RESUMO
The boundary between CaRuO3 and CaMnO3 is an ideal test bed for emergent magnetic ground states stabilized through interfacial electron interactions. In this system, nominally antiferromagnetic and paramagnetic materials combine to yield interfacial ferromagnetism in CaMnO3 due to electron leakage across the interface. In this work, we show that the crystal symmetry at the surface is a critical factor determining the nature of the interfacial interactions. Specifically, by growing CaRuO3/CaMnO3 heterostructures along the (111) instead of the (001) crystallographic axis, we achieve a 3-fold enhancement of the magnetization and involve the CaRuO3 layers in the ferromagnetism, which now spans both constituent materials. The stabilization of a net magnetic moment in CaRuO3 through strain effects has been long-sought but never consistently achieved, and our observations demonstrate the importance of interface engineering in the development of new functional heterostructures.
RESUMO
Ferromagnetic La0.7Sr0.3Mn1-xRuxO3 epitaxial multilayers with controlled variation of the Ru/Mn content were synthesized to engineer canted magnetic anisotropy and variable exchange interactions, and to explore the possibility of generating a Dzyaloshinskii-Moriya interaction. The ultimate aim of the multilayer design is to provide the conditions for the formation of domains with nontrivial magnetic topology in an oxide thin film system. Employing magnetic force microscopy and Lorentz transmission electron microscopy in varying perpendicular magnetic fields, magnetic stripe domains separated by Néel-type domain walls as well as Néel skyrmions smaller than 100 nm in diameter were observed. These findings are consistent with micromagnetic modeling, taking into account a sizable Dzyaloshinskii-Moriya interaction arising from the inversion symmetry breaking and possibly from strain effects in the multilayer system.
RESUMO
Here, we report the results of a Mössbauer study on hyperfine electrical and magnetic interactions in quadruple perovskite BiMn7O12 doped with 57Fe probes. Measurements were performed in the temperature range of 10 K < T < 670 K, wherein BiMn6.9657Fe0.04O12 undergoes a cascade of structural (T1 ≈ 590 K, T2 ≈ 442 K, and T3 ≈ 240 K) and magnetic (TN1 ≈ 57 K, TN2 ≈ 50 K, and TN3 ≈ 24 K) phase transitions. The analysis of the electric field gradient (EFG) parameters, including the dipole contribution from Bi3+ ions, confirmed the presence of the local dipole moments pBi, which are randomly oriented in the paraelectric cubic phase (T > T1). The unusual behavior of the parameters of hyperfine interactions between T1 and T2 was attributed to the dynamic Jahn-Teller effect that leads to the softening of the orbital mode of Mn3+ ions. The parameters of the hyperfine interactions of 57Fe in the phases with non-zero spontaneous electrical polarization (Ps), including the P1 â Im transition at T3, were analyzed. On the basis of the structural data and the quadrupole splitting Δ(T) derived from the 57Fe Mössbauer spectra, the algorithm, based on the Born effective charge model, is proposed to describe Ps(T) dependence. The Ps(T) dependence around the Im â I2/m phase transition at T2 is analyzed using the effective field approach. Possible reasons for the complex relaxation behavior of the spectra in the magnetically ordered states (T < TN1) are also discussed.
Assuntos
Espectroscopia de Mossbauer , ÍonsRESUMO
Electronic phase separation in complex oxides is the inhomogeneous spatial distribution of electronic phases, involving length scales much larger than those of structural defects or nonuniform distribution of chemical dopants. While experimental efforts focused on phase separation and established its correlation with nonlinear responses under external stimuli, it remains controversial whether phase separation requires quenched disorder for its realization. Early theory predicted that if perfectly "clean" samples could be grown, both phase separation and nonlinearities would be replaced by a bicritical-like phase diagram. Here, using a layer-by-layer superlattice growth technique we fabricate a fully chemically ordered "tricolor" manganite superlattice, and compare its properties with those of isovalent alloyed manganite films. Remarkably, the fully ordered manganite does not exhibit phase separation, while its presence is pronounced in the alloy. This suggests that chemical-doping-induced disorder is crucial to stabilize the potentially useful nonlinear responses of manganites, as theory predicted.
RESUMO
Advanced scientific and industrial equipment requires magnetic field sensors with decreased dimensions while keeping high sensitivity in a wide range of magnetic fields and temperatures. However, there is a lack of commercial sensors for measurements of high magnetic fields, from â¼1 T up to megagauss. Therefore, the search for advanced materials and the engineering of nanostructures exhibiting extraordinary properties or new phenomena for high magnetic field sensing applications is of great importance. The main focus of this review is the investigation of thin films, nanostructures and two-dimensional (2D) materials exhibiting non-saturating magnetoresistance up to high magnetic fields. Results of the review showed how tuning of the nanostructure and chemical composition of thin polycrystalline ferromagnetic oxide films (manganites) can result in a remarkable colossal magnetoresistance up to megagauss. Moreover, by introducing some structural disorder in different classes of materials, such as non-stoichiometric silver chalcogenides, narrow band gap semiconductors, and 2D materials such as graphene and transition metal dichalcogenides, the possibility to increase the linear magnetoresistive response range up to very strong magnetic fields (50 T and more) and over a large range of temperatures was demonstrated. Approaches for the tailoring of the magnetoresistive properties of these materials and nanostructures for high magnetic field sensor applications were discussed and future perspectives were outlined.
RESUMO
High-sensitivity nanomechanical sensors are mostly based on silicon technology and related materials. The use of functional materials, such as complex oxides having strong interplay between structural, electronic, and magnetic properties, may open possibilities for developing new mechanical transduction schemes and for further enhancement of the device performances. The integration of these materials into micro/nano-electro-mechanical systems (MEMS/NEMS) is still at its very beginning and critical basic aspects related to the stress state and the quality factors of mechanical resonators made from epitaxial oxide thin films need to be investigated. Here, suspended micro-bridges are realized from single-crystal thin films of (La0.7 ,Sr0.3 )MnO3 (LSMO), a prototypical complex oxide showing ferromagnetic ground state at room temperature. These devices are characterized in terms of resonance frequency, stress state, and Q-factor. LSMO resonators are highly stressed, with a maximum value of ≈260 MPa. The temperature dependence of their mechanical resonance is discussed considering both thermal strain and the temperature-dependent Young's modulus. The measured Q-factors reach few tens of thousands at room temperature, with indications of further improvements by optimizing the fabrication protocols. These results demonstrate that complex oxides are suitable to realize high Q-factor mechanical resonators, paving the way toward the development of full-oxide MEMS/NEMS sensors.
RESUMO
Dislocations are 1D topological defects with emergent electronic properties. Their low dimensionality and unique properties make them excellent candidates for innovative device concepts, ranging from dislocation-based neuromorphic memory to light emission from diodes. To date, dislocations are created in materials during synthesis via strain fields or flash sintering or retrospectively via deformation, for example, (nano)-indentation, limiting the technological possibilities. In this work, we demonstrate the creation of dislocations in the ferroelectric semiconductor Er(Mn,Ti)O3 with nanoscale spatial precision using electric fields. By combining high-resolution imaging techniques and density functional theory calculations, direct images of the dislocations are collected, and their impact on the local electric transport behavior is studied. Our approach enables local property control via dislocations without the need for external macroscopic strain fields, expanding the application opportunities into the realm of electric-field-driven phenomena.
RESUMO
Low-temperature electrostatic force microscopy (EFM) is used to probe unconventional domain walls in the improper ferroelectric semiconductor Er0.99Ca0.01MnO3 down to cryogenic temperatures. The low-temperature EFM maps reveal pronounced electric far fields generated by partially uncompensated domain-wall bound charges. Positively and negatively charged walls display qualitatively different fields as a function of temperature, which we explain based on different screening mechanisms and the corresponding relaxation time of the mobile carriers. Our results demonstrate domain walls in improper ferroelectrics as a unique example of natural interfaces that are stable against the emergence of electrically uncompensated bound charges. The outstanding robustness of improper ferroelectric domain walls in conjunction with their electronic versatility brings us an important step closer to the development of durable and ultrasmall electronic components for next-generation nanotechnology.
RESUMO
In complex oxides systems such as manganites, electronic phase separation (EPS), a consequence of strong electronic correlations, dictates the exotic electrical and magnetic properties of these materials. A fundamental yet unresolved issue is how EPS responds to spatial confinement; will EPS just scale with size of an object, or will the one of the phases be pinned? Understanding this behavior is critical for future oxides electronics and spintronics because scaling down of the system is unavoidable for these applications. In this work, we use La0.325Pr0.3Ca0.375MnO3 (LPCMO) single crystalline disks to study the effect of spatial confinement on EPS. The EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases appears to be the low-temperature ground state in bulk, thin films, and large disks, a previously unidentified ground state (i.e., a single ferromagnetic phase state emerges in smaller disks). The critical size is between 500 nm and 800 nm, which is similar to the characteristic length scale of EPS in the LPCMO system. The ability to create a pure ferromagnetic phase in manganite nanodisks is highly desirable for spintronic applications.
