PMCs), which emits strong yellow-green fluorescence with a maximum emission wavelength at 547 nm, was for the first time  synthesized and characterized. The Cs2RbTbCl6 PMCs could be well dispersed in N,N-dimethylacetamide (DMF), and its fluorescence could be significantly enhanced by the addition of norfloxacin (NOR) in the aqueous solution. We found that the Cs2RbTbCl6 PMCs can be used as fluorescent probes (excitation, 365 nm; emission, 547 nm) to selectively detect NOR in a concentration range from 10.0 to 200.0 µM with the limit of detection (LOD) being 0.04 µM. The Cs2RbTbCl6 PMCs could also be adsorbed on filter paper to fabricate as a fluorescent test paper for visual detection of NOR under 365-nm ultraviolet (UV) lamp irradiation. The proposed method has the potential to establish a new analytical method to visualize the detection of NOR in aqueous environments and also promotes the application of all-inorganic lead-free perovskites for analytical detection in aqueous environments.

20.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732922

RESUMO

Vibration energy harvesting based on piezoelectric transducers is an attractive choice to replace single-use batteries in powering Wireless Sensor Nodes (WSNs). As of today, their widespread application is hindered due to low operational bandwidth and the conventional use of lead-based materials. The Restriction of Hazardous Substances legislation (RoHS) implemented in the European Union restricts the use of lead-based piezoelectric materials in future electronic devices. This paper investigates lithium niobate (LiNbO3) as a lead-free material for a high-performance broadband Piezoelectric Energy Harvester (PEH). A single-clamped, cantilever beam-based piezoelectric microgenerator with a mechanical footprint of 1 cm2, working at a low resonant frequency of 200 Hz, with a high piezoelectric coupling coefficient and broad bandwidth, was designed and microfabricated, and its performance was evaluated. The PEH device, with an acceleration of 1 g delivers a maximum output RMS power of nearly 35 µW/cm2 and a peak voltage of 6 V for an optimal load resistance at resonance. Thanks to a high squared piezoelectric electro-mechanical coupling coefficient (k2), the device offers a broadband operating frequency range above 10% of the central frequency. The Mason electro-mechanical equivalent circuit was derived, and a SPICE model of the device was compared with experimental results. Finally, the output voltage of the harvester was rectified to provide a DC output stored on a capacitor, and it was regulated and used to power an IoT node at an acceleration of as low as 0.5 g.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA