RESUMO
Auger electron-emitters increasingly attract attention as potential radionuclides for molecular radionuclide therapy in oncology. The radionuclide technetium-99m is widely used for imaging; however, its potential as a therapeutic radionuclide has not yet been fully assessed. We used MDA-MB-231 breast cancer cells engineered to express the human sodium iodide symporter-green fluorescent protein fusion reporter (hNIS-GFP; MDA-MB-231.hNIS-GFP) as a model for controlled cellular radionuclide uptake. Uptake, efflux, and subcellular location of the NIS radiotracer [99mTc]TcO4- were characterised to calculate the nuclear-absorbed dose using Medical Internal Radiation Dose formalism. Radiotoxicity was determined using clonogenic and γ-H2AX assays. The daughter radionuclide technetium-99 or external beam irradiation therapy (EBRT) served as controls. [99mTc]TcO4- in vivo biodistribution in MDA-MB-231.hNIS-GFP tumour-bearing mice was determined by imaging and complemented by ex vivo tissue radioactivity analysis. [99mTc]TcO4- resulted in substantial DNA damage and reduction in the survival fraction (SF) following 24 h incubation in hNIS-expressing cells only. We found that 24,430 decays/cell (30 mBq/cell) were required to achieve SF0.37 (95%-confidence interval = [SF0.31; SF0.43]). Different approaches for determining the subcellular localisation of [99mTc]TcO4- led to SF0.37 nuclear-absorbed doses ranging from 0.33 to 11.7 Gy. In comparison, EBRT of MDA-MB-231.hNIS-GFP cells resulted in an SF0.37 of 2.59 Gy. In vivo retention of [99mTc]TcO4- after 24 h remained high at 28.0% ± 4.5% of the administered activity/gram tissue in MDA-MB-231.hNIS-GFP tumours. [99mTc]TcO4- caused DNA damage and reduced clonogenicity in this model, but only when the radioisotope was taken up into the cells. This data guides the safe use of technetium-99m during imaging and potential future therapeutic applications.
Assuntos
Tecnécio/farmacologia , Tecnécio/farmacocinética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Humanos , Radioisótopos do Iodo/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Simportadores/genética , Distribuição TecidualRESUMO
Molecular radionuclide therapy is a relatively novel anticancer treatment option using radiolabeled, tumor-specific vectors. On binding of these vectors to cancer cells, radioactive decay induces DNA damage and other effects, leading to cancer cell death. Treatments, such as with [177Lu]Lu-octreotate for neuroendocrine tumors and [177Lu]Lu-PSMA for prostate cancer, are now being implemented into routine clinical practice around the world. Nonetheless, research into the underlying radiobiologic effects of these treatments is essential to further improve them or formulate new ones. The purpose of the European Working Group on the Radiobiology of Molecular Radiotherapy is to promote knowledge, investment, and networking in this area. This report summarizes recent research and insights presented at the second International Workshop on Radiobiology of Molecular Radiotherapy, held in London, U.K., on March 13 and 14, 2023. The symposium was organized by members of the Cancer Research U.K. RadNet City of London and the European Working Group on the Radiobiology of Molecular Radiotherapy.