RESUMO
The properties of many materials can be strongly affected by the atomic valence of the contained individual elements, which may vary at surfaces and other interfaces. These variations can have a critical impact on material performance in applications. A non-destructive method for the determination of layer-by-layer atomic valence as a function of material thickness is presented for La0.7Sr0.3MnO3 (LSMO) thin films. The method utilizes a combination of bulk- and surface-sensitive X-ray absorption spectroscopy (XAS) detection modes; here, the modes are fluorescence yield and surface-sensitive total electron yield. The weighted-average Mn atomic valence as measured from the two modes are simultaneously fitted using a model for the layer-by-layer variation of valence based on theoretical model Hamiltonian calculations. Using this model, the Mn valence profile in LSMO thin film is extracted and the valence within each layer is determined to within an uncertainty of a few percent. The approach presented here could be used to study the layer-dependent valence in other systems or extended to different properties of materials such as magnetism.
RESUMO
The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO3 (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal-insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal-insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.
RESUMO
While being key to understanding their intriguing physical properties, the origin of nanophase separation in manganites and other strongly correlated materials is still unclear. Here, experimental evidence is offered for the origin of the controverted phase separation mechanism in the representative La1-xCaxMnO3 system. For low hole densities, direct evidence of Mn(4+) holes localization around Ca(2+) ions is experimentally provided by means of aberration-corrected scanning transmission electron microscopy combined with electron energy loss spectroscopy. These localized holes give rise to the segregated nanoclusters, within which double exchange hopping between Mn(3+) and Mn(4+) remains restricted, accounting for the insulating character of perovskites with low hole density. This localization is explained in terms of a simple model in which Mn(4+) holes are bound to substitutional divalent Ca(2+) ions.
RESUMO
The functional properties of oxide heterostructures ultimately rely on how the electronic and structural mismatches occurring at interfaces are accommodated by the chosen materials combination. We discuss here LaMnO3/LaNiO3 heterostructures, which display an intrinsic interface structural asymmetry depending on the growth sequence. Using a variety of synchrotron-based techniques, we show that the degree of intermixing at the monolayer scale allows interface-driven properties such as charge transfer and the induced magnetic moment in the nickelate layer to be controlled. Further, our results demonstrate that the magnetic state of strained LaMnO3 thin films dramatically depends on interface reconstructions.
RESUMO
The design of artificial vortex pinning landscapes is a major goal toward large scale applications of cuprate superconductors. Although disordered nanometric inclusions have shown to modify their vortex phase diagram and to produce enhancements of the critical current ( MacManus-Driscoll , J. L. ; Foltyn , S. R. ; Jia , Q. X. ; Wang , H. ; Serquis , A. ; Civale , L. ; Maiorov , B. ; Hawley , M. E. ; Maley , M. P. ; Peterson , D. E. Nat. Mater. 2004 , 3 , 439 - 443 and Yamada , Y. ; Takahashi , K. ; Kobayashi , H. ; Konishi , M. ; Watanabe , T. ; Ibi , A. ; Muroga , T. ; Miyata , S. ; Kato , T. ; Hirayama , T. ; Shiohara , Y. Appl. Phys. Lett. 2005 , 87 , 1 - 3 ), the effect of ordered oxide nanostructures remains essentially unexplored. This is due to the very small nanostructure size imposed by the short coherence length, and to the technological difficulties in the nanofabrication process. Yet, the novel phenomena occurring at oxide interfaces open a wide spectrum of technological opportunities to interplay with the superconductivity in cuprates. Here, we show that the unusual long-range suppression of the superconductivity occurring at the interface between manganites and cuprates affects vortex nucleation and provides a novel vortex pinning mechanism. In particular, we show evidence of commensurate pinning in YBCO films with ordered arrays of LCMO ferromagnetic nanodots. Vortex pinning results from the proximity induced reduction of the condensation energy at the vicinity of the magnetic nanodots, and yields an enhanced friction between the nanodot array and the moving vortex lattice in the liquid phase. This result shows that all-oxide ordered nanostructures constitute a powerful, new route for the artificial manipulation of vortex matter in cuprates.