Assuntos
Tumores Neuroendócrinos , Masculino , Humanos , Tumores Neuroendócrinos/radioterapia , Dano ao DNA , Radioisótopos/uso terapêutico , RadiobiologiaRESUMO
BACKGROUND: Auger electron-emitting radionuclides have potential in targeted treatment of small tumors. Thallium-201 (201Tl), a gamma-emitting radionuclide used in myocardial perfusion scintigraphy, decays by electron capture, releasing around 37 Auger and Coster-Kronig electrons per decay. However, its therapeutic and toxic effects in cancer cells remain largely unexplored. Here, we assess 201Tl in vitro kinetics, radiotoxicity and potential for targeted molecular radionuclide therapy, and aim to test the hypothesis that 201Tl is radiotoxic only when internalized. METHODS: Breast cancer MDA-MB-231 and prostate cancer DU145 cells were incubated with 200-8000 kBq/mL [201Tl]TlCl. Potassium concentration varied between 0 and 25 mM to modulate cellular uptake of 201Tl. Cell uptake and efflux rates of 201Tl were measured by gamma counting. Clonogenic assays were used to assess cell survival after 90 min incubation with 201Tl. Nuclear DNA damage was measured with γH2AX fluorescence imaging. Controls included untreated cells and cells treated with decayed [201Tl]TlCl. RESULTS: 201Tl uptake in both cell lines reached equilibrium within 90 min and washed out exponentially (t1/2 15 min) after the radioactive medium was exchanged for fresh medium. Cellular uptake of 201Tl in DU145 cells ranged between 1.6 (25 mM potassium) and 25.9% (0 mM potassium). Colony formation by both cell lines decreased significantly as 201Tl activity in cells increased, whereas 201Tl excluded from cells by use of high potassium buffer caused no significant toxicity. Non-radioactive TlCl at comparable concentrations caused no toxicity. An estimated average 201Tl intracellular activity of 0.29 Bq/cell (DU145 cells) and 0.18 Bq/cell (MDA-MB-231 cells) during 90 min exposure time caused 90% reduction in clonogenicity. 201Tl at these levels caused on average 3.5-4.6 times more DNA damage per nucleus than control treatments. CONCLUSIONS: 201Tl reduces clonogenic survival and increases nuclear DNA damage only when internalized. These findings justify further development and evaluation of 201Tl therapeutic radiopharmaceuticals.
RESUMO
INTRODUCTION: Thallium-201 is a radionuclide that has previously been used clinically for myocardial perfusion scintigraphy. Although in this role it has now been largely replaced by technetium-99 m radiopharmaceuticals, thallium-201 remains attractive in the context of molecular radionuclide therapy for cancer micrometastases or single circulating tumour cells. This is due to its Auger electron (AE) emissions, which are amongst the highest in total energy and number per decay for AE-emitters. Currently, chemical platforms to achieve this potential through developing thallium-201-labelled targeted radiopharmaceuticals are not available. Here, we describe convenient methods to oxidise [201Tl]Tl(I) to chelatable [201Tl]Tl(III) and identify challenges in stable chelation of thallium to support future synthesis of effective [201Tl]-labelled radiopharmaceuticals. METHODS: A plasmid pBR322 assay was carried out to determine the DNA damaging properties of [201Tl]Tl(III). A range of oxidising agents (ozone, oxygen, hydrogen peroxide, chloramine-T, iodogen, iodobeads, trichloroisocyanuric acid) and conditions (acidity, temperature) were assessed using thin layer chromatography. Chelators EDTA, DTPA and DOTA were investigated for their [201Tl]Tl(III) radiolabelling efficacy and complex stability. RESULTS: Isolated plasmid studies demonstrated that [201Tl]Tl(III) can induce single and double-stranded DNA breaks. Iodo-beads, iodogen and trichloroisocyanuric acid enabled more than 95% conversion from [201Tl]Tl(I) to [201Tl]Tl(III) under conditions compatible with future biomolecule radiolabelling (mild pH, room temperature and post-oxidation removal of oxidising agent). Although chelation of [201Tl]Tl(III) was possible with EDTA, DTPA and DOTA, only radiolabeled DOTA showed good stability in serum. CONCLUSIONS: Decay of [201Tl]Tl(III) in proximity to DNA causes DNA damage. Iodobeads provide a simple, mild method to convert thallium-201 from a 1+ to 3+ oxidation state and [201Tl]Tl(III) can be chelated by DOTA with moderate stability. Of the well-established chelators evaluated, DOTA is most promising for future molecular radionuclide therapy using thallium-201; nevertheless, a new generation of chelating agents offering resistance to reduction and dissociation of [201Tl]Tl(III) complexes is required.