RESUMO
Epitaxial strain alters the physical properties of thin films grown on single crystal substrates. Thin film oxides are particularly apt for strain engineering new functionalities in ferroic materials. In the case of La(2/3)Ca(1/3)MnO(3) (LCMO) thin films, here we show the first experimental images obtained by electron holography demonstrating that epitaxial strain induces the segregation of a flat and uniform nonferromagnetic layer with antiferromagnetic (AFM) character at the top surface of a ferromagnetic (FM) layer, the whole film being chemical and structurally homogeneous at room temperature. For different substrates and growth conditions the tetragonality of LCMO at room temperature, defined as τ = |c - a|/a, is the driving force for a phase coexistence above an approximate critical value of τC ≈ 0.024. Theoretical calculations prove that the increased tetragonality changes the energy balance of the FM and AFM ground states in strained LCMO, enabling the formation of magnetically inhomogeneous states. This work gives the key evidence that opens a new route to synthesize strain-induced exchanged-biased FM-AFM bilayers in single thin films, which could serve as building blocks of future spintronic devices.
RESUMO
Materials with mesoscopic structural and electronic phase separation, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano- to micrometer-sized phase-separated domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical phase-separated manganite Pr0.65 (Ca0.75 Sr0.25 )0.35 MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of phase separation in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials.
RESUMO
Perovskite oxides of the Ln0.5 A0.5 MnO3 (Ln=lanthanide, A=Sr, Ca) family have been investigated for the thermochemical splitting of H2 O and CO2 to produce H2 and CO respectively. The amounts of O2 and CO produced strongly depend on the size of the rare earth ions and alkaline earth ions. The manganite with the smallest rare earth possessing the highest distortion and size disorder as well as the smallest tolerance factor, gives out the maximum amount of O2 , and, hence, the maximum amount of CO. Thus, the best results are found with Y0.5 Sr0.5 MnO3 , which possesses the highest distortion and size disorder. Y0.5 Sr0.5 MnO3 shows remarkable fuel production activity even at the reduction and oxidation temperatures as low as 1200 °C and 900 °C, respectively.
RESUMO
Selective dissolution is a common corrosion process in dealloying in which an alloy is immersed in acid to remove the active element, leaving behind an inert constituent. We introduce this technique into the treatment of oxide catalysts. A three-dimensionally ordered macroporous LaMnO3 perovskite has been prepared and treated with diluted HNO3 to selectively remove La cations, acquiring a novel γ-MnO2-like material. LaMnO3 is not a satisfactory catalyst on CO oxidation. Upon the removal of La cations, the obtained sample showed a significantly higher CO oxidation catalytic activity (T50=89 °C) than the initial precursor LaMnO3 (T50=237 °C) and ordinary γ-MnO2 (T50=148 °C). A large surface area, a high degree of mesoporosity, excellent low-temperature reducibility, and especially improved surface oxygen species are deduced to be responsible for CO oxidation at lower temperatures.
Assuntos
Compostos de Cálcio/química , Monóxido de Carbono/química , Lantânio/química , Compostos de Manganês/química , Óxidos/química , Titânio/química , Catálise , Cátions/química , Cátions/isolamento & purificação , Lantânio/isolamento & purificação , Oxirredução , Porosidade , Solubilidade , Propriedades de SuperfícieRESUMO
Pulse laser deposited La2/3Sr1/3MnO3 ultrathin films on SrTiO3 substrates were characterized by polar and longitudinal Kerr magneto-optical spectroscopy. Experimental data were confronted with theoretical simulations based on the transfer matrix formalism. An excellent agreement was achieved for a 10.7 nm thick film, while a distinction in the Kerr effect amplitudes was obtained for a 5 nm thick film. This demonstrated the suppression of ferromagnetism due to the layer/substrate interface effects. A revised, depth-sensitive theoretical model with monolayer resolution described the experimental data well, and provided clear cross-section information about the evolution of ferromagnetism inside the film. It was found that the full restoration of the double-exchange mechanism, responsible for the ferromagnetic ordering in La2/3Sr1/3MnO3, occurs within the first nine monolayers of the film. Moreover, all the studied films exhibited magneto-optical properties similar to bulk crystals and thick films. This confirmed a fully developed perovskite structure down to 5 nm.
RESUMO
Magnetic circular dichroism (MCD) spectroscopy for manganite films of various compositions and morphologies has been studied in the range of 1.2-3.7 eV. The primary focus was on the temperature behavior of the MCD spectra, as well as the magnetization and resistivity of the films. The data obtained were analyzed in comparison with magneto-optical spectroscopy of the Kerr rotation (KR) on both single crystal and thin film of manganites. It has been established that the MCD response at 2.3 eV is typical for manganites transitioning into a conducting state. Consequently, it reflects a change in the band structure of the material. This response is also observed in the KR spectrum of manganites in the range 2.3-2.6 eV below the metal-insulator transition temperature. These findings complement the understanding of the electronic structure of manganites in general. Moreover, they also provide a basis for the search for new functional materials.