Assuntos
Radioisótopos de Tálio , RadioquímicaRESUMO
PURPOSE: A high level of personalization in Molecular Radiotherapy (MRT) could bring advantages in terms of treatment effectiveness and toxicity reduction. Individual organ-level dosimetry is crucial to describe the radiopharmaceutical biodistribution expressed by the patient, to estimate absorbed doses to normal organs and target tissue(s). This paper presents a proof-of-concept Monte Carlo simulation study of "WIDMApp" (Wearable Individual Dose Monitoring Apparatus), a multi-channel radiation detector and data processing system for in vivo patient measurement and collection of radiopharmaceutical biokinetic data (i.e., time-activity data). Potentially, such a system can increase the amount of such data that can be collected while reducing the need to derive it via nuclear medicine imaging. METHODS: a male anthropomorphic MIRD phantom was used to simulate photons (i.e., gamma-rays) propagation in a patient undergoing a 131 I thyroid treatment. The administered activity was set to the amount usually administered for the treatment of differentiated carcinoma while its initial distribution in different organs was assigned following the ICRP indications for the 131 I biokinetics. Using this information, the simulation computes the Time-dependent Counts Curves (TCCs) that would have been measured by seven WIDMApp-like sensors placed and oriented to face each one of five emitting organs plus two thyroid lobes. A deconvolution algorithm was then applied on this simulated data set to reconstruct the Time-Activity Curve (TAC) of each organ. Deviations of the reconstructed TACs parameters from values used to generate them were studied as a function of the deconvolution algorithm initialization parameters and assuming non-Poisson fluctuation of the TCCs data points. RESULTS: This study demonstrates that it is possible, at least in the simple simulated scenario, to reconstruct the organ cumulated activity by measuring the time dependence of counts recorded by several detectors placed at selected positions on the patient's body. The ability to perform in vivo sampling more frequently than conventional biokinetic studies increases the number of time points and therefore the accuracy in TAC estimates. In this study, an accuracy on cumulated activity of 5% is obtained even with a 20% error on the TCC data points and a 50% error on the initial guess on the parameters of the deconvolution algorithm. CONCLUSIONS: the WIDMApp approach could provide an effective tool to characterize more accurately the radiopharmaceutical biokinetics in MRT patients, reducing the need of resources of nuclear medicine departments, such as technologist and scanner time, to perform individualized biokinetics studies. The relatively simple hardware for the approach proposed would allow its application to large numbers of patients. The results obtained justify development of an actual prototype system to characterize this technique under realistic conditions.
Assuntos
Compostos Radiofarmacêuticos , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Radiometria , Distribuição TecidualRESUMO
Targeted molecular radionuclide therapy (MRT) has shown its potential for the treatment of cancers of multiple origins. A combination therapy strategy employing two or more distinct therapeutic approaches in cancer management is aimed at circumventing tumor resistance by simultaneously targeting compensatory signaling pathways or bypassing survival selection mutations acquired in response to individual monotherapies. Combination radionuclide therapy (CRT) is a newer application of the concept, utilizing a combination of radiolabeled molecular targeting agents with chemotherapy and beam radiation therapy for enhanced therapeutic index. Encouraging results are reported with chemotherapeutic agents in combination with radiolabeled targeting molecules for cancer therapy. With increasing awareness of the various survival and stress response pathways activated after radionuclide therapy, different holistic combinations of MRT agents with radiosensitizers targeting such pathways have also been explored. MRT has also been studied in combination with beam radiotherapy modalities such as external beam radiation therapy and carbon ion radiation therapy to enhance the anti-tumor response. Nanotechnology aids in CRT by bringing together multiple monotherapies on a single nanostructure platform for treating cancers in a more precise or personalized way. CRT will be a key player in managing cancers if correctly tailored to the individual patient profile. The success of CRT lies in an in-depth understanding of the radiobiological principles and pathways activated in response.